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Abstract

Team decision problems are one of the fundamental prob-
lems in decentralized decision making. Because team deci-
sion problems are NP-hard, it is important to find methods for
reducing their complexity. Wu and Lall gave a definition of
sufficient statistics for team decision problems, and demon-
strated that these statistics are sufficient for optimality, and
possess other desirable properties such as being readily up-
dated when additional information becomes available. More
recently, Lemon and Lall defined weak sufficient statistics for
team decision problems, and showed that these statistics are
sufficient for optimality and necessary for simultaneous op-
timality with respect to all cost functions. This prior work
studied the extent to which the complexity of team decision
problems can be reduced while maintaining exact optimal-
ity. However, when faced with a computationally difficult
problem, we are often willing to sacrifice exact optimality for
significant reductions in complexity. In this paper we define
approximate sufficient statistics, which are a generalization
of weak team sufficient statistics. Then we prove that these
statistics are quantifiably close to being optimal.

Introduction

This paper is about multi-agent decentralized decision mak-
ing. In particular, we consider team decision problems
(TDPs), which are a static simplification of decentralized
Markov decision problems (Dec-MDPs). While Markov de-
cision problems (MDPs) are P-complete (Papadimitriou and
Tsitsiklis 1987), and are therefore considered “easy” prob-
lems, decentralized Markov decision processes are NEXP-
complete (Bernstein et al. 2002), and considered ‘“hard”
problems. Nonetheless, certain classes of Dec-MDPs and
related problems are known to have explicit solutions (Kube
and Zhang 1997; Hansen, Bernstein, and Zilberstein 2004;
Wu and Lall 2010a; 2010b). The insight needed to con-
struct these explicit solutions often arises from the consid-
eration of sufficient statistics (Wu and Lall 2015; Wu 2013;
Lessard and Lall 2015). Moreover, sufficient statistics have
also been used to reduce the complexity of search algorithms
for Dec-MDPs (Dibangoye et al. 2013; Oliehoek, White-
son, and Spaan 2009; Oliehoek 2013). Intuitively, suffi-
cient statistics are simplified or compressed versions of the
measurements that allow us to make decisions that are just
as good as decisions made using the unsimplified measure-
ments. Thus, identifying sufficient statistics is often a cru-
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cial step in reducing the complexity of multi-agent prob-
lems. Although TDPs are a simplification of Dec-MDPs,
solution techniques for TDPs sometimes provide approaches
to MDPs, and, in particular, many of the ideas related to
sufficient statistics for TDPs generalize to dynamic prob-
lems (Wu and Lall 2015).

Team decision problems model a scenario in which a team
of agents interact with a stochastic system. Each agent re-
ceives a measurement, and must choose an action solely on
the basis of its measurement. (In particular, the agents do not
share their measurements.) The objective of the team is to
minimize the expected cost, where the cost is a function of
the state of the system with which the team interacts and the
actions of the agents. This class of problems was introduced
in the context of organizations (Marschak 1955), and is one
of the fundamental building blocks of decentralized-control
problems (Ho and Chu 1972). An early paper showed that
optimal policies for team decision problems are linear in the
special case when the random variables are Gaussian, and
the cost functions are quadratic (Radner 1962).

However, team decision problems are known to be hard
in the general case (Tsitsiklis and Athans 1985), so finding
ways to reduce the complexity of these problems is essen-
tial, and approximate techniques may be acceptable if they
give a sufficiently large reduction in complexity. As in the
case of classical single-player decision problems, sufficient
statistics for TDPs are meant to encapsulate all of the in-
formation in the measurements needed to make optimal de-
cisions. If these statistics exclude extraneous information,
then the task of finding an optimal policy for the decision
problem may be considerably simplified. In particular, iden-
tifying sufficient statistics may simplify the search for op-
timal policies (Lessard and Lall 2015). A class of team
sufficient statistics (Wu 2013; Wu and Lall 2014a; 2014b;
2015) is known to be sufficient for optimality, and possess
many other desirable properties. A different class of weak
sufficient statistics (Lemon and Lall 2015) has been shown
to be not only sufficient for optimality, but also necessary for
simultaneous optimality with respect to all cost functions.

In this paper we generalize the idea of weak team suf-
ficient statistics to define approximate sufficient statistics
for team decision problems. We then prove that decisions
based on these approximate sufficient statistics are quantifi-
ably close to being optimal. The paper concludes with nu-



merical examples in which approximate sufficient statistics
allow us to determine which of a given set of statistics is
most valuable for making decisions.

