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Abstract 
Two big recent revolutions:  machine learning technologies; 
such as “deep learning” in Artificial Intelligence (AI), and 
personal genome informatics in biomedical science, provide 
us with new opportunities for understanding human happi-
ness. Our ongoing important challenges are to discover our 
own truly meaningful personal happiness with the aid of AI 
and personal genome technologies. We have been develop-
ing a personal genome information agent entitled MyFinder, 
which supports searching for our inherited talents and max-
imizes our potential for a meaningful life. In the MyFinder 
project, we have provided a crowd-sourced DIY (Do it 
yourself) genomics research platform and conducted various 
“citizen science” projects in health and wellness. In this pa-
per, we discuss how machine learning technologies and per-
sonal genome informatics might contribute to happiness sci-
ences. We introduce the “Social Intelligence Genomics and 
Empathy-Building Study” and report the preliminary results 
of applying deep learning and six other machine learning 
algorithms for predicting social intelligence levels from nine 
SNPs genetic profiles. We discuss the possibilities and limi-
tations of applying machine learning technologies for per-
sonal happiness trait prediction. We also discuss future AI 
challenges in the context of wellbeing computing. 

 
 

Introduction   
The definition of “sense of happiness” varies from person 
to person. However, if the mechanisms that make people’s 
brains and bodies feel happy and the factors causing  indi-
vidual differences of feeling happiness are identified, dif-
ferent types of a sense of happiness which are hard to dis-
tinguish subjectively could be distinguished objectively 
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and sensitively. In this paper, we discuss a method of ob-
jectively evaluating a subjective sense of happiness based 
on genetic information suggestive of the relationship with  
a eudaimonic (pursuing a purpose of life) / hedonic (pursu-
ing pleasure) sense of happiness. We also discuss the rela-
tionship between how a sense of happiness changes the 
impact on genes and bodies, and identify and estimate the 
behaviors and habits that increase an individual’s sense of 
happiness. To summarize, the purpose of this paper is to 
analyze the factors affecting a sense of happiness based on 
information science and to develop a method enabling vis-
ualization of these factors. Our challenge is to develop a 
method, through machine learning, to specify (estimate) 
the relationship between behaviors and habits that increase 
a sense of happiness and genetic mutation. 
 

Happiness Sciences 
Research of “a sense of happiness” by communi-
ty computing  
Killingworth  (Killingworth 10) kept track of daily events 
that made individuals feel a sense of happiness in real time 
through analyzing many samples, and reported that a sense 
of happiness highly correlated with “what individuals were 
thinking” rather than “what individuals were doing”; that 
individuals felt a highest sense of happiness when they fo-
cused on a task at hand; and that a sense of happiness de-
creased when they could not focus on things. Fowler 
(Fowler  08) also reported, from  analysis that evaluated 
the relationship between social networks and level of hap-
piness, that happy individuals were more inclined to con-
nect with other happy individuals, and that if a maximum 
of “acquaintances of acquaintances of acquaintances of the 
individuals” were happy, the individuals were more in-
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clined to feel a sense of happiness; that if, rather than their 
partners or relatives, their friends who physically lived 
close to them were happy, they were more inclined to feel 
a sense of happiness. Compared to this research, we focus 
on the extraction of the cognitive bias (Kahneman 11, 
Minskey 06, Takebayashi 14) and individual differences 
(Perry 08), and aim at estimating / evaluating “a sense of 
happiness” using  personal genome information (Ashley 10, 
Butte 08, Kido 13b). 
 
