
Effective Transfer via Demonstrations in Reinforcement Learning:
A Preliminary Study

Zhaodong Wang
School of EECS

Washington State University
zhaodong.wang@wsu.edu

Matthew E. Taylor
School of EECS

Washington State University
taylorm@eecs.wsu.edu

Abstract

There are many successful methods for transferring informa-
tion from one agent to another. One approach, taken in this
work, is to have one (source) agent demonstrate a policy to
a second (target) agent, and then have that second agent im-
prove upon the policy. By allowing the target agent to ob-
serve the source agent’s demonstrations, rather than relying
on other types of direct knowledge transfer like Q-values,
rules, or shared representations, we remove the need for the
agents to know anything about each other’s internal represen-
tation or have a shared language. In this work, we introduce
a refinement to HAT, an existing transfer learning method, by
integrating the target agent’s confidence in its representation
of the source agent’s policy. Results show that a target agent
can effectively 1) improve its initial performance relative to
learning without transfer (jumpstart) and 2) improve its per-
formance relative to the source agent (total reward). Further-
more, both the jumpstart and total reward are improved with
this new refinement, relative to learning without transfer and
relative to learning with HAT.

Introduction

Reinforcement learning (Sutton and Barto 1998) (RL) meth-
ods have been successfully applied to both virtual and phys-
ical robots. In some complex domains, learning speed may
be too slow in practice to be feasible. One common speed up
method is transfer learning (Taylor and Stone 2009), where
one (source) agent is used to speed up learning in a second
(target) agent. Unfortunately, many transfer learning meth-
ods make assumptions about the source and/or target agent’s
internal representation, learning method, prior knowledge,
etc. Instead of requiring a particular type of knowledge to
be transferred, our past work on the Human Agent Trans-
fer (Taylor, Suay, and Chernova 2011) (HAT) algorithm al-
lowed the source agent to demonstrate its policy, the target
agent to bootstrap based on this policy, and then the target
agent to improve its performance over that of the source
agent. Without restriction of how the source agent should
perform demonstration, HAT could have a specific way of
recording data from the source as state-action pairs, though
this process might vary from one domain to another. In

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this work the source agent is actually a human, underly-
ing how different the source and target agents can be. We
also note that this approach is different from much of the
existing learning from demonstration (Argall et al. 2009)
approaches, as the target agent can autonomously improve
upon the source agent’s policy via RL.

The HAT algorithm can be briefly summarized in three
steps. First, the source agent acts for a time in the task and
the target agent records a set of demonstrations. Second,
a decision tree learning method (e.g., J48 (Quinlan 1993))
summarizes the demonstrated policy as a static mapping
from states to actions. Third, these rules are used by the
target agent as a bias in the early stages of its learning.1 The
key component of HAT is that it uses the decision tree to bias
its exploration. Initially, the target task agent follows the
decision tree, attempting to mimic the source agent. Over
time, it incorporates random exploration and exploitation of
its learned knowledge with exploiting the decision tree, ef-
fectively improving its performance relative to the source
agent.

Immediately after performing transfer, it is unlikely that
the target agent will be optimal due to multiple sources of
error. First, the source agent may be suboptimal. Second, the
source agent may be inconsistent, resulting in an inability to
correctly classify states into actions selected by the agent.
Third, the source data must be summarized, not memorized.
Because the decision tree will not exhaustively memorize all
possible states, when it combines multiple (similar) states,
some states may be classified with incorrect actions. Fourth,
the source agent typically cannot exhaustively demonstrate
all possible state action pairs — the learned decision tree
must generalize to unseen states, which may be incorrect.
Different types and qualities of demonstrations may be more
or less effective in HAT, depending on these four types of
potential errors.

Error types two (inconsistent actions) and three (state ag-
gregation), and possibly error type four (action generaliza-
tion), may be addressed by considering the uncertainty in
the classifier. Rather than blindly following a decision tree
to select an action in a given state, as is done in the cur-

1If the source agent and target agent are in different domains,
an inter-task mapping may be used between steps two and three in
order to translate such rules (Taylor and Stone 2007).

77

rent version of HAT, we believe the transferred information
should be weighted by the estimated uncertainty in the clas-
sification.

