
Efficient Indexing for Recursive Conditioning Algorithms

Kevin Grant
Department Of Math and Computer Science

University of Lethbridge
4401 University Drive

Lethbridge, Alberta, T1K 3M4
kevin.grant2@uleth.ca

Abstract

In this paper, we consider efficient indexing methods for
recursive conditioning algorithms. We compare two well-
known methods for indexing, a top-down method and a
bottom-up method, and discuss the redundancy that each of
these suffer from. We also present a new method for index-
ing that is a hybrid of these models. Using this new approach
shows an improvement in the amount of indexing operations
by 55% or more in our test networks, as well as a reduction
in the cumulative time for inference by 33% or more.

Introduction

Computing posterior probabilities from a Bayesian network
(henceforth referred to as inference) is an NP-hard task
(Cooper 1990). However, modern algorithms are able to fea-
sibly perform this computation on many networks. The stan-
dard algorithms, such as Junction Tree Processing (JTP) and
Variable Elimination (VE), can compute in time and space
exponential on the induced width of the associated elimina-
tion ordering of the variables, the best known complexity for
inference known to date (Lauritzen & Spiegelhalter 1988;
Zhang & Poole 1994).

Within this asymptotic complexity lies some performance
variation. For example, the probability distributions of
Bayesian networks are typically implemented as linear ar-
rays. Given this representation, the inference algorithm
must be able to compute the array index that corresponds
to a given context of the variables defining the distribution
(henceforth referred to as indexing). Using a straightfor-
ward indexing approach, it can be shown that for inference
operations such as multiplication and marginalization, the
number of mathematical operations required for correctly
indexing the arrays far exceeds the number of mathemat-
ical operations that occur on the probabilities in the ar-
rays. Several algorithms for efficient indexing have been
presented for the standard inference methods such as JTP
and VE (Huang & Darwiche 1996; Arias & Diez 2007),
which reduce the amount of computation required for in-
dexing during the course of inference. While these methods
work well for standard inference algorithms, it is not clear
how these methods translate to conditioning methods, in

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

particular, recursive conditioning models (Darwiche 2000;
Grant 2006). These recursive algorithms do not employ mul-
tiplication and marginalization in the same way as the stan-
dard elimination algorithms do, and therefore their indexing
requirements can differ considerably.

In this paper, we consider efficient methods for index-
ing distributions in recursive conditioning models. We fo-
cus on conditioning graphs (Grant 2006), as the indexing
structure for these data structures is explicit, rather than im-
plied. The main contribution of this paper is a new bidi-
rectional indexing model for conditioning graphs that is a
hybrid of two known indexing methods. We show that
this new approach reduces the number of indexing opera-
tions in a conditioning graph by 55% or more compared
to current methods, and a corresponding time reduction of
33% or more. The methods discussed are applicable to
other recursive conditioning algorithms (Darwiche 2000;
Ramos & Cozman 2005), where efficient indexing methods
have not been formally considered.

Background and Previous Work

We denote random variables with capital letters (e.g. X ,
Y , Z), and sets of variables with boldfaced capital letters
X = {X1, ..., Xn}. Each random variable V has a dis-
crete domain of finite size |V | containing values D(V) =
{0, ..., |V | − 1}. An instantiation of a variable is denoted
V=v, or v for short. A context, or instantiation of a set of
variables, is denoted X=x or simply x. Given a set of ran-
dom variables V = {V1, ..., Vn} with domain function D,
a Bayesian network is a tuple 〈V,Φ〉. Φ = {φV1 , ..., φVn

}
is a set of probability distributions with a one-to-one corre-
spondence with the elements of V. A Bayesian network has
an associated DAG, and each φVi ∈ Φ is the conditional
probability of Vi given its parents in the DAG (called condi-
tional probability tables or CPTs). That is, if πVi

represents
the parents of Vi, then φVi

= P (Vi|πVi
). The definition of a

discrete variable function is the set of variables over which it
is defined. Figure 1 shows the DAG of a Bayesian network,
taken from (Lauritzen & Spiegelhalter 1988).

