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Abstract

When designing a robot to interact with people, the de-
cision to incorporate a robot arm may arise. In this pa-
per, we investigate adding an inexpensive, functional
arm to our mobile CoBot service robots. Specifically,
we examine two-dimensional extendable pantograph
arms for CoBot. Pantograph arms have intuitive kine-
matics and inverse kinematics. Pantograph arms are
modular and adding additional linkages corresponds to
simple changes in the kinematic calculations. These
arms have several advantages (and disadvantages) com-
pared to traditional robot arms. A prototype pantograph
arm is currently in development and our goal is to attach
a modular pantograph arm to CoBot to perform simple
needed tasks, such as knocking on doors and pressing
elevator buttons.

Introduction

CoBots are mobile service robots which use real-time lo-
calization and navigation to move around office buildings,
in particular at Carnegie Mellon, while performing tasks
such as guiding visitors and delivering objects (Biswas and
Veloso 2013; Veloso et al. 2015). CoBots use symbiotic au-
tonomy, meaning they overcome their limitations and ask
for help when they are unable to complete a task by them-
selves (Rosenthal, Biswas, and Veloso 2010). For example,
CoBots do not currently have arms, so when they wish to
use an elevator, they must ask humans to assist by pushing
floor buttons. Symbiotic autonomy works well in many situ-
ations, but our elevator example would fail when there are no
people around, so no one can assist CoBot in pressing eleva-
tor buttons. A very similar issue arises when CoBot wishes
to deliver something to an office with a closed door. CoBot
cannot knock at the door, so CoBot must announce itself
through speech, which people may not hear when the door
is closed. It could ask a nearby person to knock on its be-
half; however, this again would fail if there is no one around.
Most of CoBot’s tasks consist of going to office locations; it
would be useful for CoBot to have an arm to knock at doors.

We would like to add an arm to CoBot so that it can
perform these tasks without human assistance. At first, we
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Figure 1: CoBot 3

would like CoBot to be able to knock on doors, push but-
tons, and perform human-like gestures. We are not currently
working towards general object manipulation.

We have three design principles in mind for our arm for
CoBot - modular, low-cost, and minimal footprint when not
in use. We want our arms to be modular so that we can out-
fit each CoBot with several similar arms. We want the arms
to share similar kinematics. Yet we want the design to be
flexible so that each arm can have a different, function spe-
cific use (this could take the form of function specific end-
effectors). We want our arm to be low-cost so that we can
outfit each CoBot with multiple arms. The cost of three or
more arms, on each of the four CoBots, can quickly add up.
CoBot is a general service robot and many of the services it
provides are not reliant on arms. We want an arm that can
remain out of the way when CoBot does not need to use the
arm. Extendable pantograph arms satisfy these three design
principles.

In this paper, we first describe pantographs in more de-
tail and how they relate to the extendable arm we are build-
ing for CoBot. We briefly touch on related work. We then
walkthrough a simple example deriving the kinematics and
inverse kinematics calculations for a 2D, two-degree of free-
dom pantograph arm. We illustrate our prototype arms and
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discuss a knocking algorithm. We compare and contrast pan-
tograph arms with traditional arms. We discuss options for
modularity. We touch on several follow-up research topics,
including safety and designing a 3D pantograph arm. We
conclude with future goals.

Pantograph Background

Pantographs are a set of linkages where movement at one
point determines the movement through the rest of the sys-
tem. Figure 2, adapted from (Wikipedia 2016), is a panto-
graph used to scale images. A user manipulates the point
circled in blue. The pantograph output is the point circled
in orange. As the user manipulates the point in blue in the
shape of a lowercase a, the point in orange traces a simi-
lar, yet larger, lowercase a. One more common example of
a pantograph is a scissor lift, where the movement of one
point, located at the base and circled in red in Figure 3, de-
termines the height of the lift.