This work takes a critical first step in this direction by in-
troducing GPHAT, an enhancement to the HAT algorithm
that uses Gaussian Processes. We evaluate GPHAT using
the domain of simulated robot soccer and empirically show
it outperforms both HAT and learning without transfer. Even
when low amounts of demonstration data are used, the initial
performance (jumpstart) and total reward are significantly
improved. By leveraging uncertainty in the estimate of the
source agent’s policy, GPHAT may be useful in domains
where initial performance is critical, but demonstration from
a trained agent (or human) is available but non-trivial to col-
lect.

Background

This section will present some basic techniques discussed in
the paper: reinforcement learning, demonstration, and hu-
man agent transfer.

Reinforcement Learning

Reinforcement Learning is such a process that learning
through agent’s experience exploring the environment. RL’s
basic model is Markov decision processes (MDPs). MDPs
work as follows: Once the agent observes its current state, it
will make some decision or action and then update its state.
For a MDP, A is a set of actions, S is a set of states. There
are two main functions within this process:

1. Transition Function

T : S ×A �→ S

2. Reward Function

R : S ×A �→ R

Different RL algorithms have different ways of learning
to maximize the expected reward. Here we focus on an on-
policy time difference learning algorithm: SARSA (Rum-
mery and Niranjan 1994; Singh and Sutton 1996) in our do-
main, which is learning an action-value function:

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]

This Q(s, a) function will map state-action pairs to a nu-
merical expectation value. Our RL agent will explore by
selecting the action that maximizes Q(s, a) with probability
1− ε and select a random action with probability ε.

Demonstration

Demonstration data are presented in a form of vector of
state-action pairs as 〈�x, a〉, in which �x is the state vector
and a is the corresponding action.

Because of the simple expression of demonstration data,
they could be generated by a human or by another agent
and via different ways of realisation, and there are many ap-
proaches of collecting the demonstration data such as visual
observation or letting the agent write down those state-action
pairs.

In cases where the state is continuous or very large, Q
can not be represented as a table. In such cases, some type
of function approximation is needed. In this paper we use
a CMAC tile coding function approximator (Albus 1981),
where a state is represented in terms of a vector of state vari-
ables.

Human Agent Transfer

HAT has been proposed to help bootstrap the target agent’s
RL performance. Its contribution is to build a common
bridge between source and target agents, since it might not
possible to simply copy a human agent’s behavior to some
RL agent.

The transfer part of HAT is rule transfer (Taylor and Stone
2007) — the source knowledge is summarized via a decision
tree which will provide an action choice for a given state.
The following steps summarize HAT:

1: Learn a policy from the source task. A human agent
has some policy (π : S �→ A) on a task, and takes actions
upon current state following the policy. Meanwhile, those
state-action pairs will be stored as demonstration data.

2: Train a decision tree. Upon the learned policy data,
a decision tree will be learned to summarize the state-action
pairs. The decision tree could be understood as a static set
of rules.

3: Bootstrap target task with the decision tree. Instead of
randomly exploring, an agent could make use of the rules to
take actions at the beginning. There are three ways of using
the decision tree to improve learning performance: 1) value
bonus, 2) extra action, or 3) probabilistic policy reuse (PPR).
This paper focuses on PPR. In PPR, there is a self-decaying
probability Φ deciding whether to follow the rules or use
SARSA. An agent will reuse the transferred rule policy with
a probability of Φ, act randomly with a probability of ε, and
exploit its Q-values with probability 1− Φ− ε. Φ typically
starts near 1 and decays exponentially, forcing the target to
initially follow the source policy and leverage its learned Q-
values over time.

Gaussian Process Human Agent Transfer

In order to improve HAT, especially in continuous and com-
plicated domains, we would prefer a more continuous model
to summarize the demonstration data and provide better de-
cisions. Meanwhile, we may want to leverage the agent’s
confidence in the decision suggested by the prior knowl-
edge. Through the measurement of confidence, the agent
should probably follow those certain decisions and ignore
other uncertain ones.

Our new approach (GPHAT) leverages Gaussian Pro-
cesses as the kernel function of the summarized data, which
is continuous and will come with numerical confidence of
suggested action choice upon encountered states.

A typical Gaussian process model is defined as:

P (ωi|x) = 1
√
2π|Σi|

exp{−1

2
(x− μi)

TΣ−1
i (x− μi)}

78

where ωi is the predicted label, Σi is the covariance matrix
of data of class i, and μi is the mean of data of class i.

Considering Bayes decision rules (BDR), we have the
classifier:

ωi = argmax
ωi

[lnP (ωi|x) + lnP (ωi)]

= argmax
ωi

[− 1
2 (x− μi)

TΣ−1
i (x− μi)

− 1
2 ln 2π|Σi|+ lnP (ωi)]

= argmin
ωi

[di(x, μi) + αi]

where di(x, μi) = (x − μi)
TΣ−1

i (x − μi) and αi =
ln 2π|Σi| − 2 lnP (ωi).

