
Solving DEC-POMDPs by Expectation Maximization of Value Functions

Zhao Song, Xuejun Liao, Lawrence Carin
Duke University, Durham, NC 27708, USA

{zhao.song, xjliao, lcarin}@duke.edu

Abstract

We present a new algorithm called PIEM to approxi-
mately solve for the policy of an infinite-horizon de-
centralized partially observable Markov decision pro-
cess (DEC-POMDP). The algorithm uses expectation
maximization (EM) only in the step of policy improve-
ment, with policy evaluation achieved by solving the
Bellman’s equation in terms of finite state controllers
(FSCs). This marks a key distinction of PIEM from
the previous EM algorithm of (Kumar and Zilberstein,
2010), i.e., PIEM directly operates on a DEC-POMDP
without transforming it into a mixture of dynamic Bayes
nets. Thus, PIEM precisely maximizes the value func-
tion, avoiding complicated forward/backward message
passing and the corresponding computational and mem-
ory cost. To overcome local optima, we follow (Pa-
jarinen and Peltonen, 2011) to solve the DEC-POMDP
for a finite length horizon and use the resulting policy
graph to initialize the FSCs. We solve the finite-horizon
problem using a modified point-based policy genera-
tion (PBPG) algorithm, in which a closed-form solution
is provided which was previously found by linear pro-
gramming in the original PBPG. Experimental results
on benchmark problems show that the proposed algo-
rithms compare favorably to state-of-the-art methods.

Introduction

The decentralized partially observable Markov decision pro-
cess (DEC-POMDP) is a concise and powerful model for
multi-agent planning and has been used in a wide range of
applications, including robot navigation and distributed sen-
sor networks (Oliehoek 2012; Durfee and Zilberstein 2013).
The joint policy of a DEC-POMDP is defined by a set of lo-
cal policies, one for each agent, executed in a decentralized
manner without direct communication among the agents.
Thus, the action selection of each agent must be based on
its own local observations and actions. The decentralization
precludes the availability of a global belief state and hence
the possibility of converting a DEC-POMDP into a belief-
state representation. As a result, a DEC-POMDP is more
challenging to solve than its centralized counterpart (Sondik
1971; Kaelbling, Littman, and Cassandra 1998).

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Research on DEC-POMDPs in the artificial intelligence
community has led to two categories of methods, respec-
tively aiming to obtain finite-horizon or infinite-horizon
policies. A finite-horizon policy is typically represented by
a decision tree (Hansen, Bernstein, and Zilberstein 2004;
Nair et al. 2003), with the tree often learned centrally and
offline, for a given initial belief about the system state. Solv-
ing a DEC-POMDP for the optimal finite-horizon policy
is an NEXP-complete problem (Bernstein et al. 2002), and
MBDP (Seuken and Zilberstein 2007b) was the first algo-
rithm to approximately solve the problem for large hori-
zons. Though MBDP employs a point-based approach to
limit the required memory, the number of policies it eval-
uates is still exponential in the number of observations.
The subsequent work in (Seuken and Zilberstein 2007a;
Wu, Zilberstein, and Chen 2010a; 2010b) tried to address
this issue to make the method scalable to larger problems.
Moreover, as shown in (Pajarinen and Peltonen 2011), the
multiple policy trees returned by the memory-bounded ap-
proaches could be represented as a policy graph, where the
number of layers and number of nodes in each layer corre-
spond to the horizon length and the number of policy trees,
respectively.

An infinite-horizon policy has typically been repre-
sented by finite state controllers (FSCs) (Sondik 1978;
Hansen 1997; Poupart and Boutilier 2003), with parame-
ters estimated by linear programming (LP) (Bernstein et
al. 2009) or nonlinear programming (NLP) (Amato, Bern-
stein, and Zilberstein 2010), considering mainly two-agent
cases. Expectation-maximization (EM) (Kumar and Zilber-
stein 2010; Pajarinen and Peltonen 2011) has been shown
as a promising algorithm for scaling up to the number
of agents. Recently, the state-of-the-art value iteration al-
gorithms (MacDermed and Isbell 2013; Dibangoye, Buf-
fet, and Charpillet 2014) have been proposed to transform
the original DEC-POMDP problem into a POMDP prob-
lem, which is subsequently solved by the point-based meth-
ods. The values reported in (MacDermed and Isbell 2013;
Dibangoye, Buffet, and Charpillet 2014) are shown to be
higher than the previously best methods on the benchmark
problems; however, the policy returned in (MacDermed and
Isbell 2013; Dibangoye, Buffet, and Charpillet 2014) does
not have a form as concise as an FSC.

The EM algorithm of (Kumar and Zilberstein 2010) is an

68

extension of the single-agent POMDP algorithm in (Tous-
saint, Harmeling, and Storkey 2006; Vlassis and Toussaint
2009; Toussaint, Storkey, and Harmeling 2011), which max-
imizes a value function indirectly by maximizing the likeli-
hood of a dynamic Bayesian net (DBN). It employs the clas-
sic EM algorithm (Dempster, Laird, and Rubin 1977) to ob-
tain the maximum-likelihood (ML) estimator. This method,
referred to here as DBN-EM, transforms a DEC-POMDP
into a mixture of DBNs in a pre-processing step. There are
two major drawbacks of DBN-EM. First, it relies on trans-
forming the value into a “reward likelihood”, and there-
fore the quality of the resulting policy depends on the fi-
delity of the transformation. For an infinite-horizon DEC-
POMDP, the DBN representation has an infinite number of
mixture components, which in practice must be truncated
to a cut-off time that is either fixed a priori or determined
based on the likelihood accumulation. Second, DBN-EM
manipulates Markovian sequences, which require compli-
cated forward/backward message passing in the E-step, in-
curring considerable computational and memory cost.

