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Abstract

Several ongoing research projects in Human autonomous car
interactions are addressing the problem of safe co-existence
for human and robot drivers on road. Automation in cars can
vary across a continuum of levels at which it can replace man-
ual tasks. Social relationships like anthropomorphic behavior
of owners towards their cars is also expected to vary accord-
ing to this spectrum of autonomous decision making capac-
ity. Some researchers have proposed a joint cognitive model
of a human-car collaboration that can make the best of the re-
spective strengths of humans and machines. For a successful
collaboration, it is important that the members of this human-
car team develop, maintain and update each others behavioral
models. We consider mutual trust as an integral part of these
models. In this paper, we present a review of the quantita-
tive models of trust in automation. We found that only a few
models of humans’ trust on automation exist in literature that
account for the dynamic nature of trust and may be lever-
aged in human car interaction. However, these models do not
support mutual trust. Our review suggests that there is signif-
icant scope for future research in the domain of mutual trust
modeling for human car interaction, especially, when consid-
ered over the lifetime of the vehicle. Hardware and computa-
tional framework (for sensing, data aggregation, processing
and modeling) must be developed to support these adaptive
models over the operational phase of autonomous vehicles. In
order to further research in mutual human - automation trust,
we propose a framework for integrating Mutual Trust compu-
tation into standard Human - Robot Interaction research plat-
forms. This framework includes User trust and Agent trust,
the two fundamental components of Mutual trust. It allows
us to harness multi-modal sensor data from the car as well as
from the user’s wearable or handheld device. The proposed
framework provides access to prior trust aggregate and other
cars’ experience data from the Cloud and to feature primitives
like gaze, facial expression, etc. from a standard low-cost Hu-
man - Robot Interaction platform.

Introduction

Interaction design for safe human - autonomous vehicle co-
existence on road must address several scenarios of interac-
tions which include:

1. Semi-autonomous car learning driver intention, which we
call in-car interaction.
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2. Drivers on semi-autonomous cars (assuming most of the
modern cars have alerting capabilities like lane departure,
automatic cruise control, etc.) reading the intent of sur-
rounding autonomous cars, an out-of-car interaction.

3. Semi-autonomous car - autonomous car interaction, an-
other out-of-car interaction.

4. Autonomous car reading other car drivers intent.

5. In semi-autonomous cars, which flip between full auton-
omy and manual, drivers should also understand car intent
for safety reasons.

6. Neighboring autonomous vehicles transmitting its con-
text information, like pedestrian obstacle, to another au-
tonomous vehicle.

7. The last but not the least is the two-way interaction be-
tween manual and autonomous vehicle.

Automation in car can vary across a continuum of levels
at which it can fully or partially replace manual tasks
in driving. These tasks include steering control, adaptive
cruise control and collision management. Parashuraman et
al. represented these interactions on a 10-point scale and
applied to automation at each stage of human information
processing, viz., acquisition, analysis, decision and action
(Parasuraman, Sheridan, and Wickens 2000). At the highest
level of this scale, a machine has the absolute capability of
decision-making and does not solicit human support. At the
5th point on this scale, the machine provides a suggestion
and executes it only if the human approves. This model of
the levels of automation does not accommodate switching
roles of analysis and decision making between human and
the Artificial Intelligence (AI) agent as autonomous car.

Some authors, on the other hand, proposed a joint cogni-
tive model for control sharing between autonomous vehicles
and its users. They identified the domains of collaboration
that can leverage the known abilities of machines and
humans (Miller and Ju 2015). For example, human abilities
include reading intent of other road users through eye
contact (say), resolving ambiguous situations, resolving
novel situations, making ethical decisions, whereas the ma-
chine abilities are maintaining vigilance, reacting quickly
to known situations, sensing in poor visibility or through
soft obstacles, controlling the vehicle at limits of traction,
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all aspect sensing and situational awareness. Machines
can be designed to pull a wide array of information about
a given situation, beyond the limits of experience of a
single human, to react quickly to known situations and to
be awake/vigilant (most times). A collaboration model that
makes the best of the abilities of the team members allows
each member to intervene in suitable contexts. For example,
a human driver may intervene when he/ she sees a certain
kind of terrain because the cars cruise control has failed
to meet his expectation once before on a similar terrain.
Likewise, a car based on contexts and situational parameters
like timeliness of reaction, can decide whether to involve
human driver in a decision making.

