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Abstract

We study a dominance relation for comparing outcomes
based on unconditional qualitative preferences and compare
it with its unconditional counterparts for TCP-nets and their
variants. Dominance testing based on this relation can be car-
ried out in polynomial time by evaluating the satisfiability of
a logic formula.

Introduction

Representing and reasoning about preferences is the subject
of much recent work in AI (Brafman and Domshlak 2009).
CP-nets (Boutilier et al. 2004), TCP-nets (Brafman, Domsh-
lak, and Shimony 2006) and their extensions (Wilson 2004b;
2004a) capture qualitative intra-variable preferences and rel-
ative importance over a set of variables. Dominance testing
for these languages has been shown to be PSPACE-complete
(Goldsmith et al. 2008) based on the ceteris paribus (“all
else being equal”) interpretation of preferences.

We consider TUP-nets, an unconditional fragment of
TCP-nets. We introduce a dominance relation for TUP-nets
and compare it with its unconditional counterparts for TCP-
nets and their variants. We provide a polynomial time algo-
rithm for dominance testing for TUP-nets. TUP-nets are not
special cases of already known restrictions of CP-/TCP-nets
for which polynomial time dominance testing algorithms ex-
ist (Boutilier et al. 2004).

A Language for Unconditional Preferences

Let X = {Xi} be a set of variables, each with a domain Di.
An outcome α is a complete assignment to all the variables,
denoted by the tuple α := 〈α(X1), α(X2), . . . , α(Xm)〉
such that α(Xi) ∈ Di for each Xi ∈ X . We consider
a preference language LTUP for specifying: (a) uncondi-
tional intra-variable preferences �i that are strict partial or-
ders (i.e., irreflexive and transitive relations) over Di for
each Xi ∈ X ; and (b) unconditional relative importance
preferences � that are strict partial orders over X .

Let LCP , LTCP and LExt denote the preference lan-
guages of CP-nets, TCP-nets (an extension of CP-nets) and
Wilson’s extension to TCP-nets respectively. We note that:
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• LTUP allows the expression of relative importance while
LCP does not; and LCP allows the expression of condi-
tional intra-variable preferences while LTUP does not.

• LTUP is less expressive than LTCP because it does not
allow the expression of conditional preferences.

• When restricted to unconditional preferences, LTCP =
LTUP .

• LExt is more expressive than LTCP (Wilson 2004b;
2004a), and hence, LTUP as well.

Dominance under Ceteris Paribus Semantics

The semantics for dominance testing in the languages LCP ,
LTCP and LExt were given by Boutilier et al. (Boutilier
et al. 2004), Brafman et al. (Brafman, Domshlak, and
Shimony 2006) and Wilson (Wilson 2004b; 2004a) respec-
tively. Dominance testing between two outcomes in these
languages is cast as a search for a flipping sequence of out-
comes from one outcome to the other.

Definition 1 (Adapted from (Wilson 2004b; 2004a) for
LTUP ). A sequence of outcomes γ1, · · ·γn is a (worsening)
flipping sequence from γ1 to γn iff for 1 ≤ i < n, either

1. (V-flip) γi differs from γi+1 in the value of exactly one
variable Xj , and γi(Xj) �j γi+1(Xj), or

2. (I-flip) γi differs from γi+1 in the value of variables Xj

and Xk1
, Xk2

, · · ·Xkl
, γi(Xj) �j γi+1(Xj), and Xj �

Xk1
, Xj � Xk2

, · · · , Xj � Xkl
.

Brafman et al.’s flipping sequence differs from (restricts)
the above such that l = 1 in any I-flip in a flipping sequence.

Let �◦ and�� denote the dominance relation correspond-
ing to the semantics of LTCP and LExt respectively (�◦

also includes the semantics of LCP ). Then α �� β and
α �◦ β if and only if there exists a flipping sequence from
α to β according to Definition 1 (Wilson) and its restriction
(Brafman et al.) respectively.

