
Fast Path Planning Using Experience
Learning from Obstacle Patterns

Olimpiya Saha and Prithviraj Dasgupta
Computer Science Department

University of Nebraska at Omaha
Omaha, NE 68182, USA

{osaha,pdasgupta}@unomaha.edu

Abstract

We consider the problem of robot path planning in an
environment where the location and geometry of obsta-
cles are initially unknown while reusing relevant knowl-
edge about collision avoidance learned from robots’
previous navigational experience. Our main hypothesis
in this paper is that the path planning times for a robot
can be reduced if it can refer to previous maneuvers
it used to avoid collisions with obstacles during earlier
missions, and adapt that information to avoid obstacles
during its current navigation. To verify this hypothesis,
we propose an algorithm called LearnerRRT that first
uses a feature matching algorithm called Sample Con-
sensus Initial Alignment (SAC-IA) to efficiently match
currently encountered obstacle features with past obsta-
cle features, and, then uses an experience based learn-
ing technique to adapt previously recorded robot obsta-
cle avoidance trajectories corresponding to the matched
feature, to the current scenario. The feature matching
and machine learning techniques are integrated into the
robot’s path planner so that the robot can rapidly and
seamlessly update its path to circumvent an obstacle it
encounters, in real-time, and continue to move towards
its goal. We have conducted several experiments using
a simulated Coroware Corobot robot within the Webots
simulator to verify the performance of our proposed al-
gorithm, with different start and goal locations, and dif-
ferent obstacle geometries and placements, as well as
compared our approach to a state-of-the-art sampling-
based path planner. Our results show that the proposed
algorithm LearnerRRT performs much better than In-
formed RRT*. When given the same time, our algorithm
finished its task successfully whereas Informed RRT*
could only achieve 10 − 20 percent of the optimal dis-
tance.

Introduction
Autonomous navigation is one of the fundamental problems
in robotics used in several real life applications such as
unmanned search and rescue, autonomous exploration and
surveillance, and domestic applications such as automated
waste cleanup or vaccum cleaning. We consider the navi-
gation problem for a robot in an unstructured environment

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where the location and geometry of obstacles are initially
unknown or known only coarsely. To navigate in such an en-
vironment, the robot has to find a collision-free path in real-
time, by determining and dynamically updating a set of way-
points that connect the robot’s initial position to its goal po-
sition. While there are several state-of-the-art path planners
available for robot path planning (Choset et al. 2005), these
planners usually replan the path to the goal from scratch ev-
ery time the robot encounters an obstacle that obstructs its
path to the goal - an operation that can consume consid-
erable time (order of minutes or even hours), if the envi-
ronment is complex, with many obstacles. Excessively ex-
pended path planning time also reduces the robot’s energy
(battery) to perform its operations, and aggravates the over-
all performance of the robot’s mission.

To address this problem, in this paper, we make the insight
that, although obstacles could be geometrically dissimilar in
nature, yet there exists some generic features that are com-
mon across most obstacles. If a robot can be trained to navi-
gate around obstacles with some basic geometric patterns,
it can adapt and synthesize these movements to navigate
around more complex obstacles without having to learn the
motion around those obstacles from scratch. In this manner,
navigation can be learned incrementally by a robot, without
having to be trained independently for each new environ-
ment it is placed in. To realize our proposed approach we
describe an algorithm called LearnerRRT, where, we first
train a robot by navigating it in an environment where obsta-
cle shapes have some common geometric patterns. The fea-
tures of the obstacles perceived by the robot’s sensors and
its movements or actions to avoid the obstacles are stored
in summarized format within a repository maintained in-
side the robot. Later on, when the robot is presented with
a navigation task in a new environment, which requires it to
maneuver around obstacles, it retrieves the obstacle feature-
action pair, where the retrieved obstacle’s features have the
highest resemblance to its currently perceived obstacle fea-
tures. The robot then mimics the actions retrieved from its
previous maneuver after adapting them for the current ob-
stacle. We have tested our algorithm on a simulated Corobot
robot using the Webots simulator within different environ-
ments having different obstacle geometries and spatial dis-
tributions while varying the start and goal locations of the
navigation task given to the robot. Our results show that

60



our proposed algorithm LearnerRRT can perform path plan-
ning in real time in a more time effective manner compared
to sampling based techniques like Informed RRT*. When
given the same time, our algorithm was able to reach the goal
in the different environments discussed whereas Informed
RRT* had covered approximately about 10 − 20 percent of
the optimal distance between the start and goal locations.