Estimating a sense of happiness by social genomics 
Dr. Steve Cole et al. is currently studying how a way of 
thinking influences gene expression  (Cole 13). It has been 
pointed out that a solitary person has a higher tendency of 
becoming sick. Dr. Cole et al. found that people who are 
isolated from society and people who have a chronically 
strong sense of isolation had more than a 30% change in 
the average expression of 209 types of genes (CTRA gene 
expression) involving the immune system, compared to 
those who were not (Cole 07).14 people with an average 
age of 55 were analyzed for gene expression in white blood 
cells by DNA microarray. They were separated into a so-
ciable group and a lonely group based on a questionnaire 
regarding a sense of loneliness (Russel 78). Compared to 
the sociable group, the lonely group had overexpression of 
78 genes related to inflammation as well as lowered ex-
pression of 131 genes related to antibody production and 
anti-virus reaction.  
 In addition, Dr. Cole’s research team also studied how a 
sense of happiness influences immune cells and found that 
gene expression changes depending on the type of sense of 
happiness  (Cole 13). “Hedonic” (a sense of happiness de-
voted to pleasure) is a sense of self-satisfaction by ful-
filling material desire and immediate urges such as “happi-
ness from eating delicious food” and “happiness from pur-
chasing what you wanted”. On the other hand, “eudaemon-
ic” (life pursuing sense of happiness) is a sense of deep 
happiness through having purpose and meaning in life such 
as “there is direction and meaning in life” and “I have 
something that I can contribute to society”. 80 healthy 
people from 35 to 64 years old were asked to answer he-
donic or eudemonic questions and the correlation with 
genes of immune cells in blood were studied. For the he-
donic sense of happiness, gene expressions representing a 
feeling of loneliness were found, while for the eudaemonic 
sense of happiness the gene expressions related to inflam-
mation were repressed and there was an activation of the 
gene expressions related to anti-virus reaction  (Cole 13). 
People with a high hedonic sense of happiness do not nec-
essarily feel unwell or unhappy, rather they say that they 
feel that “my life is fulfilled”, suggesting very positive re-
sponse at the conscious level. However, it is very interest-
ing that there were negative influences at the gene expres-

sion level among people with a high hedonic sense of hap-
piness. It will be a major challenge to specify (estimate) 
behaviors that increase or decrease the gene expression for 
a eudaemonic and/or hedonic sense of happiness as dis-
cussed, through machine learning from “data” of daily life 
activity or sleep patterns. Using gene expression correlat-
ing with the above mentioned sense of happiness as well as 
a bio-marker molecule like the “oxytocin” hormone, which 
is closely related to interpersonal relationships and a sense 
of trust, it may be possible to measure and visualize the 
conventional sense of happiness as an objective state of the 
body. 
 
Positive computing and big data 
Rafael (Rafael 14) et al. proposed a paradigm called Posi-
tive Computing, a technology aiming for “Wellbeing and 
Human Potential”.  Recently, it has become possible to 
pursue events where people felt a sense of happiness in real 
time by using wearable devices through analyzing many 
samples (Killingworth 10), and to analyze the characteris-
tic of connections among people who felt a sense of happi-
ness through their social network (Fowler 09). If the in-
formation analysis of this big data and the gene expression 
analysis are combined, it may become possible to show as 
objective data when and in what kind of conditions people 
a tendency to feel a sense of happiness have. We think that 
it is now necessary to pioneer a new research field on 
wellbeing computing, focusing on important issues like 
“what kind of influence the rapid changes in modern life-
styles have on a person’s mind and body”. 
 

MyFinder: Machine Learning and Personal 
Genome Informatics for knowing our self. 

In this research, we accumulate, create, and evaluate vari-
ous knowledge to promote a sense of happiness using a cit-
izen science approach (cloud sourcing) (Swan 12ab). We 
have proposed a personal genome information environment 
“MyFinder” Concept and evaluated a new research frame-
work and basic technologies (Kido 11ab, Kido12, 
Kido13abc, Kido14ab, Kido15ab). In the MyFinder Con-
cept, we have addressed “scientific discovery by communi-
ty computing” based on the agenda to understand how a 
rapid change of life styles today evolutionally affects indi-
viduals both psychologically and physically. Our idea is 
“to monitor daily physical, chemical, and mental stresses 
and investigate the relationship with genetic mutation by 
observing and analyzing eating habits, sleep patterns, 
working styles, time management styles, social interactions, 
hobbies, and preferences every day by an intelligence 
agent” (Kido 11b). In order to achieve this purpose, we 
have evaluated the items with our own genetic data (Kido 
13b) and various self-tracking affective data (Picard 00). 
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Our research is to implement the MyFinder Concept with a 
theme of “individual’s sense of happiness”, launch a par-
ticipatory community via the Internet, and aim at scientific 
discovery by searching for factors that affect an individu-
al’s sense of happiness (e.g. behaviors and habits) and bi-
omarkers (oxytocin, gene group etc.) to objectively evalu-
ate the sense of happiness. 