Notice that here in the Gaussian classifier, the distance is
measured with the Mahalanobis distance, di(x, μi), and this
is because the state variables are all hand-selected and they
are not equally the same in terms of numerical property.

This classifier is generated from Bayes decision rules and
it optimizes the boundary of the data with different labels.
If we directly use the above classifier, we can only receive
a binary decision. Instead, we define a confidence function
with the classification:

Ci =
exp{−di(x, μi)− αi}

Normalization
(1)

Notice that a typical GP maps from input space (data) to
output space (class), but this still just provide classification
result. Additionally, what we want is the confidence along
with the classification output, and thus we take advantage of
original GP and then define the above confidence function
to calculate confidence.

A learning agent could use this confidence in multiple
ways. In this work, we have unbalanced data — one action
is executed much more often than others. When our target
agent attempts to exploit source knowledge, it will execute
the action suggested by the classifier if it is above some con-
fidence threshold. Otherwise, it will execute the “default”
action. Notice that we have implemented probabilistic pol-
icy reuse in the method, letting a decaying probabilistic vari-
able Φ decide whether the agent should use the prior knowl-
edge or not at each step. Step one in GPHAT is the same
as in HAT. Step two of GPHAT trains a Gaussian classifier
instead of a decision tree. Step 3 of GPHAT is outlined in
Algorithm 1.

In addition to the above, we can also use clustering to
help determine the number of Gaussian classifiers to use
(which can be greater than or equal to the number of ac-
tions). We first roughly cluster these data using Expectation-
maximization (EM) algorithm (Celeux and Govaert 1992) of
Weka 3.6 (Witten and Frank 2005) into N groups and train N
Gaussian classifiers for this class. We determine the number
of N used in actual learning by comparing the average per-
formance of the first few episodes. As shown in Figure 1,
we could have several smaller groups of data by clustering
data first, which could potentially increase the precision of
Gaussian classifiers.

Algorithm 1: GPHAT: Bootstrap target learning
Input: Classifier GP , confidence threshold T , PPR

initial probability Φ0, PPR decay ΦD

1 Φ← Φ0

2 for each episode do
3 Initialize state s to start state
4 for each step of an episode do
5 a← ∅
6 if rand() ≤ Φ then
7 Use GP to compute Ci as shown in (1) for

each action
8 if max Ci ≥ Φ then
9 a← corresponding ai

10 if a == ∅ then
11 if rand() ≤ ε then
12 a← random action
13 else
14 a← action that maximizes Q

15 Execute action a
16 Observe new state s′ and reward r
17 Use SARSA to update Q
18 Φ← Φ× ΦD

Experimental Setting

This section explains the Keepaway (Stone et al. 2006a) do-
main and then discusses the experimental methodology.

Keepaway Simulation

Keepaway is a simulated soccer game domain. In this paper,
we use the Robocup Soccer Server (Noda et al. 1998) (ver-
sion 9.4.5) and version 3.3 UvA Keepaway players (Stone et
al. 2006b). In this simulation, there are five players: 3 keep-
ers and 2 takers playing within a bounded square. Keepers
learn to keep control of the ball as long as possible but tak-
ers are following hard-coded rules to chase after the ball to
intercept it. An episode of the simulated game starts with an
initial state and ends with an interception by the takers or the
ball going out of bounds.

The game is mapped into a discrete time sequence to make
it possible to control every players. We use a continuous 13-
tuple vector to represent the states containing relative dis-
tances and angles. Figure 2 shows how we determine those
variables. Figure 3 is a screen capture of the Keepaway sim-
ulation. Once a keeper get the ball, it will make a decision
among three actions: 0) Hold: hold the ball, 1) Pass1 pass
the ball to the closer teammate, 2) Pass2 pass the ball to the
further teammate, while the takers and the other two keepers
currently without the ball will just follow hand-coded poli-
cies to try to get open for a pass. The reward is +1 per time
step for every keeper.

Methodology Setup

To collect demonstration data from human teacher, we show
the visualized game (shown in Figure 3) to a human, and let

79

Figure 1: This figure shows an example of clustering same
class data into three smaller groups.

the player execute actions (Hold, Pass1, Pass2). Meanwhile
we record the state-action pairs as demonstration data.