Related Work
Applications of machine learning to robot navigation has
been a topic of interest in the robotics community over the
recent years. In one of the earliest works in this direction,
Fernandez and Veloso (Fernández and Veloso 2006) pro-
posed a policy reuse technique where an agent calculates its
expected rewards from possible actions within a reinforce-
ment learning framework to select whether to use the action
prescribed by its learned policies to explore new actions. da
Silva and Mackworth (Da Silva and Mackworth 2010) ex-
tended this work by adding spatial hints in the form of ex-
pert advice about the world states. Recently, transfer learn-
ing has been proposed to leverage knowledge gained in one
task to a related but different task (Taylor and Stone 2009)
by transferring appropriate knowledge from related source
tasks. Most transfer learning techniques rely on a source
task selection strategy, where the most suitable source task
is selected from the source task pool and applied to the tar-
get task in order to solve it. A related problem with such
an approach is that if the source task is selected incorrectly,
the target task can be peformed poorly owing to irrelevant
or ‘negative’ transfer of knowledge from the source task.
In (Taylor, Kuhlmann, and Stone 2007), the authors have ad-
dressed this problem using a transfer hierarchy. Approaches
such as a human-provided mapping (Torrey et al. 2006) and
a statistical relational model (Torrey and Shavlik 2010) to
assess similarities between a source and a target task have
also been proposed to mitigate negative transfer. Other tech-
niques to learn source to target task mappings efficiently in-
clude an experience-based learning framework called MAS-
TER (Taylor, Kuhlmann, and Stone 2008) and an experts
algorithm which is used to select a candidate policy for solv-
ing an unknown Markov Decision Process task (Talvitie and
Singh 2007). Our paper is along this direction of work, and
our proposed LearnerRRT algorithm uses a feature matching
algorithm called Sample Consensus Initial Alignment (SAC-
IA) (Rusu, Blodow, and Beetz 2009) from computer vision
to mitigate the problem of negative transfer.

In contrast to using machine learning techniques to
learn suitable actions, researchers have also proposed tech-
niques to reuse robots’ paths, represented as a set of way-
points, learned from previous navigation experiences. Lien
et al. (Lien and Lu 2009) proposed a robot motion planner
called ReUse-based PRM(RU-PRM) which constructs local
roadmaps around geometric models of obstacles and stores
them in a database; the roadmaps are later used to build a
global roadmap for the robot to follow. Researchers have
also proposed the concept of experience graphs (Phillips
et al. 2012), (Phillips and Likhachev 2015), (Hwang et
al. 2015) where the robot learns a network of paths from
past experiences and uses it to accelerate planning whenever

possible. The technique reduces to planning from scratch
when no past experiences can be reused. In the Lightning
and Thunder frameworks (Berenson, Abbeel, and Goldberg
2012; Coleman et al. 2014), a robot learns paths from past
experiences in a high-dimensional space and reuses them ef-
fectively in the future to solve a given navigation task. In
most of these approaches, the metric for calculating simi-
larity to previous navigation tasks is based on similarity be-
tween the robot’s start and goal locations between a previ-
ous task and the navigation task at hand. Similar to these
approaches, our LearnerRRT algorithm exploits past knowl-
edge if a considerable amount of relevance between the cur-
rent obstacle and a previously encountered obstacle is iden-
tified. Otherwise, to avoid negative transfer, it reverts to
planning from scratch using a state-of-the-art motion plan-
ner called Informed RRT* (Gammell, Srinivasa, and Bar-
foot 2014) to navigate in the target environment. However,
in contrast to them, our approach considers a higher level
of granularity by learning and reusing actions at obstacles
instead of actions between start and goal locations of pre-
vious navigation paths, to make the navigation apply across
environments that can vary in size and obstacle size and lo-
cations.