Figure 2: An image scaling pantograph, from (Wikipedia
2016)

Figure 3: A Scissor Lift, from GlobalIndustrial.com

For our pantograph arm, movements at the base will de-
termine the movement through the rest of the system. This is
advantageous in tranfering the majority of the weight of the
system to the base. The first version of our extendable pan-
tograph arm will have two degrees of freedom, both located
at the base. Later sections will discuss how to add additional
degrees of freedom and modularity to the arm.

Pantograph 1A, in Figure 4, is a mockup of a simple pan-
tograph arm. This system has four rigid links (AB, BD,
CD, and AC). In this simple example, all four links are
equal length, lAB = 1. It is not necessary for all four links
to be the same length, but lAB = lCD and lAC = lBD are
necessary so the mechanism is a parallelogram with easy to
calculate kinematics.

Figure 4: Pantograph 1A

Each of the blue links (AB and AC), can be rotated about
A by a separate rotating servo motor. Because our rigid link-
ages form a closed loop, the location of the end-effector at
D is forced. We derive the exact relation in a later section.
Please note that in all images, red will mean base, the an-
gles of blue linkages are directly controllable (by a motor),
orange points and linkages are forced, and green lines will
solely assist with measurements.

We can construct more complicated setups such as Pan-
tograph 1B, where we have several linked parallelograms.
For Pantograph 1B, E, H, K, and N all fall on the same line,
simplifying our kinematics calculations.

Figure 5: Pantograph 1B

Several other posible designs are presented below - 2A
is a non-rhombus parallelogram, 2B and 2C are different
ways to combine identical parallelograms, and 2D shows
the combination of arbitrary parallelograms. These images
demonstrate a fraction of the variety possible with panto-
graph arms.

Figure 6: Pantographs 2A-2D

Related Work

There is a lot of work relating to robot arm hardware de-
sign and manipulation (Lu et al. 2012; Circuit Digest 2015).
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Here, we focus on discussing hardware designs and how
they relate to the arm we are developing. While thinking
about an arm for CoBot, we looked at several commercial
options. Universal Robots and Kinova Robotics both pro-
duce commercially available robot arms. Kinova arms have
4 or 6 degrees of freedom and the UR3 has 6 degrees of free-
dom (Kinova 2016; Universal Robots 2015). These arms are
useful; yet $20,000+ arms did not seem reasonable for our
intended applications. We are hoping to inexpensively outfit
several robots with multiple arms which would add up if we
were to purchase commercial arms.

Pantograph arms fall into a broader category known as
parallel robots. Parallel robots are systems with intercon-
nected linkages that determine the movement through the
system (Mecademic 2015). Unlike traditional arms, actua-
tors tend to be located at the base of the system and there are
many linkages that are not directly actuated and instead con-
trolled indirectly by the movements of other linkages (Meca-
demic 2015; Murray et al. 1994). Delta robots and Stuart
platforms are the two most-well known examples of parallel
robots.

The majority of pantograph arms have one parallelo-
gram through the system. This work discusses how to easily
add additional parallelograms, without over-complicating
the dynamics. This work has a similar flavor to the work of
Aad van der Geest, who built a multi-delta arm by aligning
one delta arm beneathe another delta arm to increase range
(van der Geest 2014).

Our pantograph arm has the property that it takes up min-
imal space when retracted. It extends when in use. Sys-
tems which change shape while in use are known as deploy-
able structures. Several research groups focus on developing
and understanding deployable structures (Pellegrino 2015;
You 2015).

Kinematics

This section examines the forward and inverse kinematics
for pantographs. We walkthrough the forward kinematics of
Pantographs 1A and 1B; we then move on to the inverse
kinematics for 1A, then the inverse kinematics for 1B. For
all math below, our base is fixed at (0, 0), lAB = 1, Z is
an arbitrary point on the +x axis, the x-coordinate of the
end effector is strictly positive, and angles are calculated the
normal way with respect to the unit-circle.