For HAT, we use J48 tree with the default parameters of
Weka 3.6. For our GP method, we train Gaussian classifiers
only on actions Pass1 and Pass2, since action Hold is exe-
cuted roughly 70% of the time, making the data unbalanced.
Notice that the Gaussian classifier for Pass1 is trained by
treating other action data as same outliers, and so for Pass2.
To make fair comparisons, we further define double DTs,
where two decision trees are trained exclusively for Pass1
and Pass2.

Different RL algorithms could be applied into HAT or
GPHAT but we restrict ourselves to considering SARSA in
this paper. Here we use: α = 0.05, ε = 0.10 , γ = 1.
To use the prior knowledge, we have a probabilistic param-
eter Φ determining whether to listen to prior knowledge. Φ
will be multiplied by a decay factor, ΦD, on every time step.
Among {0.9, 0.99, 0.999, 0.9999}, preliminary experiments
found ΦD = 0.999 to be the best.

The learning performance is measured by jumpstart and
total reward. Jumpstart is the average duration of episodes
using only transferred prior knowledge. Higher jumpstart in-
dicates that the transferred knowledge could be more help-
ful to an agent. Total reward could be compared through
the area under an learning curve, which suggests the overall
learning performance within a certain period.

Results

Here we show the improvement brought by human demon-
strations and reveal how the different demonstration data
influences the RL performance. We also evaluate the dif-
ferent performances of different human demonstrations and
explain the possible reason for this.

To make comparisons between different human demon-
strations, we consider two kinds of demonstrations with dis-
tinct differences in game strategy. For each of them, we let
a human player play Keepaway using the keyboard.

Figure 2: This figure shows the state variables used as the
13-tuple state vector. These Euclidean variables are made
up relative angles and distances. While playing, the keeper
(Ki) currently with the ball needs to decide whether to hold
the ball or to pass it to one of its two teammates. The two
hard-coded takers (T1 and T2) are chasing after the ball and
the three keepers will learn to keep control of the ball.

Figure 3: This is a snapshot of the real-time running game.
All players are restricted in the square court with the white
line bound.

The human player attempted to follow two policies:
1. Simple-Response demonstrations: The human player

always holds the ball until the takers approach very near to
the keeper with the ball. The player only chooses to pass
the ball to another teammate when necessary. The average
demonstration duration is 10.5s with a standard deviation of
3.5s.

2. Complex-Strategy demonstrations: The human player
is more flexible and active in this setting. The player will
try to pass the ball more often, and thus the keepers need to
zigzag to chase the ball. However, the player also tries to act
inconsistently when possible, so that the player would not
always take the same action as long as those actions are also
rational. The average demonstration duration is 10.1s with a
standard deviation of 3.8s.

Each demonstration contains state-action pairs of 20
episodes. Note that these demonstrations are on the order

80

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
6

7

8

9

10

11

12

13

14

15

Training Time (simulated hours)

Ep
is

od
e

D
ur

at
io

n
(s

ec
on

ds
)

Simple Response
Complex Strategy
No prior

Figure 4: This figure presents the learning curves of dif-
ferent learning methods. The episode duration is calcu-
lated by the average of a sliding window of 500 episodes.
“No prior” represents the curve of RL without any prior
knowledge. “Complex Strategy” represents HAT using the
Complex-Strategy demonstrations. “Simple Response” rep-
resents HAT using the Simple-Response demonstrations.
Episode durations are averaged over 10 independent trials.

of minutes in the simulator, while learning will occur over
hours of simulator interaction.

HAT

For different learning implementations, we record every
episode’s duration time while training the agent of Keep-
away, and show the results as in Figure 4. As expected,
both sets of demonstrations allow HAT to outperform learn-
ing without any prior.

However, notice that there is a large difference between
the two demonstrations. We hypothesize that the “Complex
Strategy” was more difficult to summarize due to its incon-
sistent policy, resulting in worse performance.

Since there is difference between these two kinds of
demonstrations and we are using J48 decision tree to clas-
sify the state-action pairs, the classified outcome of the two
demonstrations are different. Indeed, while we are trying
to capture the true distribution of human demonstrations, a
more complicated set of demonstration data will lead to a
lower-confidence hypothesis, compared to a same-size set
of data with a more straight-forward or distinct distribution.

Table 1 shows some parameters of the J48 pruned tree that
we have used for summarizing human demonstration. Depth
and accuracy indicate that the Complex Strategy needs a de-
cision tree with more complexity relative to the Simple Re-
sponse. 10-fold cross-validation is used to report the accu-
racy of the different methods.