In this paper we present a new algorithm for FSC param-
eter estimation, solving an infinite-horizon DEC-POMDP.
The algorithm is based on policy iteration, like DBN-EM.
However, unlike DBN-EM, which uses EM to both improve
and evaluate the policy, the new algorithm evaluates the pol-
icy by solving Bellman’s equation in FSC nodes1, leaving
only the step of Policy Improvement for the EM to imple-
ment; the algorithm is therefore termed PIEM. Note that
the EM used by PIEM is not probabilistic and may better
be interpreted as surrogate optimization (Lange, Hunter, and
Yang 2000; Neal and Hinton 1998). To overcome local op-
tima, we adopt the idea in (Pajarinen and Peltonen 2011) to
initialize the FSCs using a policy graph obtained by solving
the finite-horizon DEC-POMDP. The finite-horizon problem
is solved using point-based policy generation (PBPG) mod-
ified by replacing linear programming with a closed-form
solution in each iteration of PBPG, with the modification
constituting another contribution of this paper.

The DEC-POMDP Model

A DEC-POMDP can be represented as a tuple, M =
〈I,A,O,S, b0(s), T ,Ω,R, γ〉 where

• I = {1, · · · , n} indexes a finite set of agents;

• A = ⊗i Ai is the set of joint actions, with Ai available
to agent i and �a = (a1, · · · , an) ∈ A denoting the joint
action;

• O = ⊗i Oi is the set of joint observations, with Oi avail-
able to agent i and �o = (o1, · · · , on) ∈ O denoting the
joint observation;

• S is a set of finite system states;

• b0(s) denotes the initial belief state;

1Bellman’s equation in belief state does not exist for DEC-
POMDPs due to local observability. Bellman’s equation for each
agent is here expressed in terms of FSC nodes, as in the DEC-
POMDP literature (Amato, Bernstein, and Zilberstein 2010).

• T : S × A → S is the state transition function with
p(s′|s,�a) denoting the probability of transitioning to s′

after taking joint action �a in s;

• Ω : S×A → O is the observation function with p(�o|s′,�a)
the probability of observing �o after taking joint action �a
and arriving in state s′;

• R : S × A → R is the reward function with R(s,�a) the
immediate reward received after taking joint action �a in s.

• γ ∈ (0, 1) is the discount factor defining the discount for
future forwards in infinite-horizon problems.

Due to the lack of access to other agents’ observations,
each agent has a local policy πi, defined as a mapping from
the local observable history prior to time t to the action at
t, where the local observable history includes the actions
the agent has taken and the observations it has received.
A joint policy consists of the local policies of all agents.
For an infinite-horizon DEC-POMDP, the objective is to
find a joint policy Π = ⊗iπi that maximizes the value
function, starting from an initial belief b0 about the sys-
tem state, with the value function expressed as V Π(b0) =
E
[∑∞

t=0 γ
tR(st,�at)|b0,Π

]
.

The PIEM algorithm

The policy of agent i is represented by an FSC, with p(ai|zi)
denoting the probability of selecting action ai at node zi,
and p(z′i|zi, oi) representing the probability of transitioning
from node zi to node z′i when oi is observed. The stationary
value, as a function of FSC nodes �z = (z1, . . . , zn) and sys-
tem state s, satisfies the Bellman’s equation (Amato, Bern-
stein, and Zilberstein 2007; Bernstein, Hansen, and Zilber-
stein 2005)

V (s, �z)=
∑
�a

R(s,�a)
∏
i

p(ai|zi) + γ
∑

s′,�a,�o,�z′
p(�o|s′,�a)

p(s′|s,�a)V (s′, �z′)
∏
i

p(ai|zi) p(z′i|zi, oi) (1)

where the factorized forms over the agents indicate that
the policy of each agent is executed independently of other
agents (no explicit communication).

Let Θ = {Θi}ni=1 where Θi = {p(ai|zi), p(z′i|zi, oi)}
collects the parameters of the FSC of agent i. The PIEM
algorithm iterates between the following two steps, starting
from an initial Θ.

• Policy evaluation: Solve (1) to find the stationary value
function V (s, �z) for the most recent Θ.

• Policy improvement: Improve Θ by using EM to max-
imize the righthand side of (1), given the most recent
V (s, �z).

The PIEM algorithm is summarized in Algorithm 1, where
the details of policy improvement are described subse-
quently.