The paradigm of a collaborative system of human and
car naturally brings us to the necessity of maintaining a
mutual model of car and human, as pointed out by some
prior researchers (Parasuraman, Sheridan, and Wickens
2000),(Sheridan 1997), (Argall and Murphey 2014), (Miller
and Ju 2015). While each individual in this collaboration
has the power to intervene in certain situations, the goal of a
successful collaboration would be to minimize intervention
through development of trust. We, therefore, consider trust
as an integral part of mutual behavioral models. In this
paper we present a review of the existing models of trust
in human automation interaction and discuss the relevance
of these models in the context of human autonomous
vehicle interaction. Most of these models account for the
evolving dynamics of human trust. However, these models
do not support mutual trust where a machine also maintains
its model of trust in its human partner. Moreover, these
models are not online yet. We conclude that there is a need
for a robust computational framework including sensing,
data storage and processing that can support the adaptive
models of mutual trust over the operational phase of the
autonomous vehicle.

In the following sections we address the concept of mu-
tual trust in team work, and how it can be applied to im-
prove human car collaboration over time. We review exist-
ing quantitative models of trust in human automation do-
main and attempt to establish the importance of developing
hardware and computational framework that support moni-
toring and evolution of user - car mutual trust over time.

Team models of human - automation
Modeling in human car interaction, like in semi-
autonomous vehicles, have largely been one-directional,
like modeling of drivers intent. A team in Berkeley was
able to predict human intent of lane changing with 92 %
accuracy based on driving simulation studies with real
humans (Rutkin 2015). Within the framework of another
project, called Brain4Cars (Jain 2015 2015), Jain et al.
applied Deep Learning on several sensors to infer drivers
intent of changing lane and making turns. The goal of the
work was to anticipate driver maneuvers in a timely manner
for an alerting system. Using videos of the driver inside
the car and the road in front, the vehicles dynamics, global
position coordinates (GPS), and street maps from a diverse

data set with 1180 miles of natural freeway and city driving,
the authors showed that their Autoregressive Input-Output
HMM model could anticipate maneuvers 3.5 seconds
before they occur with over 80 % F1-score in real-time. The
authors in a more recent study have used Recurrent Neural
Network based sensor fusion for predicting driver maneuver
(Jain et al. 2015). This architecture combines sensor -
fusion with short term future prediction and achieved a
precision of 90 % and a recall of 84 %. In a tangential
study, Kim textitet al. used sensor and human-annotated
data from 15 drivers, including vehicle motion, traffic states,
physiological responses and driver motion to estimate
when to interrupt drivers with new information with 94 %
accuracy (Kim, Chun, and Dey 2015).

Nikolaidis et al. developed a set of generic human type
models in the context of larger multi-human and robot team
collaboration (Nikolaidis et al. 2015). Based on watching
human teams execute a given task, user data was clustered
and human type was modeled in terms of individual reward
functions learned using inverse reinforcement learning. This
is an online learning approach where the initial parameters
are uncertain and can be improved through interaction.

As indicated earlier in this section, most of the mod-
eling work in human automation interaction has focused
on the driver. Success of human teamwork, however, de-
pends on mutual modeling, a reciprocal ability to estab-
lish mental model of the other. Mutual modeling refers to
models like What does he know about what I know? Trust
also falls within the same domain of social behavior. It em-
bodies predictability of the other persons performance in a
certain situation and associated belief. While such a pro-
cess is innate for humans, machines like cars or any AI
agent must learn this model. One of the first works that
included a comprehensive discussion on mutual modeling
in the context of robotics, explored mutual modeling from
three academic disciplines, viz., Developmental Psychol-
ogy, Psycholinguistics and Collaborative Learning and of-
fered relevant sets of experiments and modeling paradigms
for robotics (Lemaignan and Dillenbourg 2015). In the next
subsection we present some of the existing models of trust
in human-automation interaction. We find that, while these
models allow for short term trust dynamics, they do not con-
sider the domain of mutual trust.

Trust Models

Trust is considered to be of paramount importance in so-
cial acceptability of autonomous vehicles. However, very
few experiments in human autonomous vehicles interac-
tion research have been designed to accommodate and infer
trust over an extended period of time. Johns et al. developed
an interface for transfer of control between car and human
for steering control and speed control, in which they sim-
ulated several modes of danger that would require manual
take over and human awareness (Johns, Sibi, and Ju 2014).
The allowed transition time for control shift was 7 seconds.
The authors did not find significant difference in the driver
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awareness between different modes of control. It may be dif-
ficult in a short term test to see this difference because as
manual drivers it is natural to be aware all the time until hu-
mans can develop full trust in the automation over time. For
technical as well as anthropomorphic reasons, trust is a dy-
namic process.