Forward Kinematics

Pantograph 1A has three interesting angles, which are high-
lighted in Figure 7: ∠ZAC - which is the angle of one
motor with respect to the unit circle, ∠ZAB - which is
the angle of the second motor, and ∠ZAD - which is the
final angle of the end effector from the base. We denote
θ1 = ∠ZAC and θ2 = ∠ZAB for shorthand as the mo-
tors which can be controlled. We denote θF = ∠ZAD as
the final angle of the system. We denote the coordinates of
a point as P = (Px, Py). So D = (Dx, Dy) is our end ef-
fector position for this pantograph. Applying trig geometry,
C = (Cx, Cy) = (cos θ1, sin θ1) and B = (Bx, By) =
(cos θ2, sin θ2). By the Parallelogram Law (one can treat

Figure 7: Pantograph 1A, with named angles

parallelogram edges as vectors and then add them) (Weis-
stein 2016):

D = (Bx+Cx, By+Cy) = (cos θ1+cos θ2, sin θ1+sin θ2)

We now examine the kinematics for Pantograph 1B. We
can use a similar vector addition trick to get the positions of
H, K, and N. From E to to H we are adding in the vectors
�EF , �FH . From H to K, we are adding �HI, �IK. From K to

N, we are adding �KL, �LN . Since �EF = �HI = �KL and
�FH = �IK = �LN (because they are constructed to be par-

allel and equal length), we are adding in the same amount for
each jump. Therefore, our final forward kinematics relation
is as follows:

N = (Nx, Ny) = (3 ∗Hx, 3 ∗Hy) =

(3 ∗ (cos θ1 + cos θ2), 3 ∗ (sin θ1 + sin θ2))

Inverse Kinematics

This section derives expressions for the inverse kinematics
of the systems. Please note the importance ensuring that an-
gles are oriented in the proper direction: Suppose we are
given a goal final location (Dx, Dy). We know that distance

AD (not a link on our pantograph) is
√
D2

x +D2
y . Similarly,

we know that θF = arctan(Dy/Dx). Given these values,
we apply the law of cosines about ∠CAD (Please refer to
Figure 8):

Figure 8: Pantograph 1A, Law of Cosines in black

cos∠CAD = (AC2 +AD2 − CD2)/(2 ∗AC ∗AD)

Since AC = CD = 1, this simplifies to cos∠CAD =
AD/2 or ∠CAD = arccos(AD/2). From θF , we can eas-
ily find θ1 and θ2. From Figure 9, ∠CAD = ∠CAZ +
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∠ZAD = −∠ZAC + ∠ZAD, so

∠ZAC = θ1 = ∠ZAD − ∠CAD =

arctan(Dy/Dx)− arccos(
√
D2

x +D2
y/2)

.

Figure 9: Pantograph 1A, Angle Sums

By similar triangles, ∠BAD = ∠DAC. Also, −θ1 +
θ2 = 2 ∗ ∠CAD, so

θ2 = 2 ∗ ∠CAD + θ1 = ∠ZAD + ∠CAD =

arctan(Dy/Dx) + arccos(
√
D2

x +D2
y/2)

Using the above inverse kinematics for Pantograph 1A,
the inverse kinematics for Pantograph 1B is straightforward.
For an end effector position for M = (Mx,My), we first
find G = (Mx/3,My/3). We then treat our system as Pan-
tograph 1A and solve for G as our goal location.

Pantograph Arm for CoBot

The ultimate goal of this work is to build a pantograph arm
for CoBot. At first, this arm will perform simple functions,
specifically knocking on doors and pushing buttons. CoBot
performs many tasks that involve driving to an office (e.g.
delivering something). When CoBot arrives at an office with
a closed door, it does not have a good way to announce its ar-
rival. Adding a knocker would resolve this issue. The button
pusher would allow CoBot to push elevator buttons, so that it
can ride the elevator with no human assistance. Future goals
of this work may include gesturing, grasping simple objects,
or writing.