Social Intelligence Genomics Study 
We report new findings of the “Social Intelligence Ge-
nomics and Empathy building Study” introduced in (Kido 
13, Swan 14).  The overall summary of this project is ex-
plained at the following website: (http://diygenomics. 
pbworks.com/w/page/48946791/Social%20Intelligence). 
We will update this project with further advancing analyses.  

Objective of the Project 
The purpose of this project is to confirm and extend re-
search linking social intelligence and genetic profiles.  

Hypothesis 
Individuals with certain genetic polyphenism might exhibit 
a greater natural capacity for improving “social intelli-
gence”. 

Study Design 
A: Selection of Candidate Genes 
 A literature review was conducted on mental performance 
and social intelligence researches, such as optimism and 
empathy, extraversion and altruism. 9 SNPs shown in Ta-
ble 1 were selected for analysis. 
 
Gene SNP Reference Comment 
OXTR 
DRD2 
 
 
 
 
DRD2/ANKK1 
COMT 
 
BDNF  

rs53576 
rs12364283 
rs2283265 
rs4274224 
rs1076560 
rs4581480 
rs1800497 
rs4680 
(Val158Met) 
rs6265(Val6
6Met) 

[Saphire11] 
[Pecina12] 
[Pecina 12] 
[Pecina 12] 
[Pecina 12] 
[Pecina 12] 
[Smillie 11] 
[Reuter 11] 
 
[Madrigal09] 

Optimism 
 
Openness to expe-
rience 
 
 
Extraversion 
Altruism 
 
Neuroplasticity 

Table 1. Analyzed Single Nucleotide Polymorphisms (SNP). 

B: Phenotype Data 
 Recognized standard online survey questioners were used 
for the phenotype assessment of social intelligence; 
 IRI:  Interpersonal Reactivity Index (28 questions) 
 EQ test: Empathy Quotient test (Baron-Cohen) (60 ques-
tions) 
C: Implementation of a Citizen Science Project 
 We have been conducting this study using a crowdsourced 
cohort entitled Genomera. (http://genomera.com/studies/ 

social-intelligence-genomics-empathy-building) This study 
started in April 2012. By December 2015, a total of 68 
volunteers (28 males, 20 females, 20 unknown) had partic-
ipated.  38 volunteers made their age public (from 26 to 66 
years old) and the vast majority was living in the Unites 
States (but a few were not).  24 volunteers disclosed their 
race and most of them were European. 24 volunteers pro-
vided shared genotype data for the 9 SNPs (28 volunteers 
for the 8 SNPs, removing rs2283265  from 9 SNPs)  from 
the 23andMe report. 24 genotype samples for 9SNPs are 
available for the EQ phenotype  and 20 genotype samples 
are available for the IRI phenotype.  
D: Analyses 
Genetic Association Analyses 
 We tested the statistical associations between genotype 
profiles and phenotypes (EQ Score and IRI Score). For 
each of 9 SNPs and 2 phenotypes (EQ Score and IRI 
Score), the Kruskal-Wallis test was conducted for evaluat-
ing the strength of correlations with p-value.  
Phenotype Predictions from Genomic Profiles by Ma-
chine Learning Algorithms 
  We evaluated the prediction abilities of 7 machine learn-
ing algorithms: adaboost, deep learning  (Hinton 15), bag-
ging, CART, Neural network, Random Forest, and SVM. 
First we categorized the EQ  Score into 3 groups (Low, 
Middle, and High) using the threshold values in Table 2. 