Problem Formulation
Consider a wheeled robot situated within a bounded envi-
ronment Q ⊆ �2. We use q ∈ Q to denote a configura-
tion of the robot, Qfree ⊂ Q to denote the free space, and
Qobs = Q − Qfree to denote the space occupied by obsta-
cles in the environment respectively. The action set for the
robot’s motion is given by A ⊂ {[−π, π]× �}; an action is
denoted as a = (θ, d) ∈ A, where θ ∈ [−π, π] and d ∈ �
are the angle (in radians) the robot needs to turn and the dis-
tance it needs to move respectively. Performing an action a
in configuration q takes the robot to a new configuration q′,
which is denoted mathematically as a(q) = q′. A path is
an ordered sequence of actions, P = (a1, a2, a3, ...). Let T
denote a navigation task for the robot, T = (qstart, qgoal),
where qstart, qgoal ∈ Qfree denote the start and goal loca-
tions of T respectively. The objective of the robot is to find
a sequence of actions that guarantees a collision free navi-
gation path connecting qstart and qgoal. In other words, no
action along the navigation path should take the robot to a
configuration that is in collision with an obstacle. Using the
mathematical notations above, the navigation problem fac-
ing the robot can be formally stated as the following: Given
navigation task T = (qstart, qgoal), find navigation path for
task T , PT = (a1, a2, a3, ...) ⊂ A such that �ai ∈ PT ,
where ai(q) = q′ ∈ Qobs. Our proposed LearnerRRT algo-
rithm proceeds in two steps that are described below.

Library Creation
The robot is first trained to find a collision-free path for nav-
igating around obstacles that have different but well-defined
geometries. Each navigation task used for training is called
a source task. We assume that the environments in which the
robot will perform navigation tasks later on will have obsta-
cles with significant similarities in their boundary patterns

61



(a) (b)

(c) (d)

Figure 1: (a) -(d) Different obstacle patterns used as source
task to construct the action library. The robot’s initial po-
sition corresponds to a location from which its sensor can
perceive the entire obstacle’s inner boundary. Different goal
locations for each obstacle are denoted by the set Gcave,
Gblock, Gcorner and Gpassage respectively.

with respect to the source tasks, although the orientation and
dimensions of individual obstacles in the later environments
might vary. We consider four well-defined obstacle geome-
try patterns as source tasks - cave, column or passage, cor-
ner and block, as shown in Figures 1(a) - (d). Each pattern
is identified by a label corresponding to its name. The set of
labels is denoted by LAB. The actions learned by the robot
during training are stored in an action library, L, as described
below.

To construct the action library, L, for a source task cor-
responding to an obstacle with label lab, the robot is ini-
tially placed in front of the obstacle in such a way that the
robot’s range sensor can perceive the obstacle’s entire in-
ner boundary. A set of goal locations, Glab, corresponding
to positions where the robot will have avoided the obsta-
cle are specified. Locations in Glab are spatially distributed
uniformly around the outer obstacle boundary, such that the
straight line path from the robot’s initial position to each
gj ∈ Glab is in collision with the obstacle, as shown in
Figures 1 (a) - (d). The range or proximity data obtained
from the robot’s sensor while perceiving the obstacle from
its initial position is stored as a set of coordinates denoted
by LSlab = {(x̂, ŷ)}. The robot internally constructs the
obstacle boundary from the range data and uses the In-
formed RRT* path planner (Gammell, Srinivasa, and Bar-
foot 2014) to plan a path to each of the goal locations. The
path returned by Informed RRT* consists of an ordered set

of waypoints. It is post-smoothed to reduce any unnecessary
turns in the path. The smoothed path of goal glab,j ∈ Glab,
pathlab,j = {(d̂, θ̂)}, is an ordered set of distances d̂ and
orientations θ̂ required to follow the path. This path is stored
in the action library. Each path stored in the action library is
indexed by its obstacle label, and for each label by the dif-
ferent goal locations for that label. The action library after
completing all the tasks in the source task set is given by:

L = ∪lab∈LAB(LSlab, Pathlab),

where Pathlab = ∪glab∈Glab
pathglab

.