An elimination tree (etree) (Grant 2006) is a tree whose
leaves and internal nodes correspond to the CPTs and vari-
ables of a Bayesian network, respectively. The tree is struc-
tured such that all CPTs containing variable Vi in their def-
inition are contained in the subtree of the node labelled

537

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

Visit to Asia

Tuberculosis

Smoking

Lung Cancer

Dyspnea

TB Or Cancer

X Ray

Bronchitis

Figure 1: An example Bayesian network.

{ }O

X S

B C

D T

V

P(X | O) P(S)

P(B | S)

P(D | O, B) P(O |T, C)

P(T | V) P(V)

P(C | S)

{O} {O}

{O, S} {O, S}

{O,C}

{T}

{O, B}

Figure 2: The network from Figure 1, arranged in an etree.

with Vi. Figure 2 shows one of the possible etrees for the
Bayesian network of Figure 1.

In order to avoid recomputing values, each internal node
maintains a cache of its computed values. The cache of N
is a function over N ’s cache-domain, defined as the inter-
section of the variables in the CPTs of N ’s subtree, and the
variables labelling the path from root to N (called a context
by Darwiche (2000)). The cache-domains in Figure 2 are
shown in curly braces to the right of each node.

A conditioning graph (Grant 2006) is a low-level repre-
sentation of an elimination tree. At each node of the con-
ditioning graph, we store its CPT or cache as a linear array,
and the current index of this array as an integer or pointer.
At each internal node, we store a set of primary arcs, a set
of secondary arcs, and an integer representing the current
value of the node’s variable. The primary arcs are used to
direct the recursive computation, and are obtained from the
elimination tree. The secondary arcs are used to make as-
sociations between variables in the graph and the CPTs and
caches that depend on them. The secondary arcs are added
according to the following rule: there is an arc from an in-
ternal node A to node B iff the variable X labelling A is
contained in the definition of the CPT or cache associated
with B. Each secondary arc has an associated scalar value,
which indicates the change that occurs to the CPT or cache
index relative to a change in the variable’s value.

Computing a probability from a conditioning graph,
called a query, is implemented as a depth-first traversal over

SetEvidence(N, i)
1. if i �= N.value

2. diff ← i − N.value {� = 0 in this equation}
3. for each S′ ∈ N.secondary do

4. S′.pos ← S′.pos + scalar(N, S′) ∗ diff

5. N.value ← i

QueryA(N)
1. if N.cpt[N.pos] �= ∅
2. return N.cpt[N.pos]

3. else if N.value <> �
4. Total ← 1

5. for each P ′ ∈ N.primary while Total > 0
6. Total ← Total ∗ QueryA(P ′)
7. else

8. Total ← 0

9. for i ← 0 to N.size − 1 do

10. SetEvidence(N, i)

11. Product ← 1

12. for each P ′ ∈ N.primary while Product > 0
13. Product ← Product ∗ QueryA(P ′)
14. Total ← Total + Product

15. SetEvidence(N, �)
16. N.cpt[N.pos] ← Total

17. return Total

Figure 3: Query algorithm for computing probabilities from
a conditioning graph.

the underlying elimination tree. When an internal node is
reached, we condition over its labelling variable. Each time
the value of a variable is updated, the position of each as-
sociated CPT and cache index is updated as well, using the
secondary arcs. When a leaf node is reached, or an internal
node with a non–empty cache value is reached, the value of
the array at its corresponding index is returned. The low-
level, simple design of the conditioning graph means that
this inference algorithm for computing probabilities is com-
pact, efficient, and written entirely using low-level opera-
tions such as simple arithmetic and pointer manipulation.
Space restrictions preclude a more detailed introduction to
conditioning graphs; further details can be found in the re-
lated literature. Figure 3 shows an implementation of the
query algorithm. For a leaf node N , we use N.cpt and
N.pos to refer to the CPT and its current index, respec-
tively. We also overload these terms to refer to an internal
node’s cache and cache index, as they are used in an equiv-
alent manner. The value ∅ in a cache location means the
value has not yet been set. For an internal node N , we use
N.primary, N.secondary, N.value, and N.size to refer
to the node’s primary children, secondary children, variable
value, and variable size, respectively. The function scalar
labels each secondary arc with its scalar value. The vari-
able’s value represents the evidence, if any. To set the evi-
dence V = i, the application would set V.value = i. When
the value of a variable is �, it is unknown. It is assumed that

538

a constant-time mapping exists between the variable and the
node that contains it: such a mapping can be constructed
during compilation of the graph.