Notation and Problem Formulation

Given a finite set S, a function f : S — R, and a scalar
« € [1, 00], the a-norm of f is
> 1/04

[F[ CZU
seS

The dual norm of the a-norm is the S-norm, where 5 €
[1, o] is the unique number satisfying a1 +3~! = 1. If the
[3-norm is the dual norm of the a-norm, we will sometimes
write || f[|,.. for [ f[] -

We use conv(S) to denote the convex hull of a set S.
Given a finite set 2, let A(2) be the set of all probability
distributions on §2:

> opw) =1,
weN
p(w) > 0forallw € Q

A)=<¢p: Q=R

The total-variation distance between p, ¢ € A(Q) is
drv(p, ¢) = max |p(4) — ¢(4)]

5 > ble) — gl

weN

1
D) lp—qll;-
Suppose Ay,..., A, and By, ..., B, are sets. Define A =
Ajx---xA, and B = By X---x B,,. We say that a function
f+ A — Bisdiagonal if there exist functions f; : A; — B;
for j =1,...,n such that

f(CL) - (fl(a1)7 sy fn(an))

(A diagonal function is called a decentralized function in
some fields: for example, a diagonal control policy is often
called a decentralized control policy in the control-theory
literature, or a decentralized joint policy in the Dec-POMDP
community.) The set of all diagonal functions from A to B
is denoted

D(A,B) ={f:A— B| fis diagonal}.

Given sets X, Y, and Z, and functions f : ¥ — Z and
g : X — Y, the composition of f and g is written fog. In
particular, if y : £ — Y is a random variable on a sample
space €1, S'is aset, and h : Y — S is a function, then
hoy:Q — Sis also a random variable on 2.

Team Decision Problems and Sufficient
Statistics

Suppose a team of n agents interacts with a stochastic sys-
tem. Let the random variable z : 2 — X represent the
state of the system, where € is a finite sample space. For
j = 1,...,n, the jth agent receives two measurements,
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represented by the random variables y; : © — Yj and
s; + ©© — S;. (Later in the paper we will assume that
s; is a statistic of y;; however, our earlier results hold
more generally, so we do not start out with this assump-
tion.) Agent j must use its measurement (either y; or s;)
to choose an action u; € U;. For convenience we define
thesets Y = Y71 x---xY,, S =5 x---x5,, and
U=U; x---xU,. Let C : X xU — R be a cost func-
tion. The objective of the team is to minimize the expected
cost. A team decision problem in y is an optimization prob-
lem of the form
C*(y) = min

EC .
$eD(Y,U) (@ ¢0y)

where the cost is a function of the system state z, and the
actions ¢1(y1), - - -, ®n(yn ). We also consider team decision
problems in s:

C*(s) = min

E C(
peD(S,U)

,9(s)).

We are interested in comparing C*(y) and C*(s). Ear-
lier work has focused on determining when it is possible to
guarantee that C*(s) < C*(y). In particular, team suffi-
cient statistics are known to be sufficient for optimality, and
possess a number of other desirable properties (Wu 2013;
Wu and Lall 2014a; 2014b; 2015). Similarly, weak team
sufficient statistics have been shown to be not only sufficient
for optimality, but also necessary for simultaneous optimal-
ity with respect to all cost functions (Lemon and Lall 2015).
(However, weak team sufficient statistics have not been as
thoroughly studied, and it is unknown whether they possess
some of the attractive properties of team sufficient statistics.)
The approximate sufficient statistics that we define in this
paper are a natural generalization of weak team sufficient
statistics. Therefore, we briefly review the existing theory of
team sufficient statistics. Before presenting the formal def-
initions, we give a motivating example that illustrates some
of the intuitive meaning of team sufficient statistics. This
example shows how the information structure in a problem
is often reflected in the sufficient statistics for the problem.

