
From Justifications Towards Proofs For Ontology Engineering

Matthew Horridge and Bijan Parsia
School of Computer Science

University of Manchester, M13 9PL UK

Introduction

Over the past few years there has been a significant amount
of interest in the area of explaining entailments in OWL on-
tologies1. Without some kind of tool support, it can be very
difficult, or even impossible, to work out why entailments
arise in ontologies. Even in small ontologies that only con-
tain tens of axioms, there can be multiple reasons for an
entailment, none of which may be obvious. It is for this
reason that there has recently been a lot of focus on gen-
erating explanations for entailments in ontologies. In the
OWL world, justifications are a popular form of explana-
tion for entailments. A justification is a minimal subset
of an ontology that is sufficient for an entailment to hold
(Baader and Hollunder 1995; Schlobach and Cornet 2003;
Kalyanpur 2006). More precisely, for an ontology O and an
entailment η where O |= η (O entails η), a set of axioms J
is a justification for η with respect to O if J ⊆ O, J |= η
and, for all J ′ � J , J ′ �|= η. Additionally, J is simply
a justification (without reference to O) if J |= η and, if
J ′ � J , then J ′ �|= η.

Despite the utility of justifications, in certain cases people
can struggle to understand how a justification supports an
entailment. Indeed, in a user study detailed in (Horridge,
Parsia, and Sattler 2009), it was found that a wide range
of people, who have expertise in building OWL ontologies,
can find it very difficult and even impossible to understand
some justifications for entailments in real ontologies. An
example justification that many people found difficult to un-
derstand is shown in Figure 1, which is for the entailment
Person � ⊥ (i.e. Person is unsatisfiable). In this justifica-
tion, Movie is entailed to be equivalent to � but many peo-
ple failed to spot this. Two important results emerged from
the study: 1) There were large numbers of justifications that
all participants could understand (including non-trivial jus-
tifications containing general concept inclusions, transitivity
etc.). This includes participants with limited experience of
OWL and description logic, and people who had never en-
countered justifications before. This suggests that justifica-
tions have merit as a form of explanation. 2) There were

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1An OWL (more precisely OWL 2) ontology may be regarded
as a SROIQ knowledge base

Person � ¬Movie

RRated � CatMovie

CatMovie � Movie

RRated ≡ (∃hasScript.TS) � (∀hasViolenceLevel.High)

Domain(hasViolenceLevel, Movie)

Figure 1: A justification for Person � ⊥
a number of justifications that all participants ranked “dif-
ficult” to “impossible” to understand. This includes people
who have over two years experience of working with OWL,
building ontologies and even includes people who have de-
veloped OWL reasoners. This is indicative that justification
understanding can be a real problem.

The work presented in this paper looks at a possible solu-
tion to the problem of understanding justifications. A frame-
work is presented which is used to lemmatise justifications.
The ultimate goal is that this lemmatisation process could be
used to produce justification oriented proofs, which show, in
a stepwise way using justifications how the lemmas, and ul-
timately the entailment, follows from a justification. The
work presented in this paper is applicable to OWL 2, which
is underpinned by the SROIQ description logic, but could
be applied to all First Order Logic Fragments.2

Justification Oriented Proofs

The main idea behind a justification oriented proof is de-
picted in Figure 2. The numbered rectangles represent ax-
ioms, with the rightmost rectangle, labelled η, representing
the entailment of interest. The shaded rectangles labelled
with “1” – “6” represent exactly the axioms that appear in
the original justification J for the entailment (and are there-
fore in the ontology as asserted axioms). Axioms “7” and
“8” are lemmas. Axioms “1”, “2” and “3” are a justification
for axiom “7” and axioms “3”, “4” and “5” are a justification
for axiom “8”. Together axioms “6”, “7” and “8” constitute a
justification for η i.e. the entailment. In essence, the process
of understanding why a justification supports an entailment,
is transformed to understanding how subsets of the justifi-
cation result in intermediate entailments, and understanding
how these intermediate entailments fit together to give rise
the main entailment of interest.

2A longer version of this paper may be found at http://owl.
cs.manchester.ac.uk/explanation/lemmas

569

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

1
2

3
4
5

�

7

8|=

|=
|=

6

Figure 2: A schematic of a Justification Oriented Proof

Justification Lemmatisation

Given a justification J for an entailment η, J can be lem-
matised into J ′, so that J ′ is easier to understand than J .
With this notion in hand, lemmas for justifications can now
be defined. First, an informal description is given, then a
more precise definition is given in Definition 2. Informally,
a set of lemmas ΛS for a justification J for η is a set of ax-
ioms that is entailed by J which can be used to replace some
set S ⊆ J to give a new justification J ′ = (J \ S) ∪ ΛS
for η. Moreover, J ′ is simpler to understand than J . J ′ is
called a lemmatisation of J . Various restrictions are placed
on the generation of the set of lemmas ΛS that can lemmatise
a justification J . These restrictions prevent “trivial” lemma-
tisations, an example of which will be given below. Before
these restrictions are discussed, it is useful to introduce the
notion of a tidy set of axioms. Intuitively, a set of axioms is
tidy if it is consistent, contains no synonyms of ⊥ (where a
class name is a synonym of ⊥ with respect to a set of axioms
S if S |= A � ⊥), and contains no synonyms of � (where a
class name is a synonym of � with respect to a set of axioms
S if S |= � � A).