 
EQ class Threshold 

Low EQScore < 39 
Middle 39<=EQScore <46 
High 46<=EQScore 

Table 2.  Categorization of  EQ Scores 

 We tried to predict EQ class from the 9 SNPs genotype 
profiles by applying machine learning algorithms. 
 We used the R functions (shown in Table 3) with default 
parameter values for each of the 7 algorithms. 
 

algorithm R library, function Comments 
adaboost     adabag   

adaboost()  
Boosting (Weak learner 
is decision tree) 

bagging Ipred 
 bagging() 

Bagging (Weak learner is 
decision tree) 

CART Rpart 
rpart() 

Decision Tree 

deep learn-
ing 

h2o   
deep learning() 

Deep learning neural 
networks 

Neural 
Network 

nnet    
nnet() 

Single hidden neural 
network 

Random 
Forest 

randomForest 
randomForest() 

Ensemble learning meth-
od for classification, re-
gression 

SVM Kernlab 
ksvm()     

Support vector machine 

Table 3.  R functions for machine learning algorithms 
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 By the Leave-one-out cross-validation method, we com-
pared the accuracy rates of the predictions of 7 machine 
learning algorithms. The accuracy rates are calculated by 
“#accurate_predictions / (#accurate_predictions + #er-
ror_predictions) ”.  Since we applied the Leave-one-out 
cross-validation method to the 24 samples of EQ class pre-
dictions, we tried 24 test predictions and calculated accura-
cy rates. (For each test prediction, we picked up 1 sample 
for the test data and the remaining 23 samples were used as 
training data. ) 

Preliminary Results 

Genetic Association Analyses 
Correlation between 9SNPs and two scores of self-
reporting tests, EQ and IRI, are shown in Figure 1. SNPs 
are shown on the x-axis and the negative log of the p-value 
(-log(p-value)) is shown on the y-axis. Each plotted point 
corresponds to a single SNP. Blue represents   association 
with the EQ Score and red represents association with the 
IRI Score. The higher a point is on the vertical axis, the 
stronger the correlation. The SNP most strongly correlated 
with the EQ Score (blue points) was rs6265 and the second 
was rs53576. On the other hand, we could not find strong 
associations with the IRI Score (red points). (We could not 
calculate p-value for rs4581480, since it didn’t have three 
clusters of genotypes.) 
 

 
 

Figure 1. Correlation between Single SNPs and EQ /IRI Scores 
(p-value distribution) 

 The relationship between the rs6265 genotype and the 
EQ score is shown in Figure 2 (A). The x-axis shows 
rs6265 (a polymorphism of the BDNF gene) and the y-axis 
shows the EQ Score.  People with the CT genotype (n=9) 
had the lowest EQ Score of 39.6, whereas people with the 
TT genotype (n=3) had the highest EQ Score of 46.7. The 
difference in EQ scores between people with the CT geno-

type and people with the CC/TT genotype was statistically 
significant (p=0.0167).    
 The relationship between the rs53576 genotype and the 
EQ score is shown in Figure 2 (B). People with the AA 
genotype (n=5) had the lowest EQ Score of 38.2, whereas 
people with the AG genotype (n=14) had the highest EQ 
Score of 45.1. The difference in EQ scores between people 
with the AA genotype and people with the AA/AG geno-
type was statistically significant (p=0.0240). 
 

 
 

Figure 2. Significant Correlations between EQ Score and the 2 
SNPs:  (A) rs6265 (BDNF) genotypes, (B) rs53576 (OXTR) geno-

types 

Predictions by Machine Learning Algorithms 
The comparison of prediction results of EQ class (low, 
middle, and high) from 9 SNPs with seven different ma-
chine learning algorithms is shown in Figure 3.  

 

Figure 3.  Comparison of accuracy rates of EQ class predictions 
with 7 machine learning algorithms. 