Example 1. Suppose x1, wa, ws, v1, Vo, and vs are inde-
pendent random variables. We assume that

T2 = f21($17w2) and w3 = f31($1,w3)

for some functions fo1 and f31. The information structure of
this problem is shown in fig. 1. This network reflects the fact
that x1 affects x4 and 3, but not vice versa, and that xo and
x3 are conditionally independent given x1. Suppose a team
of three agents interacts with a system whose state is x. The
team receives the measurements z1, zo, and z3, where

zj = hj(x;,v5)

for some functions hi, ho, and hs. In particular, the first
agent receives the measurement y; = 21, the second agent
receives the measurement ys = (21, 22), and the third agent
receives the measurement ys = (21, 23). It is possible to
show (Wu 2013) that team sufficient statistics for x given

y = (y1,y2,y3) are (s1,(s1,52),(51,53)), where s3 is



Figure 1: an information structure

(classically) sufficient for (xy1,x3) given ys, so is (classi-
cally) sufficient for (x1, x2) given ya, and sy is (classically)
sufficient for so given y1, and for ss given yy. The proof of
this result relies on a calculus of team sufficient statistics,
which allows us to construct team sufficient statistics from
classically sufficient statistics.

Recall that one characterization of sufficient statistics for
classical single-agent decision problems states that if « and
y are jointly distributed random variables, then a statistic
s of y is a sufficient statistic for x given y if x and y are
conditionally independent given s. Thus, the first step in
defining sufficient statistics for team decision problems is
generalizing the notion of conditional independence to the
multi-agent case. Wu and Lall gave the following definition
of team independence.

Definition 2. We say that y is team independent of x given
s, andwritey UL x| s, if

p(x,y,5) € conv{p(z,gos,s) | g € D(S,Y)}.

Lemon and Lall then defined the related notion of weak
team independence.

Definition 3. We say that y is weakly team independent of
given s, and write y Ul x | s weakly, if

p(z,y) € conv{p(z,gos) | g€ D(S,Y)}.

We can interpret the definitions of team independence and
weak team independence in terms of the ability to generate
simulated measurements (Lemon and Lall 2015). We have
that y is team independent of x given s if we can use s to
generate a simulated measurement ¢ that has the same joint
distribution with = and s as the original measurement y. In
contrast, y is weakly team independent of x given s if we
can use s to generate a simulated measurement ¢ that has the
same joint distribution with x as the original measurement y.
(In particular, weak team independence does not require that
4 have the same joint distribution with s that y does.) The
players are assumed to have access to common randomness
when they generate these simulated measurements.

If y is team independent of = given s, then y must be
weakly team independent of x given s. We can see this by
marginalizing over s in the definition of team independence.
More concretely, y is team independent of x given s if there
exists € A(D(S,Y)) such that

p(r,y,s) =

> 0(g)p(z,g0s,5).

geD(S,Y)
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Summing both sides of this equation over s, we find that

p(a?,y) = Zp(-T,y,S = C)

ceS

> > b(gp(z,gos,s=c)

c€S geD(S)Y)

> 0lg)p(x,gos),

geD(S)Y)

and hence that y is weakly team independent of x given
s. Lemon and Lall left it as an open problem to determine
whether the converse result is true: that is, whether weak
team independence implies team independence. After we
define team sufficient statistics, we will present an example
showing that weak team independence does not imply team
independence.

Definition 4. We say that s is a team statistic of y if there
exists a function h € D(Y, S) such that

s(w) = h(y(w))
SJorallw € Q.

Combining the definitions of team independence and team
statistics gives the definition of team sufficient statistics.

Definition 5. We say that s is a team sufficient statistic for
x given y if s is a team statistic of y, and y Ul x| s.

Similarly, we define weak team sufficient statistics by
combining the definitions of weak team independence and
team statistics.

Definition 6. We say that s is a weak team sufficient statistic
for x given y if s is a team statistic of y, and y Ul x | s
weakly.

The following example shows that s being a weak team
sufficient statistic does not guarantee that s is a team suffi-
cient statistic. This also demonstrates that weak team inde-
pendence does not imply team independence. Wu first used
this example to demonstrate that team sufficient statistics
do not enjoy the transitivity property of classical sufficient
statistics (Wu 2013). (Recall that the transitivity property of
classical sufficient statistics says that if s(!) is a statistic of
s@ and s is a sufficient statistic, then s(2) must also be a
sufficient statistic.)