69

Algorithm 1 PIEM for infinite-horizon DEC-POMDPs

Input: Initial FSCs
{
p(0)(ai|zi), p(0)(z′i|zi, oi) : zi =

1, . . . , Z
}n

i=1
.

while max�z V (b0, �z) not converging do
Policy evaluation by solving (1) to find V (s, �z).
Policy improvement by doing the following.
for i = 1 to n do

for zi = 1 to Z do
Iteratively update p(ai|zi) and p(z′i|zi, oi) for
each instantiation of zi using (7) and (8) until con-
vergence.

end for
end for

end while

Policy improvement in PIEM

The objective function we wish to maximize is the value
function for a given initial belief denoted as b0, i.e.,

V (b0, �z)=
∑
s

b0(s)V (s, �z)

=
∑
�a

R(b0,�a)
∏
i

p(ai|zi) + γ
∑

s′,�a,�o,�z′
p(�o|s′,�a)

p(s′|b0,�a)V (s′, �z′)
∏
i

p(ai|zi)p(z′i|zi, oi) (2)

where

R(b0,�a) =
∑
s

b0(s)R(s,�a)

p(s′|b0,�a) =
∑
s

b0(s) p(s
′|s,�a)

The goal is to increase the value function V (b0, �z) for
any �z, by updating {p(ai|zi), p(z′i|zi, oi)}ni=1, the param-
eters of the FSCs of all agents. Following the ideas em-
ployed in (Bernstein, Hansen, and Zilberstein 2005; Bern-
stein et al. 2009), we let the agents take turns in updating
their FSCs, improving Θi while keeping {Θj : j �= i}
fixed. An appealing property of PIEM is that it can update
Θi = {p(ai|zi), p(z′i|zi, oi)} in parallel at different FSC
nodes, i.e., different instantiations of zi. Focusing on Θi for
a particular instantiation of zi, we rewrite (2) as

V (b0, �z) =
∑
ai

p(ai|zi)α(ai, zi) +
∑

z′
i,ai,oi

p(ai|zi)

p(z′i|zi, oi)β(zi, ai, oi, z′i) (3)

where

α(ai, zi) =
∑
�a−i

R(b0,�a)
∏
j �=i

p(aj |zj) (4a)

β(zi, ai, oi, z
′
i) =

∑
�z′
−i,�a−i,�o−i,s′

γ p(�o|s′,�a) p(s′|b0,�a)

V (s′, �z′)
∏
j �=i

p(ai|zi) p(z′i|zi, oi), (4b)

and the subscript −i is defined as −i = {j : j �= i}, i.e., it
denotes the indices of all agents except agent i.

Maximizing V (b0, �z) is equivalent to maximizing
lnV (b0, �z) and, for the latter, it holds that

ln [V (b0, �z)]

= ln

{∑
ai

η(ai, zi)
p(ai|zi)α(ai, zi)

η(ai, zi)
+

∑
z′
i,ai,oi

p(ai|zi)

·ρ(z
′
i, ai, oi, zi) p(z

′
i|zi, oi)β(zi, ai, oi, z′i)

ρ(z′i, ai, oi, zi)

}
≥

∑
ai

η(ai, zi) ln

[
p(ai|zi)α(ai, zi)

η(ai, zi)

]
+

∑
z′
i,ai,oi

·ρ(z′i, ai, oi, zi)ln
[
p(ai|zi) p(z′i|zi, oi)β(zi, ai, oi, z′i)

ρ(z′i, ai, oi, zi)

]
(5)

=
∑
ai

η(ai, zi) ln
[
p(ai|zi)

]
+

∑
z′
i,ai,oi

ρ(z′i, ai, oi, zi)

·
{
ln

[
p(ai|zi)

]
+ ln

[
p(z′i|zi, oi)

]}
+ const (6)

where const represents a term that is independent of p(ai|zi)
and p(z′i|zi, ai, oi). The inequality in (5) holds for any
η(ai, zi) ≥ 0 and ρ(z′i, ai, oi, zi) ≥ 0 2 that satisfy∑
ai

η(ai, zi) +
∑

z′
i,ai,oi

ρ(z′i, ai, oi, zi) = 1, based on Jensen’s

inequality. From (5) and (6), we can derive the following EM
update equations used in the PIEM algorithm.

• E-step: Tighten the lower bound in (5) by setting

η(ai, zi) =
p(l)(ai|zi)α(ai, zi)

ξ(zi)
(7a)

ρ(z′i, ai, oi, zi) =
[
p(l)(ai|zi) p(l)(z′i|zi, oi)

·β(zi, ai, oi, z′i)
]
/ ξ(zi)

(7b)

where l denotes the iteration index and

ξ(zi) =
∑
ai

p(l)(ai|zi)α(ai, zi) +
∑

z′
i,ai,oi

·p(l)(ai|zi) p(l)(z′i|zi, oi)β(zi, ai, oi, z′i)

• M-step: Maximizes the right side of (6) with respect to
p(ai|zi) and p(z′i|zi, oi). The solution is provided in The-
orem 1.

Theorem 1. The maximizer of (6) in the M step is

p(l+1)(ai|zi) =
η(ai, zi) +

∑
z′
i,oi

ρ(z′i, ai, oi, zi)∑
ai

[
η(ai, zi) +

∑
z′
i,oi

ρ(z′i, ai, oi, zi)
] (8a)

2At the beginning of our algorithm, we normalize the imme-
diate reward in the same way as (Kumar and Zilberstein 2010) to
ensure η and ρ are always nonnegative.