 
 The names of seven machine learning algorithms are 
shown on the x-axis and the accuracy rates of EQ class 
predictions are shown on the y-axis. As shown in Figure 3, 
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deep learning outperformed other six machine learning al-
gorithms in this EQ class prediction task. The accuracy rate 
of the deep learning algorithm was 70.8 percent (17/24), 
followed by 58.3 percent (14/24) for adaboost and CART.  

Discussion 

Interpretation of Preliminary Results. 
The preliminary results of this study are that two genotype 
SNPs (BDNF rs6265 and OXTR rs53576) were favorably 
correlated with test scores for empathy phenotype tests, 
EQ. This section offers a speculative interpretation of this. 
The OXTR rs53576 result can be seen as confirmatory of 
other studies that have previously linked the OXTR 
rs53576 genotype GG with a propensity for empathy in in-
dividuals. The other result with BDNF rs6265 is also to 
some degree a replication of other study results, but may 
offer something new in social intelligence and empathic re-
sponse. BDNF (brain-derived neurotrophic factor) is a 
nerve growth factor protein that is generally involved with 
nerve growth in the brain, and pertains to many functions 
of human development, pathology, and social behavior. 
Regarding pathologies, BDNF has been linked to illnesses 
as diverse as schizophrenia, epilepsy, Alzheimer's disease, 
neuroticism, and depression (Terracciano 10). Beyond pa-
thology, BDNF is associated with neuroplasticity: the 
brain’s ability to rewire itself on the fly to form new syn-
apses (Chaieb 14). One study found that persons with the 
favorable BDNF genotype (CC) displayed 20% greater 
neuroplasticity than counterparts (McHughen 10, Madrigal 
09). Another study posited that BDNF might be a predictor 
of general intelligence and cognitive function in everyday 
decision-making (Rostami 11). Another study found that 
persons with the favorable BDNF genotype experienced 
reduced social stress sensitivity (Winkel 14) and that 
BDNF circulating in the brain might generally promote 
positive social feelings (Panksepp 12, Goleman 07). Thus, 
the link found in this study between BDNF and empathic 
response can be explained in that the greater neuroplastici-
ty available for persons with the favorable BDNF genotype 
may help to contribute to having more empathy available 
for the learning and operation of social situations. Also no-
table with BDNF is that, unlike what might be assumed to 
be genomic fixity, intervention for BDNF circulation is 
available as exercise has been found to increase levels 
three-fold (Szuhany 15, Denham 14). 

Future AI Challenges. 
Braincloud: Happiness is a Big Data Problem  
The topic of this paper is how machine learning and per-
sonal genome informatics might contribute to an under-
standing of happiness sciences and wellbeing. We con-

clude from this investigation that happiness might be best 
framed as a ‘big data problem.’ Significant AI progress has 
resulted from considering the ‘unreasonable effectiveness 
of mathematics’ (Wigner 06) and the ‘unreasonable effec-
tiveness of data’ (Halevy 09). The key point in making 
progress was having sufficiently large data corpora over 
which to run fairly straightforward mathematical and ma-
chine learning algorithms. A similar transformation has oc-
curred in health where the bioinformatics and ‘omics’ era 
of big health data has allowed biology  to also be reconfig-
ured and digitized as  AI, math, and information technolo-
gy problems (Kido 13, Swan 12a). The next stage of ‘biol-
ogy as a math problem’ is ‘the brain as a math problem,’ 
which would include everything from the underlying bio-
physiology to user-evaluated affect, emotion, and well-
being. Happiness can thus be seen as a big data problem in 
the sense that many different data streams can start to be 
collected and analyzed towards the pursuit of a general un-
derstanding of well-being. This could include a more con-
tinuous life-logging operation for all individuals of physio-
logical, neural, and psychological data (canvassed objec-
tively by quantified-self gadgetry and subjectively by user 
input). These data could be connected in a secure brain-
cloud format where individuals might collect and track 
their own data as well as share it into pooled cloudminds 
for research and preventive medicine purposes (Swan 16). 
In the current study, we connected two dots, a link between 
favorable genotypes and social intelligence, which could 
start to contribute to a more global understanding of happi-
ness and well-being.  
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