Recursive inference algorithms such as conditioning
graphs offer several advantages over other inference meth-
ods. The primary advantage is their ability to trade-off
space for time, which is particularly useful in memory-
constrained applications. Furthermore, the algorithm very
naturally exploits zeroes that occur during inference. An
internal node in the tree calls its children sequentially,
accumulating its value as a product. In the event that one of
its children returns a zero, the node can abort these calls to
the remainder of its children. This very simple optimization
is trivial to implement (the while condition on Lines 5 and
12), yet can potentially yield exponential reductions in
computation. While such an optimization is also available
to other algorithms (such as VE), it is much more difficult
to exploit, as these algorithms compute and pass entire
distributions rather than single values.

Indexing. Suppose we have a function f(X) defined
over discrete variables X = {X1, ..., Xk}. Storing this
function as a linear array requires a mapping from each
context of X to an integer in the array. Typically, an
ordering over the variables is selected (for simplicity,
assume that the index of the variables in our example also
defines that variable’s position in the ordering). Given a
context x = {x1, ..., xk}, we can compute the associated
index using the formula:

index(x) =
k∑

i=1

Ci ∗ xi (1)

where each Ci =
∏k

j=i+1 |Xi| is the offset associated with
variable Xi. Hence, given that we know the offsets (which
can be computed offline), computing an index from a context
of k variables requires roughly O(k) operations.

For a single context, Equation (1) is a reasonable choice,
as the values of all variables must be considered in order to
determine an index. However, when multiple queries to the
same distribution are made, applying this formula to each
context can be inefficient. For example, suppose we query
f with two different contexts of X that differ only in their
values of Xi ∈ X. Once the first index (call it j1) is com-
puted, the second index (call it j2) could be computed as
j2 = j1+Ci∗δi, where δi is the difference in the value of Xi

between each context. Hence, we require a context number
of arithmetic operations, a distinct improvement over Equa-
tion (1), especially when the number of variables is large.

Conditioning graphs attempt to resolve some of this in-
efficiency by only updating indices in response to the value
of a variable changing. For instance, when a variable X
changes values, then the indices that correspond to those
caches and CPTs defined over X are updated through the
secondary arcs. The scalar values attached to the secondary
arcs are exactly the offset values Ci from Equation (1). The
efficiency of this model is discussed in the next section.

Recently, Arias and Diez (2007) published a method
based on accumulated offsets. Briefly, these accumulated

offsets are an array associated with each distribution. Us-
ing these offsets, they show how to index over a sequence
of contexts for a distribution using a constant time operation
per context. However, this technique requires complete reg-
ularity in the order in which each value in a discrete function
is accessed. Such regularity is often not present in recursive
conditioning algorithms, as recursive inference algorithms
can use computed zeroes to prune away large sections of the
problem space. This optimization rules out the use of ac-
cumulated offsets, because the regularity requirement is not
met. It should be noted that if no zeroes occur in the net-
work distributions, then accumulated offsets could be used
in a conditioning graph in much the same manner as the nor-
mal offsets are; this is discussed further in the last section.

Another model for fast indexing in discrete functions is
cluster-sepset mapping (Huang & Darwiche 1996), which
uses discrete functions that map the indices of one function
to another. These mappings are constructed offline, so there
is no consequence to the online runtime of the algorithm.
For recursive inference structures such as those discussed, it
can be shown that for a node N , the index of the cache or
CPT at node N is a function of the cache index and variable
value at N ’s parent, so a similar mapping system could be
employed. However, the memory required by these maps
is at least as large as the size of the caches and CPTs com-
bined; storing these maps would roughly double the memory
requirements of the algorithm. Furthermore, while caches
can be pruned without affecting program correctness, the in-
dex maps could not be simply pruned away without some
secondary device to correctly compute the index values.

As noted by Arias and Diez (2007), there are efficient in-
dexing designs implemented in commercial inference sys-
tems, the details of which are typically not made public. We
are unaware of any indexing model that is similar to the one
that we present here.