These tasks are very different and require different fla-
vors of end effectors; our current plan is to outfit CoBot with
multiple low-cost modular arms, each with different end ef-
fectors. Specifically, by low-cost, we are currently shooting
for below $100 per arm. The second version cost $50; the
majority of which was the cost of the controller. We are in
the process of writing Python (ROS) code to incorporate and
test the arm with CoBot. The remainder of this section will
discuss Versions 1 and 2 of the arm. Images are provided
below.

Version 1 of the pantograph arm was built with NXT
Mindstorms. It has three parallelograms (rhombi), with a
door knocker as the end effector. It has two motors and there-
fore two degrees of freedom so it can span 2 dimensions (X
and Y). It can compress to take up little space when not in
use. Both motors are centered at the exact same (x,y) point

Figure 10: Version 1 - NXT Mindstorms

Figure 11: Version 2 - Arduino

(but are in different Z space), which we take to be the origin.
This design choice is very important. It allows us to eas-
ily create parallelogram angles directly based on the motor
rotations. We do not need to worry about aligning our move-
ments because motor rotations already equal linkage rota-
tions. This allows our pantograph to move smoothly and use
the simple kinematics described above without any transfor-
mations or complications.

Control for the arm can be thought of in angle space as
discussed in the above section. Control can also be thought
of in extend/rotate space. Moving both motors in the same
direction (at the same speed) only extends (or retracts) the
arm. Moving one motor forward and the other backwards
only rotates the arm.

We programmed the inverse kinematics in RobotC to im-
plement movement to a desired point on this arm. The most
important lesson from this was motor gliding. In the dia-
grams, when one motor rotates, only the end effector ro-
tates. In practice, when one motor rotates, there is force at
the end effector and while the end effector moves, it doesn’t
move the full amount and this is compensated by the unde-
sired effect of the other motor rotating. With Mindstorms,
this can be partially offset by always having both motors on,
but there is still slip.

Another important lesson was that too many parallelo-
grams in series made the arm slow to respond at times. We
suspect this is due to friction throughout the system (addi-
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tional parallelograms means additional linkage intersections
and therefore friction) as well as limitations of motor torque.
For this reason, we capped the number of parallelograms in
our arm at 3. Future work involves designing and building
custom linkages and connectors.

Version 2 is based on the same three parallelogram, 2 DoF
design as Version 1. It is built with inexpensive hobby servos
(HITEC HS-322HD) and an Arduino Uno as the controller.
We continued to use Mindstorm pieces as the linkages. We
made this switch because Arduino is easier to interface with
ROS. This switch reduced the motor gliding; however, the
design is not as robust as intended and sometimes the mo-
tors do not stay in place. There is much to improve the de-
sign. However, our next primary focus is incorporating with
CoBot. We were able to program the inverse kinematics in
Arduino to implement movement to a desired point on this
arm. We are currently building Python code and hope to test
on CoBot in the coming weeks.

Knocking Algorithm

As discussed in the above section, we were able to imple-
ment the inverse kinematic calculations and movements in
both RobotC and Mindstorms. We used our motion primi-
tives to create two simple states - extended and retracted - for
our knocking algorithm. When a knock command is sent, the
arm attempts to extend to a fixed location (by sending motor
commands), waits roughly .2 seconds, retracts to a passive
position, waits roughly .2 seconds, and then repeats this two
more times. Note that since knocking requires making con-
tact with a surface, while our motors attempt to extend to a
specific location, they don’t make it the full way, because a
door or wall is in the way. This produces a knocking sound
as intended. We do not model the collision and treat our mo-
tors as in a noisy position when the arm is in contact with
the wall.

Below, are some stills taken from the knocking algorithm,
every .25 seconds. Two things worth highlighting are that
this entire algorithm is quick, taking less than 1.5 seconds
and (you will have to take our word for it or view our video
at https://youtu.be/jptSIcMNVWk) the knocks sound like
knocks!