Obstacle Avoidance Using Learned Navigation
Actions
After learning actions for avoiding common obstacle pat-
terns, the robot is given a navigation task T = (qfree, qgoal).
Note that the new navigation task can be given in a different
environment than the one in which the action library was
created. The general scheme that the robot uses after con-
structing its action library is to reuse actions from its ac-
tion library, after suitable adaptations, when it encounters
an obstacle while navigating towards the goal. The pseudo-
code for our proposed LearnerRRT algorithm summarizing
the steps discussed above is given in Figure 2. The robot
first optimistically assumes that there are no obstacles in the
path between its start and goal locations and starts to follow
the straight line path connecting these two locations(lines
2-6). While moving towards the goal, when the robot en-
counters an obstacle obs it first records the proximity data
from the obstacle, LSobs. It then uses a state-of-the-art algo-
rithm for aligning object features called Sample Consensus
Initial Alignment(SAC-IA) algorithm (Rusu, Blodow, and
Beetz 2009), to match LSobs with the obstacle proximity
data for the different obstacles recorded in the action library
L.

For each lab ∈ LAB, the LSobs data is first pre-processed
to scale it approximately to match LSlab. For determining
the approximate scaling factor, we perform a principal com-
ponent analysis(PCA) on each of LSobs and LSlab and re-
trieve the largest eigenvalues from each of the computed
PCA, which reflects the maximal variance of each data set.
The scaling factor is given by the ratio of the square roots of
the two eigenvalues. The SAC-IA algorithm takes two point
clouds, corresponding to scaled LSobs and LSlab respec-
tively, as inputs and aligns the first point cloud with respect
to the second to get the best matching between the two. The
algorithm returns the corresponding transformation θobs,lab
between the two point clouds. The extent of match calcu-
lated by SAC-IA between LSobs and LSlab is measured by
analyzing their Jaccard Index, which reflects the extent of
overlap between two geometric shapes. To limit negative
transfer between the two patterns, we admit only those ob-
stacle patterns whose Jaccard Index, JI , is greater than a
certain threshold JIThr, so that two patterns with very low
similarity are not considered in the match calculation. The
obstacle label with which the currently perceived obstacle
has highest match is given by1:

1If LSobs does not match any LSlab from the action library,

62



labmatch = arg max
lab∈LAB

JI(LSlab, LSobs),

subject to JI(LSlab, LSobs) > JIThr.
Once the best obstacle match in the action library

labmatch has been determined, the robot retrieves the set
of paths Pathlabmatch

from the library. It applies the trans-
formation angle θobs,labmatch

returned by SAC-IA to each
of the orientations in the Pathlabmatch

, followed by apply-
ing the same scaling factor calculated during preprocess-
ing the two point clouds before applying SAC-IA, to each
of the distances in Pathlabmatch

. It then selects the path
pathlab,j ∈ Pathlabmatch

as the path whose scaled goal
location, gscalej minimizes the distance to qgoal, given by
j = argmin d(gscalej , qgoal), where, gscalej = scale(glab,j)

and �a = (d̂, θ̂) ∈ pathlab,j s.t. q′ = a(q) /∈ Qfree. The
last constraint ensures that the robot does not collide with an
obstacle while following the scaled path computed by our
algorithm, as described below.

Finally, the robot does two post-processing steps to cor-
rect and optimize the selected path. The selected path is first
checked for collision with the obstacle. If a segment of the
selected path gets within very close proximity of the obsta-
cle or intersects with the obstacle, then the path segment is
extrapolated using the extremity points of the segment, until
it does not collide with the obstacle any more. On the other
hand, for segments that are not colliding with the obstacle,
the path is interpolated between the extremities of two suc-
cessive segments to reduce the length of the path.