Indexing In Conditioning Graphs

Before considering ways to efficiently implement indexing,
we demonstrate that the cumulative costs of indexing can
represent a non-trivial portion of the overall costs of infer-
ence. To do this, we first define the notion of an indexing
operation. An indexing operation represents the cumulative
computation that takes place on the index of a CPT or cache
as a result of the value of a single variable. For example,
considering Equation (1), since we compute the index based
on the value of k variables, we say that k indexing operations
took place, where each indexing operation requires a multi-
plication and an addition. One of the metrics that we will use
to measure the quality of an indexing model is the number
of indexing operations that it incurs, as we have found that
this provides a reasonably good indicator of the true cost of
indexing during inference.

Table 1 shows the results of an empirical evaluation of the
cost of indexing over several well-known benchmark net-
works.1 Each table entry represents a query over the net-
work given no evidence. For each network, the table shows

1Networks obtained from the Bayesian Network Repository:
http://compbio.cs.huji.ac.il/Repository/

539

Ops (×106) Runtime (s)

Network Data Index Indexing No Indexing

Barley 61.66 201.8 18.22 6.29
Diabetes 27.72 179.8 14.38 2.86
Insurance 0.1322 0.5771 0.05 0.01
Mildew 10.85 48.75 4.12 1.01
Munin2 7.031 51.32 4.14 0.77
Munin3 9.535 36.74 3.64 0.98
Munin4 32.6 143.1 13.31 3.37
Pigs 2.693 15.95 1.24 0.29
Water 2.537 15.93 1.34 0.29

Table 1: Evaluating the cumulative cost of indexing opera-
tions on the inference process.

the number of multiplications and additions that take place
on the actual probabilistic data, the number of indexing op-
erations that take place, and the CPU time required for each
run. The final column is an approximation of the runtime
with the indexing operations removed. To simulate this, we
first run the program, and precompute the sequence of array
indices that will be used during the course of the operation.
We then use this sequence in the place of the normal index-
ing operations used by conditioning graphs.

The table demonstrates several points. First, the number
of indexing operations can be significant, especially by
comparison to the number of operations that take place
on the data. Second, the cost of indexing in conditioning
graphs is significant, representing the majority of the time
taken by each inference operation (this was also recognized
in Koller and Friedman (2009)). Given that indexing
plays such a substantial role in the overall performance of
inference, it seems worthwhile to optimize its behaviour as
much as possible.

Top-Down vs. Bottom-Up Indexing. The current in-
dexing model for conditioning graphs can be described as
a top-down approach. As each variable is conditioned to a
particular value, information is passed down via secondary
arcs to all related index pointers. Of course, it is not
necessary to follow a top-down approach in a conditioning
graph. Rather, computing the index for a distribution at a
particular node could be delayed until that node is actually
reached. Upon reaching a node, we could use Equation (1)
to compute the respective index. We call this a bottom-up
approach, as each index is calculated from its respective
node by looking up its respective variable values above
it in the tree. The structural modifications required for
a bottom-up approach are minimal – we simply reverse
the directions of the secondary arcs. The weights for the
secondary arcs remain the same.

When no caching is used, the top-down method is clearly
superior to the bottom-up approach. Denote by d(N) the
number of nodes above N in the elimination tree. Consider
a CPT or cache at node N defined over {X1, ..., Xk}. Let
Ni denote the node labeled by Xi, for 1 ≤ i ≤ k. The
number of indexing operations performed by the top-down
approach will be

∑k
i=1 exp(d(Ni)), whereas the bottom-up

Network Top-Down Bottom-Up Bidirectional

Ops RT Ops RT Ops RT

Barley 201.8 18.22 296.8 26.08 79.69 12.07
Diabetes 179.8 14.38 107.5 10.71 46.86 7.05
Insurance 0.5771 0.05 0.6687 0.06 0.2376 0.03
Link 9512 666.9 4735 336.59 649.8 99.72
Mildew 48.75 4.12 44.26 4.05 17.19 2.48
Munin1 1911 186.28 1930 204.7 647.9 106.74
Munin2 51.32 4.14 39.48 3.6 13.78 2.07
Munin3 36.74 3.64 30.83 3.62 13.71 2.4
Munin4 143.1 13.31 154.1 14.83 56.29 8.61
Pigs 15.95 1.24 11.72 1.09 4.895 0.63
Water 15.93 1.34 18.23 1.54 6.796 0.86