Example 7. Suppose z1 and zs are independent Bernoulli
random variables with success probability 1/2. Consider
a team decision problem with two agents, where x = 2z,
y1 = (Y11, %12) = (21, 22), and y2 = (Y21,Y22) = (21, 22).
Consider the team statistic s = (s1,82) such that s1 =
(s11, 812) = (y11,y12) and s2 = yo1. We claim that s is a
weak team sufficient statistic, but not a team sufficient statis-
tic for x given y. We can justify this result informally using
the interpretation of sufficient statistics in terms of simulated
measurements. We can use s and common randomness to
generate a simulated measurement {j that has the same joint
distribution with x as the original measurement y as follows.
We assume that our common randomness is a Bernoulli ran-
dom variable z3 with success probability 1/2 that is inde-
pendent of z1 and zs. Then we can take §1 = (s11,23)



and {3 = (82, 23). Thus, we can use s to generate a simu-
lated measurement that has the same joint distribution with
x, which implies that s is a weak team sufficient statistic.

However, we cannot use s to generate a simulated mea-
surement § that has the same joint distribution with x and s
as the original measurement. Then, in order for 1 to have
the same joint distribution with s, we require that {j12 = S12.
Similarly, in order for 1js to have the same joint distribution
with s, we require that {joo = 12 = S12. However, agent 2
does not have access to the statistic 12, so it is impossible
to generate a simulated measurement that has the same joint
distribution with s. This means that s is not a team sufficient
statistic.

A more formal algebraic proof of our claim is as fol-
lows. We can represent the joint distribution of x and
y = (Y11, Y12, Y21, Y22 ) using the vector ¢ € R>? such that

p(z =a,y="b)
= $(16a + 8by1 + 4bya + 209y + g + 1).

Since (x,y) is uniformly distributed on the set
{(0,0,0,0,0),(0,0,1,0,1),(1,1,0,1,0),(1,1,1,1,1)},

we have that

1
¢ = 1(61 + eg —|—€27—|—€32).

Consider the functions ¢V and ¢'? defined in Tables 1
and 2. Using the same convention that we used to repre-

sent the joint distribution of x and vy, we can represent the
distributions of (x,g™") 0 s) and (x, g o s) by the vectors

1 1
Y1 = 5(61 +ear) and Py = 5(36 + e32).

Then we have that
1 1
o= 51/11 + 57/12-

This proves that p(x,y) € conv{p(z,gos)| g€ D(S,Y)},
and hence that y is weakly team independent of x given s.

Now we show that y is not team independent of x given
s. We have that s = h(y), where h(y) = ((y11,y12), Y21)-
Lemon and Lall showed that s is a team sufficient statistic
for x given y if and only if

g €D(S,Y) }

5 € 9 ; ; I
p(z,y) conv{p(x gos) is a right inverse of h

There are exactly four diagonal right inverses of h, which we
denote v¥) for k = 1,2,3,4. We must have that 'y§k) (the
component of Y*) corresponding to the first agent) is the
identity map on {0, 1}2; the components of'y(k) correspond-
ing to the second agent are defined in Table 3. Using our
usual convention for representing distributions on X x Y,
we can represent the joint distribution of x and v*) o s by

49

the vector 0y, for k = 1,2, 3,4, where we define

th = 2(61 + e5 + ear + €31),
by = 3(62 + e + ea7 + €31),
b3 = i(el + e5 + ez + €32),
0y = i(€2+€6+628+632)-

Observe that it is impossible to express ¢ as a convex com-
bination of the 0. For example, we cannot put a positive
weight on 01 because this results in positive components in
the directions of es and es1, which are not found in ¢. Sim-
ilar arguments show that we cannot put positive weights on
02, 03, and 04. Thus, we see that ¢ cannot be written as a
convex combination of the 0y, which implies that s is not a
team sufficient statistic for x given y.

Approximate Sufficient Statistics for Team
Decision Problems

We have that y is team independent of x given s if p(z,y)
is contained in the convex hull of the set of distributions of
the form p(x,gos), where g € D(S,Y). It is natural to
generalize this idea by considering the case when p(z,y) is
“close” to the convex hull of the set of distributions of the
form p(x,gos). The following definition of approximate
team independence makes this idea precise.

Definition 8. We say that y is e-approximately team inde-
pendent of x given s with respect to the a-norm, and write
y W &axls, if

. — Po(F.5038)| <
eeA%l({lg,Y))”p(x?y) Pol&,508Mla = €
where
Po(#,§o5) = Y O(g)p(x,gos).

geD(S,Y)

The following theorem bounds the suboptimality of using
a policy based on s rather than y when y is e-approximately
team independent of = given s with respect to the a-norm.
Note that s is not necessarily a statistic of y in this theorem:
at this point in our analysis, y and s are simply two different
sets of measurements available to the team, and we want to
determine which set of measurements is better.