Definition 1 (Tidy sets of axioms) A set of axioms S is tidy
if S �|= � � ⊥, S �|= A � ⊥ for all A ∈ Signature(S),
and S �|= � � A for all A ∈ Signature(S).

The restrictions mandate that a set of lemmas ΛS must
only be drawn from (i) the deductive closure of tidy sub-
sets of the set S ⊆ J , (ii) from the exact set of syn-
onyms of ⊥ or � over S. Without the above restrictions
on the axioms in ΛS , it would be possible to lemmatise a
justification J to produce a justification J ′ that, in isola-
tion, is simple to understand, but otherwise bears little or
no resemblance to J . For example, consider J = {A �
∃R.B, B � E
 ∃S.C, B � D
 ∀S.¬C} as a justifi-
cation for A � ⊥. Suppose that any axioms entailed by
J , could be used as lemmas (i.e. there are no restrictions
on the axioms that make up ΛS). In this example, A is
unsatisfiable in J , meaning that it would be possible for
J ′ = {A � E,A � ¬E} to be a lemmatisation of J . Here,
J ′ is arguably easier to understand than J , but in bears little
resemblance to J . In other words, A � E and A � ¬E are
not helpful lemmas for J |= A � ⊥. Similarly, unhelpful
results arise if lemmas are drawn from inconsistent sets of
axioms, or sets of axioms that contain synonyms for �.

Lemmas for Justifications Defined

In what follows, δ is the ‘well known’ structural transforma-
tion originally defined in (Plaisted and Greenbaum 1986).
This structural transformation pulls axioms apart and flat-
tens out concept expressions, removing any nesting, and is
used in order to allow a “fine-grained” approach in lemma

generation. In what follows T � is the deductive closure
of T , J � is the deductive closure of J , A represents an
atomic class name, and Complexity is a function that re-
turns a value that represents how complex a justification is
for some purpose—the larger the value the more complex.
In essence the complexity function is used to choose one
lemmatised justification over another.

Definition 2 (Lemmas for Justifications) Let J be a justi-
fication for η and S a set of axioms such that S ⊆ J . Let
ΘS be the set of tidy subsets of (S ∪ δ(S)). Let ΩS be the
set of consistent subsets of (S ∪ δ(S)). Let

ΛS ⊆
⋃

T ∈ΘS

T � ∪ {α |α is of the form A � ⊥ or � � A,
and ∃K ∈ ΩS s.t. K |= α}

ΛS is a set of lemmas for a justification J for η if, for
J ′ = (J \ S) ∪ ΛS

1. J ′ is a justification for η over J �, and,
2. Complexity(η,J ′) < Complexity(η,J).

Complexity Models

As can be seen, Definition 2 relies on a function that pro-
vides a complexity score for a justification. The higher the
score the more complex the justification is for some partic-
ular purpose. In terms of user understanding, a hard to un-
derstand justification has a higher score than an easy to un-
derstand justification. It should be noted that the framework
presented here is intended to be rather general. The com-
plexity function should be thought of as being “pluggable”.
In the work presented here, a simple model for predicting
how complex a justification is for a person to understand
is used. This model could of course be adapted and tai-
lored for specific audiences. It is easy to imagine that a tool
that provides explanations to end users could have various
strengths of lemmatisation that correspond to different com-
plexity models under the hood. Briefly, the model is com-
posed of two main parts: 1) A “structural” complexity mea-
sure, which estimates the complexity of a justification based
on metrics such as the number of different types of axioms
and different types of concept expressions that appear in a
justification, how the signature is distributed over axioms
etc.; 2) A “specific phenomena” based complexity measure,
which increases the complexity of a justification when cer-
tain problematic patterns of axioms or kinds of problematic
entailments, identified in the user study, occur in the justifi-
cation.

An Example

An example of the kinds of lemmas and lemmatised justifi-
cations that get computed for the justification shown in Fig-
ure 1 is presented as a justification oriented proof in Figure
3. Note that the presentation style used here is merely for
illustrative purposes, rather than as an end user presentation
device. The axioms shown in bold are the axioms that ap-
pear in the original justification, and are therefore asserted,
and all other axioms correspond to lemmas. Notice that ax-
ioms at each level of indentation form a justification for the

570

Entailment : Person � ⊥ (1)

Person � ¬Movie (2)

 � Movie (3)

∀hasViolenceLevel.⊥ � Movie (4)
∀hasViolenceLevel.⊥ � RRated (5)

RRated ≡ (∃hasScript.TS) � (∀hasViolenceLevel.High) (6)
RRated � Movie (7)

RRated � CatMovie (8)
CatMovie � Movie (9)

∃hasViolenceLevel.
 � Movie (10)
Domain(hasViolenceLevel, Movie) (11)

Figure 3: Example Lemmatisations

axiom that is above them. The example illustrates how a jus-
tification oriented proof could eventually be obtained by first
computing a lemmatised justification for the original entail-
ment and the recursively computing justifications for each
lemma and lemmatising these as necessary.