70

p(l+1)(z′i|zi, oi) =

∑
ai

ρ(z′i, ai, oi, zi)∑
z′
i,ai

ρ(z′i, ai, oi, zi)
(8b)

Proof. We use f(Θi) to represent the right side of (6). It
follows that the M step corresponds to the following opti-
mization problem:

maximize
Θi

f(Θi)

subject to
∑
ai

p(ai|zi) = 1,
∑
z′
i

p(z′i|zi, oi) = 1, ∀oi

p(ai|zi) ≥ 0, ∀ai, p(z′i|zi, oi) ≥ 0, ∀oi, ∀z′i
Since f(Θi) is a concave function of Θi, applying KKT con-
dition (Boyd and Vandenberghe 2004) leads to the updates
in (8).

Theorem 2. The proposed PIEM algorithm improves the
objective function monotonically.

Proof. We first rewrite the objective function
ln [V (b0, �z)] = Q(Θ) and the corresponding lower
bound in (5) as Q̂(Θ,Ω) where Ω = {η, ρ}. For every two
consecutive iterations t and t+ 1, we have

Q(Θ(t+1)) = Q̂(Θ(t+1),Ω(t+1)) (9)

≥ Q̂(Θ(t+1),Ω(t)) (10)

≥ Q̂(Θ(t),Ω(t)) (11)

= Q(Θ(t)) (12)

where (9), (10), and (12) use the fact that Ωt derived in the
E-step tightens the lower bound Q̂(Θ(t),Ω). (11) holds be-
cause Θt+1 provided in the M-step maximizes Q̂(Θ,Ω(t)).

Time complexity

Let S be the number of system states. Let A, O, and Z re-
spectively denote the maximum numbers of actions, obser-
vations, and FCS nodes, across all agents. The analysis be-
low (for two agents) extends readily to the general case.

• Policy evaluation. Solving (1) for V (s, �z) requires time
O(Z4S2Nite), where Nite is the number of iterations.

• Policy improvement. This part is dominated by the com-
putation in (4b), which requires time of
O(Z3S2A2O2).

As a comparison, DBN-EM requires O(Z4S2A2O2) for
computing Markov transitions, O(Z4S2Tmax) for message
propagation, and additional time for completing the M-step;
here Tmax is the cut-off time (Kumar and Zilberstein 2010).
Therefore PIEM is generally computationally more efficient
than DBN-EM, and the relative efficiency is more prominent
when Nite ≤ Tmax, a condition that holds in our experi-
ments.

Initialization of PIEM

We initialize the FSCs using a policy graph obtained by a
modified version of point-based policy generation (PBPG)
(Wu, Zilberstein, and Chen 2010a), a state-of-the-art algo-
rithm for finite-horizon DEC-POMDPs. The PBPG signifi-
cantly reduces the number of potential policies by using lin-
ear programing (LP) to learn a stochastic mapping from ob-
servations to policy candidates for each agent. Here we show
that each sub-problem originally solved by LP has a closed-
form solution, which we use in place of LP to yield a mod-
ified PBPG algorithm. Note that unlike the original PBPG,
which returns the best policy tree, the modified PBPG out-
puts the policy graph.
Definition 1. A policy graph G in the finite-horizon DEC-
POMDP is a directed graph with T layers and K nodes in
each layer, obtained from the memory bounded dynamic pro-
gramming approaches.

The policy execution in the policy graph is described as
follows. Starting from a single node in the top level, every
agent takes the action according to the node’s correspond-
ing action. The agents then receive their individual observa-
tion and move to the nodes at the next level, according to
the current node’s connection. The agents can take subse-
quent actions and repeat this process iteratively until reach-
ing the bottom level. The policy in the policy graph can be
learned by the MBDP approaches. Therefore, learning a pol-
icy graph reduces to determining the action for each node
and its connections to the nodes at the next level, based on
different observations.

The modified PBPG algorithm is summarized in Algo-
rithm 2. The main step in the modified PBPG is to add nodes
into the policy graph for every t and k, one for each agent,
and decide the corresponding action and connections to the
next level for every observation. In Algorithm 2, B is a belief
portfolio containing the following beliefs 3:
• The initial belief b0.
• The uniform belief bu with bu(s) =

1
S for s = 1, . . . , S.

• Heuristic beliefs which include both random policy be-
liefs and MDP policy beliefs.

Closed-form stochastic mappings

The value function for the joint policy of a finite-horizon
DEC-POMDP can be computed recursively (Wu, Zilber-
stein, and Chen 2010a)

V t+1(s, �q t+1)=R(s,�a)+
∑
s′,�o

p(s′|s,�a)p(�o|s′,�a)V t(s′, �q t
�o)

(13)
where �q t

�o denotes the subtree of �q t+1 after observing �o. Note
that although (13) was originally presented to compute the
value in terms of policy tree, it can be extended to the policy
graph immediately, by treating �q t as joint nodes in policy
graph. In the remaining discussion, we use the terms “tree”
and “graph node” interchangeably.

3For the problems with few states, we simply uniformly sample
the belief space to obtain B since the heuristic beliefs would be
very close to each other for some trials.