Theorem 9. Ify Ul & x | s, then
C*(s) < C*(y) + €| C(z, 9 0y)

Proof. Suppose ¢ is an optimal policy of y, and § achieves
the minimum in the definition of an approximate sufficient
statistic. Then we have that o g € D(S,U) for every g €
D(S,Y), and hence that

C*(s) =

min
HeD(S,U)

<EC(Z,¢0go5).

EC(z,005)



1 2
g1 (s1) 9" (s1)
S11 S12 98)(8117 512) 9%12)(811, S12) 99(8117 512) gg)(sll, S12)
0 0 0 0 1
0 1 0 0 1
1 0 1 1 1
1 1 1 1 1
Table 1: definitions of g(*) and ¢ for the first agent
(1) ( (2) Proof. Suppose q(x, y) is the distribution in S that is closest
gs ' (s2) g5 (s2) . . L.
to p(z,y). Applying Theorem 9 with o = 1 gives
s (1)(5 ) (1)(5 ) (2)(5 ) (2)(5 ) P
2 9n %2) 922 1%2) 9o %) 922 %2 C*(s) < C"(y) + llp(, y) = p(&, g o 8)[I, [z, poy)| -
(1) (1) 8 (1) i The total-variation distance and the 1-norm are related by

Table 2: definitions of g!) and ¢(?) for the second agent

Using the definition of expectation, and the triangle inequal-
ity, we find that

C*(s) — C*(y)
<EC(F,¢0gos) —EC(z,¢oy)

=3 Po(E =a,Gos=>b)C(a,¢*(b))

a€X bey
=YD ple=a,y="5)C(a, b))
a€X bEY
< 37 3 Ioo(as I 6],
a€X bey

where we define
0p(a,b) =pg(Z =a,gos=0b) —p(x =a,y =0).
Applying Holder’s inequality gives
C*(s) = C*(y) <[00l 1C(; P o)l
Because y UL &z | s, we have that
||69||a = ||p(:1:,y) - ﬁ9(£7§o§)”a <€
and hence that
C*(s) < C*(y) + el|Clz, 90 y) | 4
O
One of the most common metrics for evaluating the dis-
tance between probability distributions is the total-variation
distance. The following corollary specializes Theorem 9 to a
statement about the total-variation distance between p(z, y)
and py(Z, go 3).
Corollary 10. We have that
C*(s) < C*(y) + 2dav(p(z, ), S)Cll
where
S = conv{p(z,gos) | g € D(S,Y)},
and

dTV(p(x7 y)7 8) = Iqrgg dTV(p(xv y)a Q(xv y))
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the equation

v (p(2,9). 8) = 3 () ~ 5§ 3) .

We also have that
Clx, ¢ = max |C(a, (b
1C(z, oY)l an’bey| (a,0(b))|

< max |C(a,d)]
a€X,deU

=[|C| o
Combining these results, we find that
C*(s) < C*(y) + 2drv(p(z,9), SC| -

Computational Examples

Suppose we are given random variables z, y, and s, and a
scalar o € [1,00], and we want to evaluate the degree of
approximate team independence of y and x given s with re-
spect to the a-norm. In particular, we want to find the small-
est € such that y is e-approximately team independent of x
given s with respect to the a-norm. Let p € R¥*Y be a
vector representation of p(z, ), and M € R(X*Y)xD(5Y)
be the matrix whose columns are corresponding vector rep-
resentations of p(x, gos) for g € D(S,Y). Then we want
to solve the optimization problem

minimize: ||M9 —ﬁHa

0EA(D(S,Y))

subject to: EQE'D(S’Y) 0(g) =1,
0(g) >0, geD(S,Y).

This is a convex optimization problem that can be solved
efficiently.