The robot follows the mapped path retrieved from the ac-
tion library until it either perceives no obstacle in the direc-
tion of qgoal or reaches gscalej . At gscalej , the robot might still
perceive an obstacle, e.g., if the obstacle extended beyond
the robot’s sensor range perceived from its initial location.
In such a case, it reapplies the above steps of reusing a path
from its action library based on the perceived obstacle prox-
imity data. To avoid retrieved paths from forming a cycle in-
side the same obstacle, the robot remembers the direction in
which it had turned when it first encountered this obstacle,
and gives a higher preference to successive retrieved paths
from the action library that are in the same direction as the
first turn.

Experimental Setup and Results
We have verified the performance of the LearnerRRT algo-
rithm using simulated Corobot robots on the Webots version
6.3.2 simulator. The robot model utilized for the simulations
is the Coroware Corobot robot - an indoor, four-wheeled,
skid-steer robot. The footprint of the robot measures 40 cm
× 30 cm. For detecting obstacles, the robot is equipped with
four infra-red(IR)-based distance sensors, one on each side,
oriented at 60◦ from the front of the vehicle, and two cross
beam IR sensors mounted on the front bumper. The robot
also has a Hokuyo laser sensor with a 360◦ field of view

the robot uses the Informed RRT* planner to plan its path around
obstacle obs instead of attempting to learn from past navigation
data.

Algorithm 0.1: LEARNERRRT(currX, currY, goalX, goalY )

comment: This algorithm uses SAC-IA along with

post processing steps to predict a feasible path for
the robot in order to reach the goal. Inputs are
current location, goal coordinates and action library L
path ← ∅
repeat
adjustToGoal(goalX, goalY )
repeat
Switch to MoveToGoal and continue

until obstacle is detected
Switch to AvoidObstacle
ls ← getLaserScan(currX, currY )
lsscaled ← scaleLaserScan(ls)
pattern, θmatch ← findBestMatch(lsscaled, L)
pathbest ← findBestPath(Lib, pattern)
pathtransf ← transformPath(pathbest, θmatch)
for each node ∈ pathtransf

do if node collides with obstacle
then pathmapped ← correctPath(pathbest)

for each edge ∈ pathtransf

if edge collides with obstacle
then pathmapped ← correctPath(pathtransf )

if no node collided with obstacle and no edge collided
with obstacle

then pathmapped ← optimizePath(pathtransf )
repeat
if sensor detects obstacle

then switch toAvoidObstacleMode
and repeat the rest of the steps

else followPath(pathmapped)
until Line of Sight LOS is achievedor path gets exhausted

until (goalX, goalY ) is reached

Figure 2: Pseudo-code for the LearnerRRT algorithm.

(a) (b)

Figure 3: (a) Photograph of a Corobot robot, (b) simulated
Corobot robot with visible distance sensor rays used for sim-
ulations within Webots.

and a range of 2 m. An indoor localization device called
a Hagisonic Stargazer, with a localization accuracy of ±2
cm was added to the robot. On the simulated robot, a GPS
and a compass node was used to emulate the behavior of the
localization device. A photograph of the Corobot robot is
shown in Figure 3(a) and the simulated robot within Webots
is shown in Figure 3(b).

We have performed experiments in the navigation do-
mains using simulated environments. Our test environments
have dimensions of 22 m by 22 m and have different dis-

63



Table 1: Coordinates of the different start and goal locations used as test cases for the four environments shown in Figure 4.