GPHAT

As we can see from previous section, the distribution of
demonstration data could surly affect the effectiveness of

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Training Time (simulated hours)

Ep
is

od
e

D
ur

at
io

n
(s

ec
on

ds
)

GP with clusters
Double DT, accuracy: 92.20% (Pass1) 93.52 (Pass 2)
Single DT, accuracy: 86.24%
No prior

Figure 5: This figure shows the learning performance using
“Novice” demonstrations. We compare GPHAT with HAT
using one or double decision trees. Performance is averaged
over 10 independent trials.

summarized prior knowledge and thus influence the agent’s
learning performance. This section we will show the advan-
tage of applying Gaussian processes.

Consider an even worse case where we have a demonstra-
tion with an average performance of 7.45s with a standard
deviation of 2.2s, which is only slightly better than a random
policy. This “Novice” demonstration will often provide poor
actions. We will compare the robustness of using decision
trees and Gaussian processes.

Figure 5 shows the learning performance comparison. To
make the comparison fair, we have trained 2 decision trees
to individually classify action 1 and 2, just like we have 2
sets of Gaussian classifiers for action 1 and 2 respectively.
Table 1 is the comparison of jumpstart among GP and DTs.

We conclude that with Gaussian process, the transferred
prior knowledge is more robust even if the quality of human
demonstration is limited. We also see that the performance
of using prior knowledge is better than the original perfor-
mance of the teacher. One way of explaining this is that
even if the demonstrator fails to take an action 1 or 2 to pass
the ball, which will lead to an end of current episode, we
still record many correct actions. Thus the only bad effects
would be more redundant data of action 0 (holding the ball).

Tuning GPHAT’s Confidence Threshold

Previous sections have used a fixed confidence threshold of
0.9 for GPHAT. In this section, we are using the demonstra-
tion data generated by a learned agent and show the impact
of this parameter. The learned agent has been doing rein-
forcement learning for a while and its episode duration is
12.4 seconds with a standard deviation of 3.6s.

Generally speaking, higher threshold of confidence could
guarantee the cautiousness of taking a suggested action,
while a lower one could bring more randomness. What
should be noticed is that this kind of randomness is not uni-
form — in the Keepaway domain, randomness results in ex-

81

Demonstration Single DT Double DTs GPHAT
Jumpstart Depth Accuracy Jumpstart Depth Accuracy Jumpstart Clusters Accuracy

Complex Strategy +1.76 7 67.21% +2.26 6 84.36% +3.37 3 80.16%
Simple Response +2.23 4 87.52% +2.53 4 90.61% +3.42 2 83.21%

Novice +1.13 5 86.24% +1.44 5 92.86% +3.49 2 84.37%
Learned Agent +3.18 4 88.67% +3.26 4 91.22% +4.55 2 86.12%

Table 1: The table shows overall comparisons among different methods upon different demonstration data. For double DTs,
depth and accuracy are averaged over the two trees. For Gaussian processes, the confidence threshold is 0.9.

0 2 4 6 8 10 12 14 16 18 20
4

6

8

10

12

14

16

Training Time (simulated hours)

Ep
is

od
e

D
ur

at
io

n
(s

ec
on

ds
)

GP threshold = 0.9
GP threshold = 0.8
GP threshold = 0.7
No prior

Figure 6: This figure shows the performance of same GP
model with different threshold settings. Here, we show
not only the start performance, but also the long-term per-
formance. Episode duration is averaged over 10 trials.
The demonstration data set contains consecutive state-action
pairs of 20 episodes, with an average Episode duration of
12.4 seconds and a standard deviation of 3.56s.

ecuting the pass action more often, often resulting in worse
performance than holding the ball (see Figure 6 and Table 2).
But if the threshold is set too high (e.g., 0.99), the player will
hardly pass the ball, which will prevent itself from reinforce-
ment learning. In order to guarantee the effectiveness of this
GP method, we need an appropriate confidence threshold.
To achieve this, we could select from different thresholds
according to the jumpstart performance and this parameter
tuning could be realized by agent itself, trying different val-
ues.

As shown above, the confidence threshold of GPHAT re-
mains a crucial and sensitive parameter. In this Keepaway
domain, we found 0.9 to be a decent value. But it would
unnecessarily be the same in other domains. The accuracy
of GPHAT in Table 1 is directly affected by the confidence
threshold.

