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Abstract

Conference calls represent a natural but limited commu-
nication channel between people. Lack of visual con-
tact and limited bandwidth impoverish social cues peo-
ple typically use to moderate their behavior. This pa-
per presents a system capable of providing timely aural
feedback enabling meeting participants to check them-
selves. The system is able to sense and recognize prob-
lems, reason about them, and make decisions on how
and when to provide feedback based on an interaction
policy. While a hand-crafted policy based on expert in-
sight can be used, it is non-optimal and can be brittle.
Instead, we use reinforcement learning to build a sys-
tem that can adapt to users by interacting with them. To
evaluate the system, we first conduct a user study and
demonstrate its utility in getting meeting participants to
contribute more equally. We then validate the adaptive
feedback policy by demonstrating the agent’s ability to
adapt its action choices to different types of users.

Introduction

The Turing test has long captured the imagination of the AI
community. The value of a computer mimicking a human,
though, should be tied to its relevance in solving a problem.
This is particularly important when the AI has to compe-
tently work with people in natural settings. To this end we
chose the problem of improving the natural but constrained
audio communications with AI. We see creating an AI that
aids people in working with each other as a potentially more
exciting goal than an AI that simply interacts with a per-
son. Adding an agent that can improve the communication
between people in such a scenario would demonstrate a pro-
ductive and useful AI that help people do better on collabo-
rative tasks.

Distributed teams collaborate by holding meetings on con-
ference calls and other networking solutions. By the very na-
ture of the distributed setting, a host of technical, organiza-
tional and social challenges are introduced into these meet-
ings that have been well documented, like dominant partici-
pants and loud extraneous noises (Yankelovich et al. 2004).
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Providing feedback to participants helps them modify their
behaviors and address some of the problems that occur in
distributed meetings (Erickson and Kellogg 2000; Kim et al.
2008; Yankelovich et al. 2004). In particular, a system that
analyzed participant contribution and provided feedback on
a separate visual interface, succeeded in getting the partici-
pants to contribute more equally to the meeting (Kim et al.
2008).

We explore an AI agent that provides feedback on the same
audio channel used by participants in teleconferences. The
agent has to be able to interject the communication channel,
and provide timely feedback using speech or other audio sig-
nals, i.e. aural feedback. This approach opens up a number
of issues on how and when to give feedback. While hand-
crafted interaction policies can be used, it is not possible to
design a policy for every situation that might arise. Also, not
all users will respond to feedback the same way. To circum-
vent these issues, we model the agent’s interaction with the
user as a Markov decision process and investigate if an agent
can adapt its behavior to different users using reinforcement
learning techniques.

Audio Conference System

To be capable of facilitating a conference call, the agent an-
alyzes the audio streams from the participants of the meet-
ing, and senses if they are speaking or not, how loudly they
are speaking, and whether there is noise on the channel. It
then analyzes the interaction between the participants of the
meeting, and recognizes social problems when they occur.
This is done by computing non-verbal social activity met-
rics like turn-taking and interruptions, etc. Finally, the sys-
tem makes decisions on when and how to provide aural feed-
back to mediate the conference call (Rajan, Chen, and Selker
2012).

Reasoning Architecture

The research system uses a blackboard architectural model
to prioritize and schedule how it responds in a meeting. It
consists of multiple Channelizer and one Globalizer black-
boards. A Channelizer represents a participant, while the
Globalizer represents the meeting.
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Channelizer Each channelizer classifies microphone in-
put audio as speech or non-speech. The audio is sampled
at 16kHz each, with 64 samples per frame. A frame ad-
mission process is employed using root-mean-square (RMS)
threshold to ignore low-volume events; unless they contain
high information, which is determined using a spectral en-
tropy threshold. High information content (like speech) has
a lower spectral entropy than a frame with low information
(like noise). Spectral entropy is calculated by (i) taking the
Fast Fourier Transform (FFT) of a frame; (ii) normalizing it,
so as to treat it like a probability mass function (PMF); (iii)
and, obtaining the spectral entropy: Hf = −∑n

i=1 pi log pi.

Admitted frames are processed to extract Mel Frequency
Cepstrum Coefficients (MFCC), features that are normally
used in speech recognition systems. The MFCC features
from a frame are pushed into a sliding window that is 30
frames long. The window is classified into speech and non-
speech using a Gaussian Mixture Model (GMM) classifier.

Globalizer The Channelizers feeds into the Globalizer
which is where the agent makes decisions on when and how
to provide feedback to the participants. The Globalizer cur-
rently includes three knowledge sources (KSs).

The first KS aggregates audio cues that are non-verbal and
have proven to be effective in distinguishing social activ-
ity during a meeting (Jayagopi 2011). These include: Total
Speaking Length (TSL); Total Speaking Turns (TST); Total
Speaking Turns without Short Utterances (TSTwSU); To-
tal Successful Interruptions (TSI). A combination of these
yielded an 88% accuracy for classifying conversational
dominance on a meeting corpus (Jayagopi 2011). We use
the above metrics in our approach.