Table 2: Op counts (×106) and runtimes (secs) of the dif-
ferent indexing models.

approach requires k exp(d(N)) indexing operations. Be-
cause k < d(N), the top-down approach is never worse than
the bottom-up approach, and is typically much better. Intu-
itively, the top-down approach is superior because it avoids
redundant indexing operations. Consider the example net-
work shown in Figure 2, in particular, the leaf variable rep-
resenting P (D|B, O). Using the bottom-up approach, we
compute its index each time the node is visited, by consid-
ering the value of each variable. However, between the first
and second visit, only the value of D changes, yet we repeat
the entire index computation over each variable. By con-
trast, the top-down approach avoids this redundant compu-
tation, only changing the index relative to variable B when
B changes value.

While top-down indexing is superior in a no-caching
model, the choice becomes less obvious when caching is
employed. Consider again the example network shown in
Figure 2, in particular, the leaf node representing P (T |V).
Each time the value of variable T changes, the index for
P (T |V) will be updated. A trace of the query operation
shows that the value of variable T will be changed 8 times.
However, subsequent to the first two changes, the cache at
V will be filled, so P (T |V) will no longer be queried. It is
therefore unnecessary to adjust its index after this point, so
the last six updates simply waste computation.

Hence, in a caching environment, both top-down and
bottom-up have potential for redundancy. In top-down, we
see unnecessary updating of indexes for obsolete caches
and CPTs, while in bottom-up, we see unnecessary com-
putation over unchanged variables. The question now be-
comes: which method incurs the least amount of redun-
dancy? Clearly, there is no winner at a node level, as we
can show that for some nodes, the top-down approach is
superior, and vice versa for other nodes. What about cu-
mulatively over an entire query operation? Table 2 shows
the number of operations and time required for a query op-
eration over the benchmark networks, under a full-caching
model. The first two columns represent the number of index-
ing operations and the runtime using the top-down model,
while the next two columns summarize the same data for
the bottom-up model.

540

The results show two important points. First, in terms of
the number of indexing operations, there is no clear winner
between the two models in a caching environment. Second,
a discrepancy exists between the runtime improvement and
indexing operation reduction between the two models. For
instance, consider network Munin3. While the number of
indexing operations required by bottom-up is considerably
less than that of top-down, the time difference was negli-
gible. We attribute this to the difference in overhead costs
between the two models. Both top-down and bottom-up
indexing require looping constructs to iterate over lists of
secondary pointers. The number of required looping con-
structs is proportional to the number of visits made to the
node. In the top-down approach, this excludes leaf-node vis-
its, while in the bottom-up approach, this includes leaf node
visits. Consequently, we find that bottom-up indexing incurs
a slightly larger overhead.

Bidirectional Indexing

In both the top-down and bottom-up indexing models, the
weight associated with each secondary arc is consistent.
This means that a variable’s effect on an index is the same
in both models – the only difference is when the index is
adjusted relative to a variable’s value. Therefore, it should
be straightforward to modify the algorithm so that both top-
down and bottom-up arcs can be used to index a particular
distribution in the network.

To determine the direction that an arc should go, we need
to define a few values. First, given a non-root node N with
parent Np in the elimination tree, the number of recursive
calls made to N depends on whether or not Np is caching.
If Np is caching, then the number of recursive calls made
to N is defined as calls(N) = cachesize(Np)× size(Np),
where cachesize(N) is the number of entries in N ’s cache,
and size(N) is the size of the variable labeling N . If Np is
not caching, then the number of recursive calls made to N is
defined recursively as calls(N) = calls(Np) × size(Np).
These formulae are modified from Darwiche (2000). For a
root node N , calls(N) = 1.

Given a variable X labeling node N , the number of
times the value of the variable will change also depends on
whether N is caching its values. If N is caching, then the
number of times the variable will change will be defined as
changes(X) = size(X)×cachesize(N). To see this, note
that we condition over X only when a call to N results in
a cache miss. On the other hand, if N is not caching, then
the number of times the variable will change is defined as
changes(X) = size(X) × calls(N) as each call to N re-
sults in conditioning over X .