Table 1 summarizes the results of the different learning
methods when using four different demonstration sets. We
can conclude that our novel method of using two decision
trees, one for each pass action, is better than using a single
decision tree. Furthermore, GPHAT outperforms decision
trees, even though the classification accuracy may be lower.

Method Jumpstart

No Prior N/A
GP thershold = 0.9 +4.55
GP thershold = 0.8 +1.04
GP thershold = 0.7 -1.46

Table 2: This table shows the jumpstart of GPHAT with dif-
ferent confidence threshold.

Since double decision trees are trained to distinguish data
with same action label from others (like holding the ball),
while with GPHAT we only focus on the distribution of ac-
tive action (passing the ball) without considering other type
of data, the difference upon redundant and passive action
(holding the ball) could affect the accuracy of these classi-
fiers. So the accuracy would not necessary be a direct feature
of the performance.

Conclusion and Future Work

This paper has introduced and evaluated GPHAT. Results
suggest that GPHAT can successfully transfer data from one
agent to another more effectively than the existing HAT
method.

Because GPHAT can result in significant jumpstarts and
improvement in total reward, this method could be particu-
larly useful in domains that RL is slow to learn in.

We have also shown that integrating Gaussian process
could provide a more robust learning performance despite
the limited quality of demonstration, which means there are
still some improvements brought by GPHAT even if the
demonstration is poor.

Future work will consider how to set the confidence
threshold, how to incorporate this confidence factor into ac-
tion selection, and whether the confidence factor could be
used to target where additional human demonstrations are
needed. We are also interested using GPHAT to learn from
multiple agents — we expect that the confidence of a clas-
sifier will be useful when the target agent is deciding which
source agent to follow. We have also shown how, in the
Keepaway domain, the actions executed are unbalanced and
have unequal importance. To potentially make transfer more
efficient, the demonstration data could be modified to focus
on the most important data by eliminating redundant data.
Future work will also aim to discover adaptive methods that
could take advantage of judging the significance of demon-
stration data, further improving learning performance.

82

References

Albus, J. 1981. Brains, behavior. & Robotics. Peterboro,
NH: Byte Books 1.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and autonomous systems 57(5):469–483.
Celeux, G., and Govaert, G. 1992. A classification em algo-
rithm for clustering and two stochastic versions. Computa-
tional statistics & Data analysis 14(3):315–332.
Noda, I.; Matsubara, H.; Hiraki, K.; and Frank, I. 1998.
Soccer server: A tool for research on multiagent systems.
Applied Artificial Intelligence 12(2-3):233–250.
Quinlan, R. 1993. C4.5: Programs for Machine Learning.
San Mateo, CA: Morgan Kaufmann Publishers.
Rummery, G. A., and Niranjan, M. 1994. On-line q-learning
using connectionist systems.
Singh, S. P., and Sutton, R. S. 1996. Reinforcement learn-
ing with replacing eligibility traces. Machine learning 22(1-
3):123–158.
Stone, P.; Kuhlmann, G.; Taylor, M. E.; and Liu, Y. 2006a.
Keepaway Soccer: From Machine Learning Testbed to
Benchmark. In Noda, I.; Jacoff, A.; Bredenfeld, A.; and
Takahashi, Y., eds., RoboCup-2005: Robot Soccer World
Cup IX, volume 4020. Berlin: Springer-Verlag. 93–105.
28% acceptance rate at RoboCup-2005.
Stone, P.; Kuhlmann, G.; Taylor, M. E.; and Liu, Y. 2006b.
Keepaway soccer: From machine learning testbed to bench-
mark. In RoboCup 2005: Robot Soccer World Cup IX.
Springer. 93–105.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction, volume 1. MIT press Cambridge.
Taylor, M. E., and Stone, P. 2007. Cross-domain transfer for
reinforcement learning. In Proceedings of the 24th interna-
tional conference on Machine learning, 879–886. ACM.
Taylor, M. E., and Stone, P. 2009. Transfer Learning for
Reinforcement Learning Domains: A Survey. Journal of
Machine Learning Research 10(1):1633–1685.
Taylor, M. E.; Suay, H. B.; and Chernova, S. 2011. Inte-
grating reinforcement learning with human demonstrations
of varying ability. In Proceedings of the International Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS). 22% acceptance rate.
Witten, I. H., and Frank, E. 2005. Data Mining: Practical
Machine Learning Tools and Techniques. San Francisco:
Morgan Kaufmann, 2nd edition.

83