Environment 1 Environment 2

Environment 3 Environment 4

Figure 4: Environments used for testing proposed Learn-
erRRT algorithm. (0, 0) and (22, 22) correspond respec-
tively to the leftmost and rightmost corners of each envi-
ronment.

tributions of obstacles with obstacles varying in scales and
alignments in the environments. On average, in our environ-
ments obstacles cover approximately about 40− 50 percent
of the environment spaces. Figures 4(a)-(d) above illustrate
different test environments used in our experiments; (0, 0)
and (22, 22) correspond to the leftmost and rightmost cor-
ners of each environment. Motion planning algorithms that
plan from scratch(PFS) based on RRTs and their variants
have been used extensively in recent robot motion planning
literature. Therefore, we have selected Informed RRT* as
the baseline approach to compare our technique with, as it
is the most recent and most improved variant of RRT-based
motion planning algorithms. Different test cases have been
created by selecting different start-goal pairs in each of the
environments, as shown in Table 1. The separation distance
between the start and goal locations ranges between 10− 15
meters. We have selected the start-goal pairs for our test
cases in such a manner that the direct path connecting the
start to the goal contains maximum number of obstacles in
it. This means that the robot had to replan its path multiple
times while navigating from the start to the goal. In order to
make the test cases representative, we have selected start and
goal locations from different regions of the environments.
For comparing the performance of our algorithm with In-
formed RRT*, we have mainly used three main measures-

the planning time to predict the path to be undertaken by the
robot, the navigation time which essentially gives the total
time that the robot requires in order to traverse the entire
arena and lastly we also compared the total distance that the
robot navigated in each of the cases in order to reach the
goal. All our tests were conducted on a computer with four,
3.20 GHz cores and 12 GB RAM. The algorithms are imple-
mented in C++. We have used the Point Cloud Library PCL
1.6.0 for the implementation of the SAC-IA module in our
algorithm. The collision threshold to avoid getting within
close proximity of the obstacle using the mapped path calcu-
lated by our algorithm was set to 0.8 m, while the threshold
for matching using the Jaccard Index, JIThr was set to 0.3.

First, we have created the action library by generating
paths for each of the source task obstacle patterns using the
Informed RRT* algorithm. For Informed RRT* we have set
a sampling distance of 0.3 m which is approximately equiv-
alent to the width of the robot and the total number of it-
erations N to be 500. Paths are generated for each pattern
by setting the start position of the robot at the center of the
obstacle and goal positions across multiple locations around
the obstacle patterns, as illustrated in Figure 1. For two of
our patterns, corner and block which can be observed both
from an internal as well as an external position with respect
to the obstacle, the robot’s initial position is varied in addi-
tion to setting different goal locations. Environments used
for building the library are of dimensions 9 meters by 12
meters. The separation distance between the start and goal
locations ranges between 3 to 5 meters. Our library consists
of 4 patterns - cave, corner, block and passage and a total of
16 paths for navigating different goal locations around each
pattern. Figure 5 shows the plots of different paths gener-
ated by Informed RRT*, which are then stored in our action
library.

We performed our experiments on a total of 24 test cases
executed across 240 runs and uniformly distributed over the
four test environments shown in Figure 4. As our algorithm
uses SAC-IA as a pattern matching algorithm and SAC-IA
returns the approximate transformation between the current
obstacle pattern and the best matched pattern from the li-
brary, there exists a significant randomness factor in our al-
gorithm which in effect helps the robot to find its way to
the goal in spite of the presence of multiple obstacles in its
route. In order to account for the randomness factor, we have
executed ten runs for each of the test cases and recorded the
means and the standard deviations for both time and dis-
tance.

Figure 6 shows the average planning, navigation and total
times taken by the LearnerRRT algorithm. It can be observed

64



Figure 5: Paths obtained for different source task obstacle patterns using Informed RRT*. The green contour represents the
obstacle. The blue starred edges represents the paths generated by Informed RRT* and the red edges represents the final paths
obtained for the specified goal around the obstacles.