71

A straightforward way to construct �q t+1 from �q t
�o is to

consider all possible subtrees; however, this approach is ex-
ponential in the number of observations, and hence is in-
tractable if the size of the observation set is large (Seuken
and Zilberstein 2007a). This issue was overcome in (Wu,
Zilberstein, and Chen 2010a) by using a stochastic mapping
from observations to subtrees, i.e., π(qti |oi), which repre-
sents the probability of subtree qti given the observation oi.
Consequently, we can select the subtree based on this distri-
bution rather than considering all possible subtrees; in this
way, the policy tree is constructed more efficiently, even for
a large observation set. With this stochastic mapping, we ob-
tain from (13) the following value function given a belief b:

V̂ t+1(b, π) =
∑
s

b(s)R(s,�a) +
∑

s′,s,�o,�q t

p(s′|s,�a) b(s)

p(�o|s′,�a)V t(s′, �q t)
∏
i

π(qti |oi). (14)

The goal is to find the stochastic mappings {π(qti |oi)}ni=1
such that the righthand side of (14) is maximized. The max-
imization is performed by taking turns to solve the mapping
for one agent, fixing the mappings for other agents. The orig-
inal PBPG solves each subproblem using linear program-
ming, which requires an iterative procedure. Here we show
that the solution for each subproblem can be expressed in
closed-form, avoiding the cost of linear programming.

Since the first term on the right side of (14) does not in-
volve π(qti |oi), ∀ i, we need only consider the second term,
which can be rewritten as

Ṽ (�π t, b) =
∑

s′,�o,�q t,s

p(�o|s′,�a) p(s′|s,�a) b(s)V (s′, �q t)

∏
i

π(qti |oi) (15)

Focusing on agent i and keeping {π(qtj |oj) : j �= i} fixed,
we obtain a simple function in π(qti |oi) alone,

Ṽ (�π t, b) =
∑
oi,qti

π(qti |oi)
∑

s′,o−i,qt−i

p(�o|s′,�a)

p(s′|�a, b)V (s′, �q t)
∏
j �=i

π(qtj |oj)

=
∑
oi,qi

π(qti |oi)W (qti , oi) (16)

where

W (qti , oi) =
∑

s′,o−i,qt−i

p(�o|s′,�a)p(s′|�a, b)V (s′, �q t)

∏
j �=i

π(qtj |oj).

It follows from the rightmost side of (16) that the solution to
the problem maxπ(qti |oi) Ṽ (�πt, b) is given in closed-form by

π(t)(qti |oi) =
{
1, if qti = argmax

q̂ti

W (q̂ti , oi)

0, otherwise.
(17)

Algorithm 2 Modified PBPG for finite-horizon DEC-
POMDPs

Initialization: Horizon T , maximum number of trees K,
empty policy graph G, initial belief b0, belief portfolio B.

Determine the policy graph at level 1 from OneStep(K,
b0, B).
for t = 1 to T − 1 do

for k = 1 to K do
while The optimal node q∗ has appeared in Gt+1(1 :
k − 1) do

Generate belief b from B. Set v∗ = −∞ and q∗ =
∅
for all �a do

Iteratively determine the mapping π(qti |oi), ∀ i,
using (17).
Build the local node qt+1

i with a tuple
〈ai, oi, argmaxqti π(q

t
i |oi)〉, ∀i .

Evaluate �q t+1 with belief b to obtain v.
if v > v∗ then

Let v∗ = v and q∗ = �q t+1.
end if

end for
end while
Add the joint node to G as Gt+1(k) = q∗.

end for
end for
Return the policy graph G.

// G1 = OneStep(K, b0, B)
for k = 1 to K do

while The optimal node q∗ has appeared in G1(1 : k −
1) do

Generate belief b from B. Set v∗ = −∞ and q∗ = ∅
for all �a do

Build the local node q1i with ai, ∀i.
Evaluate �q1 with belief b to obtain v.
if v > v∗ then

Let v∗ = v and q∗ = �q1.
end if

end for
end while
Add the joint node to G as G1(k) = q∗.

end for

Given {π(qtj |oj) : j �= i}, the optimal π(qti |oi) is given by
(17). By cyclically employing (17) for i = 1, · · · , n and re-
peating the process, one obtains sequence {π(t)(qtj |oj)}nj=1
which converge to the optimal mappings. We also employ
random restart to avoid local optimum, as used in (Wu,
Zilberstein, and Chen 2010a) and (Pajarinen and Peltonen
2011). Note that the expression in (17) corresponds to a de-
terministic mapping since given oi, the mapping at the next
level qti is unique. Compared with the approach in (Wu, Zil-
berstein, and Chen 2010a), the modified approach avoids the
cost of linear programming and therefore is computationally
more efficient.

72

Transforming the policy graph into an FSC

Good initialization speeds up an iterative algorithm and im-
proves the solution quality. In PeriEM (Pajarinen and Pel-
tonen 2011), a finite-horizon policy graph was first learned
based on (Wu, Zilberstein, and Chen 2010a) where the linear
programming step is replaced by direct search; the obtained
policy graph is further improved and then transformed into
a periodic FSC by connecting the last layer to the first de-
terministically; the periodic FSC was then again improved
and subsequently employed as a good initialization for the
DBN-EM algorithm. Adopting this idea, we transform the
finite-horizon policy graph returned by the modified PBPG
algorithm into FSCs, which are subsequently used to ini-
tialize the PIEM algorithm (see Algorithm 1). Our proposed
approach differs from (Pajarinen and Peltonen 2011) in that
we do not attempt to determine the connection from the last
layer to the first layer deterministically and instead set it ran-
domly.