In testing, this works fairly well with both versions of the
arm. For Version 1, we noticed some encoder errors when
using the NXT motors and RobotC. One knock cycle (three
extend/retracts) produced some error in the encoders from
each knock, but each of the three knocks was roughly on-
target. Running several more knocks without manual resets
to the arm led to an accumulating error with the NXT mo-
tors. With the NXT motors, the bounces off of the wall were
not fully captured by the motor encoders which is what
caused this noise and accumulating error. For Version 2 of
the arm, we did not have this issue. While there is noise in
the motor positions after the bounce off of the wall, the en-
coders work fine and the retract step successfully pulls the
motors back to the rest position.

Figure 12: Stills from Knocking Algorithm. Video uploaded
at https://youtu.be/jptSIcMNVWk

Pantograph vs Traditional Arms

There are many similarities and differences between the 2
DoF pantograph from 1A and a planar 2 DoF 2 link manip-
ulator with revolute joints, which we refer to as a traditional
arm. The traditional arm has a revolute joint at the origin,
a link from this manipulator to a second manipulator, and
then a link from the second manipulator to the end effector.
To simplify this comparison, we will assume both links of
the traditional arm are the same length, that this length is the
same as in Pantograph 1A, and equal to 1.

Some basic similarities are that both manipulators have
two degrees of freedom, and approximately span the same
space. Theoretically, both manipulators can reach any point
within a radius of 2 ∗ lAB .

Another interesting comparision is the kinematic equa-
tions. The two arm linkage has additional θ1 terms in its
coordinates, but the general structure of these equations is
the same:

Pantox = cos θ1+cos(0+θ2) Pantoy = sin θ1+sin(0+θ2)

Tradx = cos θ1+cos(θ1+ θ2) Trady = sin θ1+sin(θ1+ θ2)

There are several differences for implementation: one ad-
vantage of pantographs is that if motors are the majority of
the weight of a system, then all of the weight can lie at the
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base of the system. One disadvantage is the need for addi-
tional linkages. A pantograph with n motors needs n2 link-
ages, while the arm only needs n linkages. This can translate
to a larger footprint during execution, which could prove im-
practical in constrained environments.

Modularity

This section discusses several ways in which these arms are
modular. We discuss the following: number of linkages, end-
effectors selection, and number of degrees of freedom, and
a combination of linkages and degrees of freedom.

Understanding the kinematics for a variety of pantograph
arms is built upon Pantograph 1A and the Parallelogram
Law. We saw above that adding additional linkages for Pan-
tograph 1B only added constants to the kinematic equations.
For Pantograph 1B, we assumed that all lengths were the
same. This is not a requirement and any number of links
of any length (as long as they maintain the parallelogram
structure) can be added. We can easily use the Parallelogram
Law to calculate the kinematics for more complicated pan-
tographs. The X-kinematic equations for Pantographs 2A -
2D are listed below. The equations for the Y coordinates are
the same with sine replacing cosine. Note that both the base
is located at (0, 0) and Z is assumed to be a point on the +X
axis as before.

2A : DX = lAB ∗ cos∠ZAB + lAC ∗ cos∠ZAC

2B : HX = (lEF +lEG)∗(cos∠ZEF+cos∠ZEG)

2C : LX = 2∗ lIJ ∗cos∠ZIJ+2∗ lIK ∗cos∠ZIK

2D : SX = (lMN + lPQ)∗cos∠ZMN+(lMO + lPR)∗cos∠ZMO

These calculations follow from the Parallelogram Law
discussed above.

The pantograph design is flexible and a variety of flavors
of attachable/detachable end effectors can be added to the
end of the parallelogram linkage. (We acknowledge that this
isn’t unique to pantographs). Currently, we have built a door
knocker end-effector for our prototypes and are developing a
pointer/button presser. In the future, we will investigate more
complicated end effectors such as simple (object-specific?)
graspers.

As shown in the above section, 2D pantographs can ap-
proximately replicate the movement of 2D traditional arms.
We can add additional motors and linkages at the base as de-
sired. Adding a third motor (please see Figure 13) can give
us a third degree of freedom (to control, X,Y, and angle of
end effector).