that for majority of the test cases (22 out of 24) the mean to-
tal time taken by the robot to reach its goal by following our
LearnerRRT algorithm is approximately about 3 minutes or
less. The total time covers the time taken by LearnerRRT to
iteratively plan the paths for the robot once it encounters an
obstacle as well as the navigation time taken by the robot
to follow the plan and ultimately reach the goal. Consider-
ing the approximate separation distance between the start
and goal locations to be 10 − 15 meters, the environmental
dimensions to be 22 by 22 meters, the presence of obsta-
cles for considerable portions of the environment, the laser
range of the robot to be 2 meters and the robot not main-
taining any partial map of the environment, we believe that
our LearnerRRT algorithm illustrates significant amount of
efficiency in enabling the robot to achieve its task in a time
effective manner. The mean planning time taken for 22 out
of 24 test cases is approximately 2 minutes and the mean
navigation time taken is approximately 1 minute. It is worth
mentioning here that during planning by LearnerRRT, the
robot halts at its last position which means that during plan-

ning time, the robot’s battery life is not affected. For test case
6 for environment 3, the robot takes a mean total time of ap-
proximately 5.72 minutes to reach the goal which consists
of a mean planning time of approximately 4.75 minutes and
mean navigation time of approximately 1 minute. Similarly
test case 6 of environment 4 has planning time, navigation
time and total time of respectively 4.65 minutes and 1.34
minutes. We believe that the higher planning time taken by
the robot in these cases is due to the presence of multiple
cave like patterns in its path which is the most complicated
among all four of the obstacle patterns existing in our library.

Figure 7 shows the corresponding distances traveled by
the robot for each of the test cases. It can be observed that the
mean total distances traveled by the robot is approximately
36 meters. It can be said that although the direct separation
distances between the start and goal locations is set between
10 to 15 meters, the presence of significant percentage of
obstacles in the paths of each of the test cases, makes the
robot navigate a larger amount of distances to circumvent
the obstacles in its path.

65



Environment 1 Environment 2

Environment 3 Environment 4

Figure 6: Planning time, navigation time and total time taken for the test cases for environments 1,2,3 and 4.

Environment 1 Environment 2 Environment 3 Environment 4

Figure 7: Total distance traveled by the robot for solving the test cases for environments 1,2,3 and .

In order to compare the performance of our algorithm
LearnerRRT with Informed RRT* we have selected a rep-
resentative test case from each of our test environments. We
have provided Informed RRT* the start and goal locations
for these test cases and allowed it to run till the mean total
time taken by our LearnerRRT algorithm to solve the test
cases was reached. When this time was reached Informed
RRT* algorithm was terminated and the location reached by
the robot was recorded. Then, we compared the percentage
of distance that the robot covered upto the recorded loca-
tion versus the optimal distance to reach the goal. Figure 8
illustrates our results. From the results it can be observed
that the robot using Informed RRT* still has approximately
80−90 percent of the optimal distance left to cover for each
test case. We would like to reiterate that in the same time
that Informed RRT* has been allowed to perform, our algo-

rithm, LearnerRRT, was able to reach the goal. The relative
poor performance of Informed RRT* is due to the fact that
it replans from scratch every time the robot encounters an
obstacle. This, in effect, emphasizes the efficiency of the ex-
perience based learning in our LearnerRRT algorithm with
respect to planning from scratch algorithms like Informed
RRT*.

Conclusions and Future Work
This is our first step to solve the problem of real time naviga-
tion with the help of experiences coded in the form of paths
across most commonly observed sample patterns like caves,
corners, passages and blocks. To the best of our knowledge
this is the first work of its kind which uses learning experi-
ences from past navigations as sample paths for coded pat-

66



Figure 8: Comparison of distances covered so far to reach
the goal by Informed RRT* versus the optimal distance for
environments 1,2,3 and 4

terns which is used to solve path planning locally. One of
the insights that is dominant behind this work is that it is not
required to generate an entire path from the start to the goal
for the robot to successfully reach its goal. In our work we
illustrate that the task of navigation can be effectively solved
even if the robot is provided with a local plan which helps it
to avoid an obstacle in its path and when possible follow the
direct path to the goal.