To determine the node selection function, we treat each
node qTi in the tree as a node zFi in the FSC and set

p(aTi | zFi) = 1.0 (18a)

p(ai | zFi) = 0.0, ∀ai �= aTi (18b)

where aTi is the corresponding action at node qTi in the tree.

The node transition function of a policy tree above the
bottom level is determined by following the flow of the tree.
For example, if a node qTj follows observation o and a node
qTi with action a in the policy tree, we set the corresponding
node transition function in FSC as

p(zFj | zFi , o) = 1.0 (19a)

p(zj | zFi , o) = 0.0, ∀zj �= zFj (19b)

The remaining node transition from the nodes at the bottom
level to the nodes at the top level are set randomly from a
uniform distribution.

������

������

������

������

� � �

�

�

�����

�

(a)

������

������

������

������

������

(b)

Figure 1: Policy graph. (a) Finite-horizon (b) infinite-horizon.

Fig. 1 shows an example of how to transform the finite-
horizon policy graph into an FSC with T levels and K nodes
in each level. After obtaining the policy graph (here we only

draw the policy graph for one agent, for simplicity) by solv-
ing the finite-horizon DEC-POMDP problem, we transform
the action nodes of the tree into the corresponding nodes of
an FSC and then set the node selection function according to
(18). We further set the node transition function in the FSC
by using (19). Finally, we let each node at the lowest level
make random transitions to the nodes at the top level (each
color indicates the transitions upon receiving a distinct ob-
servation), as shown in Fig. 1(b). The resulting FSC is used
as an initialization for the PIEM algorithm.

Recall that PeriEM uses DBN-EM to refine the initial
FSC, while we use PIEM to refine the initial FSC. As shown
in the complexity analysis, PIEM has lower asymptotic com-
putational complexity than DBN-EM for FSCs with the
same total number of node (i.e., Z). Therefore, when initial-
izing the FSC with the same number of levels and the same
number of nodes in each level, PIEM has lower complexity
than PeriEM.

Experimental Results
We compare PIEM to state-of-the-art infinite-horizon al-
gorithms for DEC-POMDPs. We consider a total of seven
benchmark DEC-POMDP domains: Dec Tiger, Broadcast,
Recycling Robot, Meeting in a 3 × 3 Grid, Box Pushing,
Wireless Network, and Mars Rover. A more complete de-
scription of these benchmarks, except Wireless Network,
is available at http://rbr.cs.umass.edu/camato/decpomdp/
download.html. The model description for Wireless Net-
work is available at http://masplan.org/problem domains.

Both PBPG and modified PBPG require a portfolio of be-
liefs, denoted B, for generating subtrees. The original PBPG
generates a belief randomly with a 0.55 chance and by an
MDP heuristic with a 0.45 chance. The modified PBPG em-
ploys a trial-based method to efficiently sample the beliefs
(Wu, Zilberstein, and Chen 2010b) with the number of tri-
als set to be 20. We make a small change to this belief-
generation method, by placing two base beliefs, namely, the
initial belief and the uniform belief, in B a priori before the
random beliefs and MDP beliefs are generated. This change,
though small, can significantly affect the diversity of the be-
lief portfolio and thus influence the performance of the re-
sulting policy, as seen shortly in the results.

Due to the stochasticity in sampling the random and MDP
beliefs, and the initialization for the infinite-horizon policy
graph, we perform 10 independent trials of each experiment
and report the average results. We implemented modified
PBPG and PIEM by C++ and ran them on a Linux machine
with Intel i5-4440 3.1 GHz Quad-Core CPU and 1 GB avail-
able memory.

We test our proposed PIEM algorithm on seven bench-
mark problems, of which Wireless Network has a discount
factor γ = 0.99 and all others have a discount factor of
γ = 0.9. In addition to the dynamic Bayesian net based
EM algorithms, i.e., DBN-EM and PeriEM, we also com-
pare our PIEM with the latest state-of-the-art methods:
Peri (Pajarinen and Peltonen 2011), NLP (Amato, Bern-
stein, and Zilberstein 2007), Mealy-NLP (Amato, Bonet,
and Zilberstein 2010), PBVI-BB (MacDermed and Isbell
2013), and FB-HSVI (Dibangoye, Buffet, and Charpillet

73

Table 1: A comparison of different methods, in terms of pol-
icy value and solver size, on seven infinite-horizon DEC-
POMDP benchmark problems.