Example 1. Let X = {X, Y, Z} and DX = {x1, x2};
DY = {y1, y2}; DZ = {z1, z2}. Suppose that the intra-
variable preferences are given by x1 �X x2, y1 �Y y2 and
z1 �Z z2, and the relative importance among the variables
is given by X � Y and X � Z . If α = 〈x1, y2, z2〉 and
β = 〈x2, y1, z1〉, then α ��◦ β and β ��◦ α but α �� β.

Dominance testing has been shown to be PSPACE-
complete (Goldsmith et al. 2008) for LCP , LTCP and LExt.
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Dominance Testing for LTUP

We now provide a polynomial time dominance testing ap-
proach for LTUP . We proceed by defining a relation �i

(for each variable Xi ∈ X ) that is derived from �i.

Definition 2 (�i). ∀u, v ∈ Di : u �i v ⇔ u = v ∨ u �i v

Since�i is a strict partial order (irreflexive and transitive),
it can be shown that �i is a preorder (reflexive and transi-
tive). We next define dominance of α over β with respect to
{�i} and � using a first order logic formula.

Definition 3 (Dominance for Unconditional Preferences).
Given input preferences {�i} and �, and a pair of outcomes
α and β, we say that α dominates β (denoted α �• β) iff:

∃Xi : α(Xi) �i β(Xi)
∧ ∀Xk : (Xk � Xi ∨ Xk ∼� Xi) ⇒ α(Xk) �k β(Xk)

where Xk ∼� Xi ⇔ Xk �� Xi ∧ Xi �� Xk, and Xi is
called the witness of the relation.

Intuitively, this definition of dominance of α over β (i.e.,
α �• β) requires that α is preferred to β with respect to at
least one variable, namely the witness. Further, it requires
that for all variables that are relatively more important than
or indifferent to the witness, α is either equal to or is pre-
ferred to β. In Example 1, α �• β, with witness X1.

We list some properties of �• below (see (Santhanam,
Basu, and Honavar 2009) for proofs). First, �• is strict, i.e.,
no outcome is preferred over itself.

Proposition 1 (Irreflexivity of �•). ∀α : α ��• α.

We observe that �• is not transitive when {�i} and � are
arbitrary strict partial orders, as shown by Example 2.

Example 2. Let X = {X1, X2, X3, X4}, and for each Xi ∈
X : Di = {ai, bi} with ai �i bi. Suppose that X1 � X3

and X2 � X4. Let α = 〈a1, a2, b3, b4〉, β = 〈b1, a2, a3, b4〉
and γ = 〈b1, b2, a3, a4〉. Clearly, we have α �• β (with X1

as witness), β �• γ (with X2 as witness), but there is no
witness for α �• γ, i.e., α ��• γ according to Definition 3.

Since transitivity is a necessary condition for rational
choice (French 1986), it is interesting to explore whether
�• is transitive under certain restrictions. It turns out that
when �i’s are arbitrary partial orders, �• is transitive if and
only if � is restricted to be an interval order, a special type
of strict partial order.

Definition 4 (Interval Order). A binary relation R ⊆ X ×
X is an interval order iff it is irreflexive and satisfies the
Ferrers axiom (Fishburn 1985): for all Xi, Xj, Xk, Xl ∈ X ,
we have: (Xi R Xj ∧ Xk R Xl) ⇒ (Xi R Xl ∨ Xk R Xj)

In other words, � is an interval order if and only if it has
no restriction that is isomorphic to the partial order Xi �

Xj ∧ Xk � Xl (Fishburn 1985).

Proposition 2 (Transitivity of �•). If � is an interval or-
der, then ∀α, β, γ : α �• β ∧ β �• γ ⇒ α �• γ.

Theorem 1. If intra-variable preferences {�i} are partially
ordered, then �• is transitive if and only if relative impor-
tance � is an interval order.

Given partially ordered intra-variable preferences, the
preceding theorem holds for a wide range of relative im-
portance preferences including total orders, weak orders and
semi orders (Fishburn 1985) which are all interval orders.