Again, this pantograph has fairly simple kinematics:

Gx = lAB ∗ cos∠ZAB + lAC ∗ cos∠ZAC + lAD ∗ cos∠ZAD

Gy = lAB ∗ sin∠ZAB + lAC ∗ sin∠ZAC + lAD ∗ sin∠ZAD

When adding motors, we need to add additional linkages.
For the most basic setup with N motors, we have

(
N
2

)
par-

allelograms. Each combination of angles appears exactly
once (a combination means a parallelograms with angles
|θA−θB | and (180−|θA−θB |). For a given angle, there are
N linkages at that angle, and one can trace a path from the
outside of the pantograph going thru each linkage and then

Figure 13: 3 Motor Pantograph

Figure 14: 5 Motor Linkage - Linkages at equal angles color-
coded

exiting the pantograph. Please see the below figure with col-
ored linkages.

There are ways to make the pantographs more compli-
cated and to get the effect of an angle an additional time in
the kinematic calculators. In the below image, where all non-
red links are the same length and red is twice this length, the
bottom-most angle has twice the effect as the other angles.
The kinematics for this pantograph are below:

Figure 15: 5 Motor Pantograph - Bottom Link Doubled

Gx = lAB ∗ (cos∠ZAB + cos∠ZAC + cos∠ZAD+

cos∠ZAE + 2 ∗ cos∠ZAF )

Gy = lAB ∗ (sin∠ZAB + sin∠ZAC + sin∠ZAD+

sin∠ZAE + 2 ∗ sin∠ZAF )

Similarly, in the below image, ∠ZAB and ∠ZAD each
have three times the effect as ∠ZAC (note all linkages are
equal length).

Ix = lAB ∗ (3 ∗ cos∠ZAB+cos∠ZAC+3 ∗ cos∠ZAD)
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Figure 16: 3 Motor Pantograph - Top and Bottom Links
Tripled

Iy = lAB ∗ (3 ∗ sin∠ZAB + sin∠ZAC + 3 ∗ sin∠ZAD)

The above design is interesting in that there are four points
(C,G,H,I) that all fall on the same line. The position of C is
decided solely by θ2. The positions of the other points are
a function of C, θ1, and θ3. Because of this property, we
suspect there is a way to mount a camera at point C that
continually focuses on the end-effector.

There are costs to the modularity. Below are three
arms with similar kinematics. A single-parallelogram pan-
tograph arm, a 4-parallelogram pantograph arm (each par-
allelogram side is one-quarter the length as the single-
parallelogram arm) and a traditional arm (each side is the
same length as the single-parallelogram arm). Extended,
the 4-parallelogram pantograph takes up less space than
the single-parallelogram pantograph (It requires roughly
one quarter of the area). However, the additional linkages
mean more complexity. In testing, additional joints mean
movement was not as fluid. Overall, both pantographs take
up more space than the traditional arm. However, the 4-
parallelogram pantograph could be advantageous if working
in an environment without much room to move in the Y-
dimension. If our environment were constrained, the single-
parallelogram pantograph and the traditional arm would not
be able to move to the proper joint angles, while the 4-
parallogram pantograph would. Additionally, the movement
of the pantographs could be more intuitive to some users as
it extends in a straight line from the base.

Figure 17: Comparing Different Arm Designs

Another downside of pantographs is that linkages cannot
freely pass through each other. All motors are in different Z
space. For the two DoF arm that we built, all linkages are
in one of two different Z-spaces. We have a zig-zag pattern
where links in Z=1 only connect to links in Z=2 and vise
versa. Links cannot pass through each other, which roughly

means the pantograph arm cannot extend fully straight. Prac-
tically speaking this limitation does not feel too bad. We
could resolve this by adding additional Z-levels, though this
can be cumbersome in practice. We need to add two addi-
tional Z-levels for the 2DoF pantograph. This number in-
creases as we increase the number of motors.