Algorithm Value Size
Dec Tiger (S = 2, A = 3, O = 2)

Peri 13.45 10× 30
FB-HSVI 13.448 25
PBVI-BB 13.448 231
PIEM 12.97 10× 100
PeriEM 9.42 7× 10
Mealy-NLP -1.49 4
DBN-EM -16.30 6

Broadcast (S = 4, A = 2, O = 5)

PIEM 9.1 1× 30
NLP 9.1 1
DBN-EM 9.05 1

Recycling Robot (S = 4, A = 3, O = 2)

PIEM 31.929 6× 100
FB-HSVI 31.929 109
PBVI-BB 31.929 37
Mealy-NLP 31.928 1
Peri 31.84 6× 30
PeriEM 31.80 6× 10
DBN-EM 31.50 2

Wireless Network (S = 64, A = 2, O = 6) †
PIEM −162.30 15× 100
PBVI-BB -167.10 374
DBN-EM -175.40 3
Peri -181.24 15× 100
PeriEM -218.90 2× 10
Mealy-NLP -296.50 1

Meeting in a 3× 3 Grid (S = 81, A = 5, O = 9)

PIEM 5.82 8× 100
FB-HSVI 5.802 108
Peri 4.64 20× 70

Box Pushing (S = 100, A = 4, O = 5)

FB-HSVI 224.43 331
PBVI-BB 224.12 305
Peri 148.65 15× 30
Mealy-NLP 143.14 4
PIEM 138.40 15× 30
PeriEM 106.68 4× 10
DBN-EM 43.33 6

Stochastic Mars Rover (S = 256, A = 6, O = 8)

FB-HSVI 26.94 136
Peri 24.13 10× 30
PIEM 20.20 10× 30
Mealy-NLP 19.67 3
PeriEM 18.13 3× 10
DBN-EM 17.75 3

†: The discount used by FB-HSVI is γ = 0.9, as
reported in (Dibangoye, Buffet, and Charpillet 2014).

2014) since these methods have been reported to achieve
the highest policy values for the benchmark problems con-
sidered here, according to http://rbr.cs.umass.edu/camato/
decpomdp/download.html. The results of DBN-EM, Peri,
PeriEM, PBVI-BB, and FB-HSVI are cited from (Pajari-
nen and Peltonen 2011; MacDermed and Isbell 2013; Diban-
goye, Buffet, and Charpillet 2014). Our focus here is to com-
pare PIEM with DBN-EM and PeriEM, which both belong
to the family of EM-based methods. Nonetheless, it is still
interesting to check the performance gap between PIEM and
other types of solvers.

Following (Pajarinen and Peltonen 2011), we set a time
limit of two CPU hours for PIEM. The number of EM it-
erations in policy improvement for PIEM is set to 5. The
length of the policy graph for modified PBPG is set to be
T = 100 for Dec Tiger, Recycling Robot, Wireless Net-
work, and Meeting in a 3 × 3 Grid problems, and T = 30
for the remaining problems. In terms of implementation, we
employ the sparsity property in the transition probability, ob-
servation probability, and belief vector, with the purpose of
improving code efficiency.

The results in terms of policy value and solver size 4, on
the infinite-horizon DEC-POMDP benchmarks, are summa-
rized in Table 1, which shows that PIEM achieves policy
values higher than, or similar to, all of its competitors, on
all of the benchmark problems except for Box Pushing and
Stochastic Mars Rover. Furthermore, we observe that PIEM
outperforms DBN-EM and PeriEM on all of the bench-
marks, with obvious policy value gains. The reason why
PIEM overall performs better than PeriEM is that given a
time limit, PIEM could handle more FSC nodes than PeriEM
which is consistent with (i) our time complexity analysis
which shows that PIEM has lower computational complex-
ity than DBN-EM (PeriEM uses DBN-EM to refine the ini-
tial FSC); (ii) the closed-form solution for the stochastic
mapping makes modified PBPG (which is used to initial-
ize PIEM) more efficient than the original PBPG (which is
used to initialize PeriEM); (iii) our algorithm implementa-
tion employs the sparsity of model parameters to speed up
computation.

For the last two problems, PIEM is outperformed by some
of its competitors, with the value gap particularly significant
in the Box Pushing problem when compared with FB-HSVI
and PBVI-BB. This is likely due to the fact that a larger
problem tends to have more local optima, which could make
PIEM more easily converge to suboptimal policies. Further-
more, similar to PeriEM, PIEM cannot handle more nodes
in these large problems, given a time limit. In contrast, the
point-based FB-HSVI was shown to converge to a much bet-
ter local optima, with bounded approximation errors. Con-
sidering that FB-HSVI outperforms all other methods here
on the last two problems, it would be interesting to employ
the heuristic strategy to obtain a better belief portfolio in our
future work.

4Referred to the number of hyperplanes for PBVI-BB and FB-
HSVI, and the number of FSC nodes for other methods.

74

Conclusions

We have proposed a new policy-iteration algorithm to learn
the polices of infinite-horizon DEC-POMDP problems. The
proposed approach is based on direct maximization of the
value function, and hence avoids the drawbacks of the state-
of-the-art DBN-EM algorithm. Moreover, we prove that
PIEM can improve the objective value function monotoni-
cally. Motivated by PeriEM, the PIEM algorithm is initial-
ized by FSCs converted from a finite-horizon policy graph,
with the latter found by a modified PBPG algorithm, pro-
posed here to speed up the original PBPG by using a closed-
form solution in place of linear programming. We have
also investigated the connection between policy graphs and
FSCs, and show how to initialize the FSC with the policy
graph. The experiments on benchmark problems show that
the proposed algorithms achieve better or competitive per-
formances in the infinite-horizon DEC-POMDP cases. Fu-
ture work includes incorporation of heuristic search to cre-
ate better belief portfolio, investigation of the methods to
determine the optimal number of FSC nodes, and extending
the algorithms here to when the DEC-POMDP model is not
known a priori.