Dominance testing in LTUP amounts to evaluating the
satisfiability of α �• β (Santhanam, Basu, and Honavar
2009), which can be done in O

(
m2(m4 + n4)

)
time, where

m = |X | is number of variables and n = maxXi∈X |Di| is
size of the domains of variables.

Semantics: Relationship Between �◦, �� & �•

We investigate the relationship between the semantics �◦,
�•, and �� for the language LTUP . We show that:

a) �•⊆��

b) �•=�� when � is an interval order

c) (�•)� =��, where (�•)� is the transitive closure of �•

d) �• �⊆�◦ and �◦ �⊆�• in general; but �◦⊆�• when � is
an interval order

Theorem 2. �• ⊆ ��.

Proof. We will show that α �• β ⇒ α �� β for any pair
of outcomes α, β.

Suppose that α �• β with witness Xi (see Definition 3).
Define the sets L = {Xl : Xi � Xl}, M = {Xl : (Xl �

Xi∨Xl ∼� Xi)∧α(Xl) �l β(Xl)∧Xl �= Xi}, and M ′ =
{Xl : (Xl�Xi∨Xl ∼� Xi)∧α(Xl) = β(Xl)∧Xl �= Xi}.
Clearly, the sets {Xi}, L, M , M ′ form a partition of X . Let
Xt1, Xt2, . . .Xtn be an enumeration of M .

We now construct a sequence of outcomes
γt1, γt2, . . . , γtn corresponding to Xt1, Xt2, . . . Xtn as
follows. γt1 = 〈γt1(X1), γt1(X2), . . . γt1(Xm)〉 such that
γt1(Xt1) = α(Xt1) and ∀Xj ∈ X − {Xt1} : γt1(Xj) =
β(Xj). Similarly γti = 〈γti(X1), γti(X2), . . . γti(Xm)〉
such that γti(Xti) = α(Xti); and ∀Xj ∈ X − {Xti} :
γti(Xj) = γti−1(Xj).

Now, we make use of Definition 1 to compare these out-
comes with respect to ��. γt1 �� β because γt1(Xt1) =
α(Xt1) �t1 β(Xt1) with γt1 and β being equal in all vari-
ables other than Xt1 (V-flip). Also γti+1 �� γti because
γti+1(Xti) = α(Xti) �ti γti(Xti) = β(Xti), with γti+1

and γti being equal in variables other than Xti. For the last
outcome in this sequence γt1, . . . , γtn, we have α �� γtn

because α(Xi) �i γtn(Xi) = β(Xi) and ∀Xl ∈ M ∪ M ′ :
α(Xl) = γtn(Xl), regardless of the assignments to variables
Xj ∈ L (they are less important than Xi) (I-flip). Hence,
α �� γtn �� . . . �� γt1 �� β. By the transitivity of ��

(Wilson 2004b; 2004a), α �� β.
We now investigate the other side of the inclusion. We

recall Example 2 that is relevant in this context.

Example 2 (continued). Recall that α = 〈a1, a2, b3, b4〉,
β = 〈b1, a2, a3, b4〉 and γ = 〈b1, b2, a3, a4〉 with α �• β
(with X1 as witness), β �• γ (with X2 as witness), but
α ��• γ according to Definition 3. However, there exists a
sequence of flips from α to γ, namely α, β, γ according to
Definition 1. Hence, α �� γ.

This example shows that �� ⊆ �• does not hold in gen-
eral. However, observe that �• holds for each consecutive
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pair of outcomes in the flipping sequence. Hence, if �• is
transitive, we can show that �� ⊆ �•.

Theorem 3. �� ⊆ �• when � is an interval order.

Proof. Given a set of intra-variable preferences {�i} and
relative importance �, we show that α �� β ⇒ α �• β
when � is an interval order.

Let α �� β. According to Definition 1, there exists a
set of outcomes γ1, γ2, · · · , γn−1, γn such that α = γ1 ��

γ2 �� · · · �� γn−1 �� γn = β such that for all 1 ≤ i < n
there is either a V-flip or an I-flip between γi and γi+1.