The second KS determines each speaker’s dominance by
calculating how active each person is relative to other par-
ticipants. The Globalizer calculates each participant’s dom-
inance as their contribution to the conversation in terms of
speaking length (TSL).

The third KS detects and resolves conversational collisions,
or interruptions. In collaborative problem-solving meetings,
for example, if the agent detects that a person with high dom-
inance is interrupting a person with low dominance, it will
set a flag indicating the need to give feedback to the person
with high dominance.

The Globalizer maintains an internal queue of problems rec-
ognized by the KSs (e.g. dominance, loud noise). It reorders
or delays messages based on their importance, the time since
the last alert and the number of alerts. It combines similar
messages that occur consecutively. Based on its interaction
policy, it decides whether, when and how to prompt the user
with feedback.

Adaptive Feedback Policy

Once the agent recognizes the existence of a social prob-
lem it attempts to provide feedback based on its interaction
policy. The feedback can be parametrized in a number of

ways, including its timing, frequency, tone, volume, translu-
cence (Erickson and Kellogg 2000), etc. Hand-crafted feed-
back policies can be designed based on psychological in-
sights (Rajan, Chen, and Selker 2012). These are often brit-
tle — different users might react differently, and even an
individual user’s response might change over time and de-
pending on the situation.

Learning Algorithm We consider reinforcement Learn-
ing as approach to improve social feedback policies. The
agent will consider the meeting state based on duration of
the meeting, detected social problems, timing and nature of
previous feedback, and user’s mood. It will also consider
feedback actions available to the agent including what type
of feedback to give, if any. An agent’s action yields some
reward r ∈ R(s, a) and leads to a new state s′ ∈ S. In
some cases, the desired state in meetings (e.g. non-dominant
participants) might occur as a result of several interactions.
Such interaction with delayed rewards are well modeled as
Markov Decision Processes (MDP).

Solving a Markov process, however, requires knowledge
of the possible state transition probabilities (interaction
model), which is not known in advance. One way to ap-
proach the problem is to use a model-free class of algorithms
known as temporal difference methods. In particular, we use
the Q-learning algorithm (Watkins and Dayan 1992) which
is typically easier to implement, where we define Q∗(s, a)
as the expected discounted reinforcement for taking action
a in state s, then continuing by choosing actions optimally.
The Q-learning rule is

Q(s, a) := Q(s, a) + α(r + γmaxa′ Q(s′, a′)−Q(s, a)),

where α is the learning rate, and γ is the discount factor.
< s, a, r, s′ > is an experience tuple, as described above. If
each action is executed in each state an infinite number of
times on an infinite run and α is decayed appropriately, the
Q values will converge with probability 1 to Q∗ (Watkins
and Dayan 1992). The optimal policy then becomes π∗(s) =
argmaxa Q

∗(s, a).

Payoff Function We focus on three binary state fea-
tures, which are (i) is the participant dominant?, (ii) have
they received feedback?, (iii) are they annoyed?. The agent
has a choice of three actions to get a dominant user to re-
duce their dominant behavior: No Action, Advisory, Assis-
tive. The agent might provide aural advisory feedback to the
user that they are being dominant. Alternatively the agent
might take an assistive action: reducing the volume of a
dominant person, or muting them when they interrupt a less
dominant participant. For meeting flow, it is preferred that
the agent chooses (a) no action unless necessary, and (b)
advisory over assistive actions. We therefore give the assis-
tive and advisory actions a cost of -5 and -1, respectively. If
the user gets annoyed with consecutive feedback actions, the
agent incurs a cost of -10. If the agent is able to get a dom-
inant user to change their behavior, without annoying them,
it gets a reward of +50.
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Figure 1: The results of the aural feedback experiment across
twelve groups. They demonstrate a reduction in standard de-
viation of dominance among members of a group, when au-
ral feedback was provided.

Evaluations

Aural Feedback

We evaluated aural feedback by having the agent reduce
the variance in dominance among participants. Higher vari-
ations in dominance between team members leads to less
constructive and more passive/defensive interaction styles
within teams (Balthazard, Potter, and Warren 2004). During
turn-taking conflicts, the agent uses an advisory approach to
remind the dominant participant to share the floor by saying
“turn-taking?” on that user’s channel. Similarly if someone
is being dormant, the agent will say “any thoughts?” to en-
courage their participation.

Results 12 groups of 3 participants remotely collaborated
for 5 minutes to solve hangman puzzles. With the agent
facilitating, the standard deviation1 in dominance among
members of a group reduced with statistical significance
(N=12, p<0.01, 1-tailed t-test, Figure 1).

Adaptive Feedback Policy

The Q-learning algorithm was validated for adapting an
agent’s feedback policy for different users by conducting a
set of experiments with a simulated user and environment.
In the experiment, an episode starts in any state where the
user is dominant. The episode ends when the user is in the
goal state, i.e. they are not dominant or annoyed. Thus, there
is a trade-off when providing feedback between getting the
user to be non-dominant and making sure not to annoy the
user. The simulated episodes demonstrate feasibility of the
approach; experiments with real users would be a valuable
next step for validating and possibly improving the feedback
policy.