Figure 18: Current Design has 2 Z-levels

Figure 19: Proposed Passthrough Design with 4 Z-levels

Future Work

There are similarities in the kinematics equations between
pantographs and traditional manipulators. One future re-
search question which we intend to pursue is the following:
Can the theoretical dynamics of any arm be replicated by a
sufficiently complicated pantograph?

The 2 link pantograph has a very similar flavor to the tra-
ditional 2 link arm, specifically the kinematic equations. The
IK calculations for the pantograph are similar to the IK cal-
culations for the traditional arm, until you need to specify
what exactly your angles are. This similarity continues when
you add additional linkages in 2D space. Because you can
stack motors on top of each other in the Z-dimension, we
suspect these theoretical arms can actually be built in 2D
space. We modelled a 5 motor 2D arm with both a panto-
graph and a traditional arm and similar areas can be cov-
ered. Intuitively, the bottom linkages of the pantograph are
analogous to the traditional linkage.

Figure 20: 5 Motor Pantograph Linkage

Figure 21: 5 Motor Traditional Linkage
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There will be some practical limitations when expanding
this comparison to XYZ space. For the arm we built, the
motors are effectively at the same point in space. We are
examining strategies to ‘collocate’ motors in 3D space. Ad-
ditionally, in 3D space, linkages will need to pass through
each other. We are looking forward to thinking about these
challenges when expanding to 3D space.

We also intend to look at safety and compliance with pan-
tograph arms. Pantographs have pinchpoints on both the in-
side and the outside of each parallelogram. We will examine
materials to wrap the pantograph such that a flexible, pro-
tective cover prevents humans from trapping a finger in the
mechanism. We will look at movement algorithms that do
not require the pantograph to fully extend or retract, reduc-
ing the pinchpoint area. Additionally, we will program ar-
tificial intelligence safety checks that ensure CoBot knows
it is about to knock a door and not move its arm into a hu-
man. We may also incorporate verbal warnings as an added
precaution.

We will examine different arm placements on the robot.
We hope to place many low-cost pantograph arms on the
robot. For each arm, we have flexibility to choose the height
and angle on the robot, the number of linkages, lengths of the
linkages, number of motors, torque of motors, and types of
end-effectors. We will experiment with different configua-
tions of multiple arms so that CoBot can perform a variety
of tasks without operator assistance.

Conclusion
This work examined extendable pantograph arms, one so-
lution for an inexpensive, modular arm to add to a mobile
service robot. Pantographs have many useful characteristics.
Pantographs have simple forward kinematics and inverse
kinematics, making them relatively easy to understand. Pan-
tographs can compress while not in use. Pantographs have
an intuitive footprint - extending out in effectively a line.
One potential follow-up, outside of our scope, would be to
evaluate whether users have an easier time interacting with
pantograph robot arms compared to traditional arms because
of this intuitive footprint. Additionally, we hypothesize that
this intuitive footprint can be exploited so that cameras can
be placed on the pantograph to automatically focus on the
end effector. For constrained environments where the only
path to reach an object is straight, pantographs can be ad-
vantageous; yet, we also acknowledge that in general, they
have a larger footprint than traditional arms.

A user can add additional linkages and/or additional mo-
tors to pantograph arms to alter the dynamics for intended
use. Additionally, a selection of end effectors can be added
to pantographs depending on the use case. Pantographs also
are advantageous because the majority of the system weight
can be mounted on a mobile robot.

In addition to explaining pantograph arms and comparing
with traditional arms, we also built a prototype pantograph
arm that we intend to attach to CoBot in the next few weeks.
We intend to further our understanding of pantographs by
examining 3D pantographs. Two distinct 3D pantographs are
parallelogram prisms, which we expect to have a flavor sim-
ilar to the 2D pantographs discussed in this paper, and pan-

tographs based around triangular prisms, which we expect
to be similar to delta robots. We intend to design and build a
3D pantograph arm.
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