Consider a node NX labeled by variable X , and a node
Nf whose CPT or cache is defined by X . Which direction
should the secondary arc between NX and Nf go? Suppose
it is a top-down arc. Then the number of times the index of
f will be adjusted according to the value of X equals the
number of times the value of that variable will change. On
the other hand, if it is a bottom-up arc, then the number of
times the index will be adjusted relative to X will be the
number of calls made to Nf . Therefore, we orient the arc

in the direction that results in the fewest number of index
adjustments relative to a particular variable.

Consider Figure 2, and the secondary arc between T and
P (T |V), and assume full caching. The number of times T
will change during the query process is 8. On the other hand,
the number of times P (T |V) will be called is 4. Hence, we
make this arc bottom-up. On the other hand, consider the
arc between B and P (D|B, O). The number of times B will
change is 2, and the number of times P (D|B, O) is called is
8. Therefore, the arc becomes a top-down arc.

In the event of a tie, we favour a top-down arc over a
bottom-up arc. This stems from discussion in the previ-
ous section, where we noted that the overhead involved with
bottom-up is slightly higher than for top-down. As a side-
effect, favouring the top-down means that in a no-caching
model, all arcs become top-down, and the modified model
degrades to the original conditioning graph model.

The overall cost of determining arc direction is linear in
the number of secondary arcs in the network, assuming that
we know how many times each node will be called, which is
linear in the number of nodes in the network. The number of
secondary arcs is bounded by O(nw), where n is the number
of nodes, and w is the network width. The cost of orienting
the arcs is therefore trivial by comparison to the actual in-
ference operation. Furthermore, we only assign direction to
each arc once, so the orientation process can be moved of-
fline, where the computational cost is less important.

Figure 4 shows the modified version of the query algo-
rithm that accommodates both top-down and bottom-up in-
dexing. We assume that the secondary list at each node has
been replaced by two different lists: topdown and bottomup,
which store the top-down arcs and bottom-up arcs emitting
from a node, respectively. SetEvidence is almost identical
in this version as in Figure 3 (and therefore omitted to con-
serve space), with the exception that the iteration on Line 3
iterates over N.topdown rather than N.secondary. The func-
tion ComputeIndex computes the adjustment to the index of
a particular node based on the information from its bottom-
up arcs. This information is combined to produce a final
index (Line 1 of Query).

Note that the information from the bottom-up arcs of a
node N is computed during the call to N ’s parent (Lines 4
and 5 of Query), prior to N being called. If the rules for
orienting the direction of the arcs are followed, then any arc
between N and its parent is guaranteed to be a top-down arc,
and therefore any change to the variable labeling N ’s parent
will not affect the outcome of N ’s bottom-up computation.
Therefore, calling ComputeIndex from the parent variable
rather than the child does not affect the correctness of the
program, but reduces the number of calls to ComputeIndex
and therefore provides a slight runtime optimization.

The final two columns of Table 2 summarize the perfor-
mance of the bidirectional indexing model on the benchmark
networks. In terms of indexing operations, the data shows
that the bidirectional model compares favourably to both the
top-down and bottom-up approach. We see over a 55% re-
duction in operations over all networks, and nearly an order
of magnitude reduction in the Link network. In terms of
runtime, the bidirectional model also compares favourably,

541

ComputeIndex(N)
1. N.pos2 ← 0

2. for each P ′ ∈ N.bottomup do

3. N.pos2 ← N.pos2 + scalar(P ′, N) ∗ P ′.value

QueryB(N)
1. pos ← N.pos + N.pos2

2. if N.cpt[pos] �= ∅
3. return N.cpt[pos]

4. for each P ′ ∈ N.primary do

5. ComputeIndex(P ′)
6. if N.value <> �
7. Total ← 1

8. for each P ′ ∈ N.primary while Total > 0
9. Total ← Total ∗ QueryB(P ′)

10. else

11. Total ← 0

12. for i ← 0 to N.size − 1 do

13. SetEvidence(N, i)

14. Product ← 1

15. for each P ′ ∈ N.primary while Total > 0
16. Product ← Product ∗ QueryB(P ′)
17. Total ← Total + Product

18. SetEvidence(N, �)
19. N.cpt[pos] ← Total

20. return Total

Figure 4: Modified query algorithm, utilizing both top-down
and bottom-up secondary arcs.

improving performance in all cases by at least 33%, and up
to as much as 70%.