A single-player example

First, we give some results on approximate sufficient statis-
tics for a family of classical single-player decision prob-
lem. Suppose the random variable z is uniformly dis-
tributed on the set {1,...,n}, and, given x, the measure-
ments 1, .. ., Y, are conditionally independent and identi-
cally distributed uniformly on the set {1, ..., x}. Itis a well-
known classical result that a sufficient statistic for = given



1 2 3 4
75" (s2) 157 (s2) 75" (s2) 73" (s2)
1 2 2 3 3 4 4
s2 5 (s2) 7s'(s2) 1 (s2) 37 (s2) 7s0(s2) %y (s2) 71 (s2) 759 (s2)
0 0 0 0 1 0 0 0 1
1 1 0 1 0 1 1 1 1
Table 3: definitions of the v(*) for the second player
n=3 n=4 statistics
kj m = ]_ m = 2 m = ]_ m = 2 norm 8(1) 8(2) 8(3)
2 0.0370 0.1562 0.0457 0.2230 1-norm 0.3750 0.3750 0.3750
3 0.0139 2-norm 0.1793 0.1168 0.1168
co-norm 0.1250  0.0500 0.0500
Table 4: approximation levels for conditionally uniform ob- weighted 1-norm  0.5625 0.5000 0.5000

servations

3 {1}, {2}

Table 5: approximate sufficient statistics for conditionally
uniform observations

y=(Y1,-.-,Ym)is So = max(y1,...,¥m). Thus, we can
make optimal decisions by storing which of the n possible
values that we observe for sog. However, suppose we want to
compress our measurements even further, so that our statis-
tic s takes on at most k distinct values. The approximation
levels (measured using the total-variation distance) for var-
ious values of the problem parameters are given in Table 4.
We can think of a statistic as a partition of the set of mea-
surements. Moreover, we can represent a partition by listing
all but one of the sets that form the partition (the last set
being omitted for convenience). The optimal approximate
sufficient statistics are described in this way in Table 5.

A multi-agent example

Now we present numerical results about the approximate
sufficiency levels of different statistics for a team decision
problem with respect to different norms. We assume that the
state x is uniformly distributed on {1, 2}. Let 21, 22, and z3
be conditionally independent given z, and let the conditional
distribution of z; given x be uniformly distributed on {1, z}.
The measurements of agent j are y; = (z;, 23) forj = 1,2.
We consider three different sets of statistics.

1. In the first set of statistics, each agent stores the common

measurement: that is, sgl) = y12 and sél) = Ya2.
2. In the second set of statistics, each agent stores its private

(2) _ (2)

measurement: thatis, s;” = y11 and 557" = ya1.

3. In the third set of statistics, the first agent stores its private
measurement, and the second agent stores the common
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Table 6: approximate sufficiency levels for different statis-
tics with respect to different norms

(3)

measurement: that is, s3 (3)

= y11 and 5577 = Y29.

Intuitively, the team is given three measurements of the state
x: one private measurement for each agent, and one com-
mon measurement shared by both agents. Each player can
only store one measurement, and must decide whether to
store the common measurement or the private measurement.
We consider the cases when both players store the common
measurement, both players store their private measurements,
and one player stores its private measurement while the other
player stores the common measurement.

We give the approximate sufficiency levels for these
statistics with respect to various norms in Table 6. In addi-
tion to the usual 1-, 2-, and co-norms, we include a weighted
1-norm given by

Z Z(l + [y12 = y22]) Ip(7, ),

a€EX bey
where
B 1 y12 = yoo,
b1z = yez] = {0 otherwise
is the Iverson bracket for the statement y10 = %9o. This

weighted norm puts extra emphasis on ensuring that the sim-
ulated measurements satisfy ¢12 = 722. One might think
that the agents should both store the common measurement
because coordination among agents is often important in
team decision problems. However, note that coordination is
also achieved using the common randomness that forms the
basis of a randomized team policy. Therefore, the team is
actually able to do better by storing as many observations as
possible. This explains why the agents should store different
measurements (either both agents should store their private
measurements, or one should store its private measurement,
and the other should store the common measurement).



Summary and Future Work

Weak team sufficient statistics are necessary and sufficient
for making optimal decisions, and may allow us to solve
complex team decision problems by significantly reducing
the size of the search space. The generalization of these
statistics to approximate sufficient statistics may allow us
to sacrifice exact optimality for even greater reductions in
the size of the search space. There are still many open ques-
tions regarding weak and approximate team sufficient statis-
tics. In particular, we need a calculus for these statistics
that is similar to the theory used to construct team sufficient
statistics from single-player statistics (Wu 2013). Addi-
tional work is needed to extend weak and approximate team
sufficient statistics to dynamic problems, and to determine
the relationship between these statistics and the notion of
probabilistic equivalence used in the Dec-POMDP commu-
nity (Dibangoye et al. 2013; Oliehoek, Whiteson, and Spaan
2009; Oliehoek 2013).
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