The technique presented here can be extended to the rein-
forcement learning (RL) setting where the DEC-POMDP is
not given and the agents’ policies are learned from their ex-
periences. Such an extension can be made in multiple ways,
one of which would be to express each agent policy explic-
itly in terms of local action-value functions and perform a
distributed Q-learning based on a global action-value func-
tion composed of the local functions. The agents may still
take turns to update their respective local action-value func-
tions, with the update of each local function requiring the
parameters of other agents’ local functions. With an appro-
priate parametrization, the communication between agents
can be implemented efficiently, We leave this to our next-
step work.

Acknowledgements

This research was supported in part by ARO, DARPA, DOE,
NGA, ONR and NSF.

References

Amato, C.; Bernstein, D. S.; and Zilberstein, S. 2007.
Optimizing memory-bounded controllers for decentralized
POMDPs. In UAI.
Amato, C.; Bernstein, D. S.; and Zilberstein, S. 2010. Op-
timizing fixed-size stochastic controllers for POMDPs and
decentralized POMDPs. JAAMAS 21(3).
Amato, C.; Bonet, B.; and Zilberstein, S. 2010. Finite-state
controllers based on mealy machines for centralized and de-
centralized POMDPs. In AAAI.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research
27(4).
Bernstein, D. S.; Amato, C.; Hansen, E. A.; and Zilberstein,

S. 2009. Policy iteration for decentralized control of markov
decision processes. JAIR 34(1).
Bernstein, D. S.; Hansen, E. A.; and Zilberstein, S. 2005.
Bounded policy iteration for decentralized POMDPs. In IJ-
CAI.
Boyd, S., and Vandenberghe, L. 2004. Convex optimization.
Cambridge university press.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maxi-
mum likelihood from incomplete data via the EM algorithm.
J. Roy. Statist. Soc. Ser. B 39(1):1–38. with discussion.
Dibangoye, J. S.; Buffet, O.; and Charpillet, F. 2014. Error-
bounded approximations for infinite-horizon discounted de-
centralized POMDPs. In ECML/PKDD.
Durfee, Z., and Zilberstein, S. 2013. Multiagent planning,
control, and execution. In Weiss, G., ed., Multiagent Sys-
tems. MIT Press.
Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic programming for partially observable stochastic
games. In AAAI.
Hansen, E. A. 1997. An improved policy iteration algorithm
for partially observable MDPs. In NIPS, volume 10.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1).
Kumar, A., and Zilberstein, S. 2010. Anytime planning for
decentralized POMDPs using expectation maximization. In
UAI.
Lange, K.; Hunter, D. R.; and Yang, I. 2000. Optimization
Transfer Using Surrogate Objective Functions. Journal of
Computational and Graphical Statistics 9(1).
MacDermed, L. C., and Isbell, C. 2013. Point based value
iteration with optimal belief compression for Dec-POMDPs.
In NIPS.
Nair, R.; Tambe, M.; Yokoo, M.; Pynadath, D.; and
Marsella, S. 2003. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent settings.
In IJCAI.
Neal, R., and Hinton, G. 1998. A view of the EM algo-
rithm that justifies incremental, sparse, and other variants. In
Jordan, M. I., ed., Learning in Graphical Models. Kluwer
Academic Publishers.
Oliehoek, F. A. 2012. Decentralized POMDPs. In Rein-
forcement Learning. Springer.
Pajarinen, J. K., and Peltonen, J. 2011. Periodic finite state
controllers for efficient POMDP and DEC-POMDP plan-
ning. In NIPS.
Poupart, P., and Boutilier, C. 2003. Bounded finite state
controllers. In NIPS.
Seuken, S., and Zilberstein, S. 2007a. Improved memory-
bounded dynamic programming for decentralized POMDPs.
In UAI.
Seuken, S., and Zilberstein, S. 2007b. Memory-bounded
dynamic programming for DEC-POMDPs. In IJCAI.

75

Sondik, E. J. 1971. The Optimal Control of Partially Ob-
servable Markov Processes. Ph.D. Dissertation, Stanford
University.
Sondik, E. J. 1978. The optimal control of partially observ-
able Markov processes over the infinite horizon: Discounted
costs. Operations Research 26.
Toussaint, M.; Harmeling, S.; and Storkey, A. 2006. Prob-
abilistic inference for solving (PO)MDPs. Technical Report
EDIINF-RR-0934, School of Informatics, University of Ed-
inburgh.
Toussaint, M.; Storkey, A.; and Harmeling, S. 2011.
Expectation-maximization methods for solving (PO)MDPs
and optimal control problems. In Chiappa, S., and Barber,
D., eds., Bayesian Time Series Models. Cambridge Univer-
sity Press.
Vlassis, N., and Toussaint, M. 2009. Model-free reinforce-
ment learning as mixture learning. In ICML.
Wu, F.; Zilberstein, S.; and Chen, X. 2010a. Point-based
policy generation for decentralized POMDPs. In AAMAS.
Wu, F.; Zilberstein, S.; and Chen, X. 2010b. Trial-based
dynamic programming for multi-agent planning. In AAAI.

76