Case 1: (V-flip) γi and γi+1 differ in the value of exactly
one variable Xj and γi(Xj) �j γi+1(Xj). With Xj as the
witness, the first clause in the definition of γi �

• γi+1 is sat-
isfied (γi(Xj) �j γi+1(Xj)). Because γi(Xk) = γi+1(Xk)
for all Xk ∈ X−{Xj}, we have ∀Xk : (Xk�Xj∨Xk ∼�

Xj) ⇒ γi(Xk) �k γi+1(Xk) by Definition 2. Therefore,
we have γi �

• γi+1 with Xj as the witness.
Case 2: (I-flip) γi and γi+1 differ in the value of vari-

ables Xj and Xk1
, Xk2

, · · ·Xkl
, and Xj � Xk1

, Xj �

Xk2
, · · · , Xj � Xkl

, such that γi(Xj) �j γi+1(Xj). With
Xj as the witness, the first clause in the definition of γi �

•

γi+1 is satisfied (γi(Xj) �j γi+1(Xj)).
By Definition 1, γi(Xk) = γi+1(Xk) for all Xk ∈

X − {Xj, Xk1
, Xk2

, · · · , Xkl
}. In particular, γi(Xk) =

γi+1(Xk) for all Xk such that Xk �Xj∨Xk ∼� Xj , which
means that ∀Xk : (Xk�Xj∨Xk ∼� Xj) ⇒ γi(Xk) �k

γi+1(Xk) by Definition 2. Therefore, we have γi �• γi+1

with Xj as the witness by Definition 31.
From Cases 1 and 2, γi �• γi+1 for every pair of con-

secutive outcomes γi and γi+1. Using the fact that �• is
transitive when � is an interval order (Theorem 1), we have
α �• β (by Definition 3) when � is an interval order.
Hence, �� ⊆ �• when � is an interval order.

The next observation follows from the fact that �• holds
for each pair of consecutive outcomes in a flipping sequence
supporting α �� β.

Observation 1. (�•)� =��, where (�•)� is the transitive
closure of �•.

Note that this observation holds even when � is not an
interval order. However, it does not yield a computationally
efficient algorithm for dominance testing in general because
computing (�•)� is in itself an expensive operation.

We now investigate the relationship between �◦ and �•.
In Example 2, α, β, γ forms a flipping sequence from γ to
α, resulting in α �◦ γ (by Brafman et al.’s definition of a
flipping sequence). However, α ��• γ. α �◦ β implies that
there exists a flipping sequence from α to β such that �•

holds for each pair of consecutive outcomes in the sequence.
Hence, it follows that when �• is transitive, �◦⊆�•. On the
other hand, Example 1 shows that it is possible that α �• β
but α ��◦ β, and hence, the other side of the inclusion does
not hold. This leads us to the following observation.

Observation 2. �• �⊆�◦ and �◦ �⊆�• in general; but
�◦⊆�• when � is an interval order.

1Note that we do not care how γi and γi+1 compare w.r.t. vari-
ables {Xk1

, · · · , Xkl
} that are less important than witness Xj .

Concluding Remarks

Dominance testing for conditional preference languages
such as CP-nets, TCP-nets and their extensions have been
shown to be computationally hard (Goldsmith et al. 2008).
Although polynomial time dominance testing algorithms
exist for restricted classes of CP-/TCP-nets, there are no
known polynomial time dominance testing algorithms for
any preference language that allows expression of relative
importance of variables. We study one such language,
LTUP , an unconditional fragment of LTCP , the language
of TCP-nets. Dominance testing in LTUP amounts to eval-
uating the satisfiability of a logic formula that can be carried
out in polynomial time.

Our results lead to two natural questions that would be
interesting to explore: (1) whether dominance testing using
a search for flipping sequences can be achieved in polyno-
mial time in the case of unconditional preferences; and (2)
whether the existing large body of work on efficient SAT
solvers (Zhang and Malik 2002) can be leveraged to per-
form efficient dominance testing for other more expressive
preference languages.
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