A final note regarding evidence should be made. In the
original conditioning graph algorithm, evidence was en-
tered via the SetEvidence function, which immediately ad-
justed any indices connected to the evidence variables. This
still works for distributions connected to the evidence vari-
ables via top-down arcs, but not for those connected through
bottom-up arcs. In order to optimize the efficiency of the
bottom-up computation, the adjustments to indices based on
the evidence should be done prior to query. This is easily ac-
commodated by a pre-query traversal of the bottom-up arcs.

Conclusions and Future Work

In this paper, we considered efficient indexing methods
for conditioning graphs. We compared two well-known
methods for indexing, a top-down method and a bottom-up
method, and discussed the redundancy that each of these suf-
fers from. We presented a hybrid of these models, that uses
a bidirectional indexing approach that attempts to minimize
the redundancy. Using this new approach reduced the num-
ber of indexing operations in all test networks by 55%, as
well as reduced the overall time of inference by over 33% in
all tests. While the methods of this paper focused on condi-
tioning graphs, the results can be easily extended to similar
recursive inference methods (e.g. Recursive Conditioning).

There are several extensions to this project that we are
exploring. First, we mentioned the use of accumulated off-
sets in conditioning graphs, which is possible under cer-
tain conditions, but fails when we begin pruning parts of
the search space. We speculate that perhaps a hybrid ap-
proach exists, where accumulated offsets could be used in
parts of the query process where pruning will not occur. An-
other potential improvement is a more sophisticated decision
process for the direction of the arcs. It was shown that the
top-down arcs incur less overhead per call than the bottom-
up arcs, however, we treated top-down calls to be compu-
tationally equivalent to the bottom-up calls when selecting
arc direction. We speculate that by weighting these calls ap-
propriately to account for overhead, we can realize a further
improvement in the overall runtime of the algorithm, even
if it means a slightly larger number of indexing operations.
Finally, the bidirectional model of indexing presented here
attempts to minimize the number of redundant computations
that occur during indexing. However, it does not completely
eliminate the redundant computations. We have attempted
several sophisticated indexing techniques that attempt to
eliminate all unnecessary operations, but to date, the over-
head computation required by these methods negates any re-
alized performance benefit. We will continue to search for
new lightweight methods to eliminate redundancy.

Acknowledgements
Thanks to the anonymous reviewers for their suggestions re-
garding the paper. A special thanks goes out to Michael
Horsch for his helpful comments. This research is funded
by NSERC; their support is gratefully acknowledged.

References
Arias, A., and Diez, F. 2007. Operating with Potentials of Dis-
crete Variables. International Journal of Approximate Reasoning
46:166–187.
Cooper, G. F. 1990. The Computational Complexity of Proba-
bilistic Inference using Bayesian Belief Networks. Artificial Intel-
ligence 42:393–405.
Darwiche, A. 2000. Recursive Conditioning: Any-space condi-
tioning algorithm with treewidth-bounded complexity. Artificial
Intelligence 5–41.
Grant, K. 2006. Conditioning Graphs: Practical Structures for
Inference in Bayesian Networks. Ph.D. Dissertation, University of
Saskatchewan, Computer Science Department.
Huang, C., and Darwiche, A. 1996. Inference in belief networks: A
procedural guide. International Journal of Approximate Reasoning
15(3):225–263.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical Mod-
els: Principles and Techniques. MIT Press.
Lauritzen, S., and Spiegelhalter, D. 1988. Local computations with
probabilities on graphical structures and their application to expert
systems. J. Royal Statistical Society 50:157–224.
Ramos, F., and Cozman, F. 2005. Anytime anyspace probabilis-
tic inference. International Journal of Approximate Reasoning
38(1):53 – 80.
Zhang, N., and Poole, D. 1994. A Simple Approach to Bayesian
Network Computations. In Proceedings of the Tenth Canadian
Conference on Artificial Intelligence, 171–178.

542