In the presentation here, the example shown in Figure
3 may be read as follows. Person is unsatisfiable be-
cause Person is disjoint with Movie (axiom 1, asserted, and
thus bold) and yet everything must be a Movie (axiom 2,
a lemma, generated by our approach). The level below
� � Movie, corresponding to axiom 3 and axiom 9, explains
why everything must be a Movie. This is due to the fact that
everything that does not have a violence level is a Movie
(axiom 3), and everything that does have a violence level is
a Movie (axiom 9). The reason that anything that does not
have a violence level is a Movie is due to axioms 4 and 6,
both of which are lemmas, which form a justification saying
that anything that does not have a violence level is RRated
and anything that is RRated is a Movie. Axiom 4, which
specifies that anything that does not have a violence level is
RRated, is a lemma which is entailed by one asserted axiom,
i.e. axiom 5. Similarly, the lemma corresponding to axiom
6 is entailed by two asserted axioms, 7 and 8. Finally, the
lemma that everything that has a violence level is a Movie is
entailed by axiom 10, the asserted domain axiom.

While the presentation in Figure 3 is for illustrative pur-
poses only, one could imagine an interactive debugging and
explanation tool that uses the underlying proof structures to
derive a user friendly proof presentation. Such a presenta-
tion may offer the ability to expand and collapse various lev-
els. Additionally, the presentation used here is a “top down”
presentation which goes from entailment to asserted axioms.
The alternative presentation would be a “bottom up” presen-
tation that would go from asserted axioms, via lemmas, to
the entailment.

Considerations

Labelling Lemmatisations with Rules In the work by
Borgida et al.(Borgida, Franconi, and Horrocks 2000), and
other Natural Deduction inspired proofs each step in an ex-
planation is labelled with the name of a rule. The rule name
identifies the syntactic transformation that is performed in
the step. The question of whether it is useful to label steps
in a proof therefore arises. The main advantage of such a
labelling is that it could provide a link to a catalogue of ex-
planation “rules” or common situations, that explain the ra-

tionale behind the rule. However, the fact that participants in
the user study could understand many justifications indicates
that rule labelling is not always necessary.

Granularity of Resulting Proofs It is easy to imagine
that when used to construct a justification oriented proof an
overly aggressive lemmatisation could introduce too many
steps. In these cases the lemmatisation process would have
a detrimental effect on end user understanding. The chances
of this happening could be minimised by careful construc-
tion of the complexity model so that a justification is only
lemmatised when necessary. An alternative solution is to
design end user interaction mechanisms that would support
an initially conservative approach to lemmatisation with it
being possible to request further lemmatisation where nec-
essary.

Conclusions and Future Work

Some naturally occurring justifications can be difficult for
a range people to understand. However, there are justifica-
tions that a range of people can understand, including peo-
ple who have never worked with justifications before. In the
approach presented here justification lemmatisation is used
to draw out intermediate conclusions that need to be spot-
ted in order for people to understand a justification. Given
a justification for an entailment, a lemmatisation produces a
new justification for the entailment that is less complex for
some purpose (for example end user understanding). The
framework presented in this paper is intended to be rather
general.

Finally, it is envisaged that lemmatised justifications
could be stitched together into justification oriented proofs,
which break justifications down into series of smaller eas-
ier to understand justifications. While a general framework
for justification lemmatisation has been presented and inves-
tigated here, more work is needed to investigate the kinds
of complexity models and candidate lemmatisation routines
that give rise to good proofs. Moreover, presentation mech-
anisms for justification oriented proofs need to be devised so
that it is possible to investigate and confirm that justification
oriented proofs are indeed beneficial to end users.

References

Baader, F., and Hollunder, B. 1995. Embedding defaults into
terminological knowledge representation formalisms. Jour-
nal of Automated Reasoning 14(1):149–180.
Borgida, A.; Franconi, E.; and Horrocks, I. 2000. Explain-
ing ALC subsumption. In ECAI 2000.
Horridge, M.; Parsia, B.; and Sattler, U. 2009. Lemmas for
justifications in OWL. In DL 2009.
Kalyanpur, A. 2006. Debugging and Repair of OWL On-
tologies. Ph.D. Dissertation, U. Maryland.
Plaisted, D. A., and Greenbaum, S. 1986. A structure-
preserving clause form translation. Journal of Symbolic
Computation.
Schlobach, S., and Cornet, R. 2003. Non-standard reasoning
services for the debugging of description logic terminolo-
gies. In IJCAI.

571