There are many possible directions of this work which we
plan to explore in the future. We plan to look at other patterns
which can be used to expand our library and enable the robot
to explore random environments. Another extension to this
work could be the integration of this experiential learning
technique with a formal learning technique like reinforce-
ment learning to elicit intra domain learning in addition to
inter domain learning. Yet another extension of this work
could be to explore techniques which can merge paths from
different patterns to generate an optimal path for the robot
to avoid an obstacle in case the encountered obstacle cannot
be considerably matched to any of the stored patterns.

References
Berenson, D.; Abbeel, P.; and Goldberg, K. 2012. A robot
path planning framework that learns from experience. In
Robotics and Automation (ICRA), 2012 IEEE International
Conference on, 3671–3678. IEEE.
Choset, H.; Burgard, W.; Hutchinson, S.; Kantor, G.;
Kavraki, L. E.; Lynch, K.; and Thrun, S. 2005. Principles
of Robot Motion: Theory, Algorithms, and Implementation.
MIT Press.
Coleman, D.; Sucan, I. A.; Moll, M.; Okada, K.; and Correll,
N. 2014. Experience-based planning with sparse roadmap
spanners. arXiv preprint arXiv:1410.1950.
Da Silva, B. N., and Mackworth, A. 2010. Using spa-
tial hints to improve policy reuse in a reinforcement learn-
ing agent. In Proceedings of the 9th International Confer-
ence on Autonomous Agents and Multiagent Systems: vol-
ume 1-Volume 1, 317–324. International Foundation for Au-
tonomous Agents and Multiagent Systems.
Fernández, F., and Veloso, M. 2006. Probabilistic policy
reuse in a reinforcement learning agent. In Proceedings

of the fifth international joint conference on Autonomous
agents and multiagent systems, 720–727. ACM.
Gammell, J.; Srinivasa, S.; and Barfoot, T. 2014. Informed
rrt*: Optimal sampling-based path planning focused via di-
rect sampling of an admissible ellipsoidal heuristic. In In-
telligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, 2997–3004.
Hwang, V.; Phillips, M.; Srinivasa, S.; and Likhachev, M.
2015. Lazy validation of experience graphs. In Robotics
and Automation (ICRA), 2015 IEEE International Confer-
ence on, 912–919. IEEE.
Lien, J.-M., and Lu, Y. 2009. Planning motion in envi-
ronments with similar obstacles. In Robotics: Science and
Systems. Citeseer.
Phillips, M., and Likhachev, M. 2015. Speeding up heuris-
tic computation in planning with experience graphs. In
Robotics and Automation (ICRA), 2015 IEEE International
Conference on, 893–899. IEEE.
Phillips, M.; Cohen, B. J.; Chitta, S.; and Likhachev, M.
2012. E-graphs: Bootstrapping planning with experience
graphs. In Robotics: Science and Systems.
Rusu, R.; Blodow, N.; and Beetz, M. 2009. Fast point feature
histograms (fpfh) for 3d registration. In Robotics and Au-
tomation, 2009. ICRA ’09. IEEE International Conference
on, 3212–3217.
Talvitie, E., and Singh, S. P. 2007. An experts algorithm for
transfer learning. In IJCAI, 1065–1070.
Taylor, M. E., and Stone, P. 2009. Transfer learning for
reinforcement learning domains: A survey. The Journal of
Machine Learning Research 10:1633–1685.
Taylor, M. E.; Kuhlmann, G.; and Stone, P. 2007. Acceler-
ating search with transferred heuristics. In ICAPS Workshop
on AI Planning and Learning.
Taylor, M. E.; Kuhlmann, G.; and Stone, P. 2008. Au-
tonomous transfer for reinforcement learning. In Proceed-
ings of the 7th international joint conference on Autonomous
agents and multiagent systems-Volume 1, 283–290. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.
Torrey, L., and Shavlik, J. 2010. Policy transfer via markov
logic networks. In Inductive Logic Programming. Springer.
234–248.
Torrey, L.; Shavlik, J.; Walker, T.; and Maclin, R. 2006.
Skill acquisition via transfer learning and advice taking. In
Machine Learning: ECML 2006. Springer. 425–436.

67