1In a three-person meeting, the ideal contribution is 33.3%,
which is also always the average. The standard deviation gives a
measure of how close to ideal participant contributions are in each
condition. A standard deviation of 0 implies that all the participants
contributed equally.

User Model A model of potential users focused on their
responses to the agent: how did they respond to advisory
actions (RAd), how likely they are to get annoyed (Uan), and
how well are they able to self-regulate their behavior without
feedback (Usr). We would expect that the optimal policy is
to do No Action when the user is not dominant or when they
are annoyed. This was the case in all the optimal policies
that were learnt. Thus, we are left with two states, i.e., (i)
SDF̄ : user is dominant and has not gotten any feedback, and
(ii) SDF : user is dominant and has received feedback, where
the agent learns different policies.

Results For the following experiments, an agent is trained
using a series of learning experiences. A learning experience
can consist of one or a batch of episodes. During the learn-
ing experience the agent uses an ε-greedy explorer to choose
an action. An ε-greedy explorer chooses a random action
with ε probability, and choose an action using the learnt pol-
icy with 1-ε probability. After each learning experience, the
new policy is tested over 10 test episodes. During these, the
agent always chooses an action based on the learnt policy.
The rewards the agent receives over the 10 test episodes is
averaged and plotted in Figure 2.

Responsiveness to Feedback
Two types of users were simulated with different responsive-
ness to advisory feedback, i.e. the probability with which a
dominant user will become non-dominant when they get ad-
visory feedback: RAd = {95%, 35%}. The user always re-
sponds to assistive feedback with a probability of 95%. If
the user has been provided feedback, the likelihood of them
responding to advisory feedback drops by 10% in the next
attempt. The optimal policy that was learnt was to provide
advisory actions in SDF̄ and SDF when RAd = 95%, i.e.
the agent learns that the user is likely to respond to advisory
feedback. When RAd = 35%, the agent chose assistive ac-
tions in both states, because it learns that the user is unlikely
to respond to advisory feedback, and that it has to pursue the
less desirable (more costly) assistive actions.

Figure 2a plots the rewards and the number of actions the
agent took as it learnt an optimal policy for RAd = 95%
& RAd = 35%. These results are averaged over 10 test
episodes after every learning experience.

Ability to Self-Regulate
Next, we model a user who is dominant only for short peri-
ods of time. In this case, we include a likelihood that the
user becomes non-dominant when the agent takes no ac-
tion (Usr) to the existing (RAd = 35% + Uan) user model.
The agent was trained for two cases: Usr = {10%, 90%}.
When Usr = 10%, the agent learns the same policy as the
RAd = 35% model, since the user does not self-regulate and
needs to receive assistive feedback to become non-dominant.
When Usr = 90%, the agent chooses to do no action in
every state because it learns that the user is likely to self-
regulate, and does not need feedback.

Figure 2b plots the rewards earned as the agent learns an
optimal policy for Usr = 90% and Usr = 10%. The higher
rewards for Usr = 90% are indicative of the agent choosing
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Figure 2: The results of the adaptive feedback policy experiments. Each figure shows results with (95% confidence interval)
error bars averaged over 10 test episodes, for every learning experience. In all cases, the agent learns an optimal policy in under
10 experiences.

no action (no cost), while the lower rewards for Usr = 10%
indicate the agent choosing assistive actions (-5 cost).

Short-term Adaptation to User Annoyance
In this experiment, we also test the agents short-term adapta-
tion to new information once it has already learnt an optimal
policy. We add to an existing user model (RAd = 35%) the
likelihood of them getting annoyed with consecutive feed-
back (Uan). In state SDF , the agent should learn to take no
action instead of providing assistive feedback.

Figure 2c plots the results as the agent learns an optimal pol-
icy for RAd = 35%. After the 25th learning experience, the
user begins to get annoyed with consecutive feedback (Uan).
The plot shows how the agent is punished for following the
optimal policy when this happens, and how it adapts after 3
to 4 learning experiences to learn a new optimal policy for
{RAd = 35%, Uan}.

Conclusion & Future Work

This work validates a methodology for creating an AI that
can coexist in an audio medium to improve meeting interac-
tions between participants. The system’s use of two layers
of blackboards allow it to judge the relative contributions of
collaborators. An agent that decided when to give advisory
support to improve collaboration has been created and vali-
dated. Future work should compare our simulated users to a
corpus from real users for improving the adaptive feedback
policy. The work could also be extended by implementing
a larger state space that can take into account other factors
like the length of the meeting.

AI agents might improve conversation in several ways (Ra-
jan, Chen, and Selker 2012; Rajan et al. 2013). We are
excited about successes of using AI to participate in au-
dio meetings to improve peoples relative contributions. Of
course not all meetings are collaborations, they might be dis-
semination meetings, or round-robin status update meetings,
etc. This paper could help point the way to models that eval-
uate the meeting as well as the user. These could help inform
the agent’s interaction policy based on the type of meeting,

state of the meeting, as well as the state of the user. This
work might encourage others to explore new ways of creat-
ing AI that give social feedback in user interfaces to improve
human performance.
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