Researchers found that anthropomorphic reactions of
humans to robots evolve over three phases, Initialization,
familiarization and stabilization (Lemaignan, Fink, and
Dillenbourg 2014). In the pre-interaction phase, humans
build an initial capital of anthropomorphism. During inter-
action, the level of anthropomorphism increased due to
novelty effects and then drops to a stable. While the authors
have not mentioned about the exact time scale of this inter-
action, experimental details suggest at least a few days.
The length of the time period over which trust changes
will depend on the exact robotic task or a complex set of
tasks and the potential of encountering novel situations in
the interaction phase. Therefore, we need hardware and
computational systems that support large scale experiments
on evolving trust over time, particularly as first drivers of
autonomous vehicles would have just transitioned from
manual or semi-autonomous driving.

Very few models of any trust in human autonomous vehi-
cle context exist, let alone complete models of mutual trust.
We found three quantitative models of humans trust in au-
tomation, most of which corroborated that trust is a dynamic
process, even on a short time scale of interaction.

Lee and Moray developed a dynamic model of human
trust in automation based on Auto-regressive Moving Av-
erage (Lee and Moray 1992). For 3 days 2 hours per day
sessions of running an orange pasteurizer automated plant,
the authors recorded the trust dynamics of several operators.
Trust was tested by inducing faults in the plant operations.
Trust was measured using Muirs 10-point scale reporting
(Muir 1987). The authors found that success of collabora-
tion (measured as efficiency) improved constantly as the op-
erators became familiar with the plant operation and loss of
trust in case of transient faults were proportional to the mag-
nitude of the faults, but trust recovery was less affected by
this magnitude except in case of severe faults.

Some researchers attempted to understand the impact
of timing of reliability drop on real-time human trust in
machine when human was the sole machine operator. They
also tested how disclosing the confidence of the robot of its
own sensors affected the dynamics of trust and whether the
type of feed- back on this confidence value mattered to the
human (Desai et al. 2013). The study found that real-time
trust cannot be reflected by traditional trust questionnaires
such as Muir questionnaire. Furthermore, trust is affected
more by early on robot failure than by later losses of
reliability. They developed a trust curve over time that
fluctuated based on the performance of the robot and trust
was measured as Area Under Trust Curve.

Xu et al. modeled human trust in automation as a
continuous interval representation from complete distrust
to absolute trust (Xu and Dudek 2015). The goal was

to develop adaptive trust seeking robots that can predict
human trust at a given situation and adapt its actions and
social behavior to improve the trust. Using results of simu-
lation study with humans flying aerial vehicles, the authors
developed OPTIMo, a dynamic Bayesian model of trust as
a function of vehicles performance, frequency of human
interventions, previous state of trust and self-reported
trust states as trust gained, trust lost or trust unchanged.
Their experimental findings suggested that trust varied
over time through more interactions and trust was more
user-dependent than dependent on actual robot failure. This
means, that it is important to develop a personalized model
of human - robot trust that can accommodate the temporal
dynamics of this social relationship. A reverse model of
trust was proposed by (Argall and Murphey 2014), where
the automation infers its own degree of trust in human in-
structions in the context of mutually controlled automation
systems. The goal here was to be able to cede appropriate
amount of control to a human instructor based on inferred
trust level. In this approach the authors first simulated the
initial control behavior via optimal control of a physical
AI agent. Human instruction is used in the next step to
obtain physical guidance for corrective demonstrations.
The resultant stability state of the system following human
corrective instructions is then verified. This verification
serves as an estimate of trust in the teacher’s instructions.

Trust in most of these studies have been measured through
human interventions or real-time interruptions as feedback
request. Such methods of trust data acquisition may not be
sustainable. In order to facilitate modeling and monitoring
of mutual trust over the operational phase of the autonomous
vehicle new sensing and computational infrastructure must
be developed. Several in car sensing is being proposed by
researchers for identifying the state of the driver. These sen-
sors can also be leveraged in inferring trust. In the following
subsection, we talk about some of the potential sensing sys-
tems.

Sensing for trust modeling
Trust has been measured based on self-reporting during or
after humanrobot interaction or passively from interactions,
say, using frequency of interventions. All of the above ap-
proaches to trust inference are reactive, in that trust is mea-
sured in response to the result of an action or an event, as
can be seen in the works of Xu et al. and Argall and Mur-
phy. However, a human or a vehicle user may not necessarily
have to take any action to modify the state of the autonomous
system, in order to infer trust.

Instead of computing trust reactive models from user
feedback or user intervention, non-verbal cues can be used
for predictive modeling of trust. In (Lee et al. 2013), the
authors used non-verbal social cues like gestures to com-
pute trust between human and an AI agent. The authors con-
ducted a set of game based experiments using Give-Some
Game, first between two human partners and then between
a human and an AI partner. Give-Some Game is like Pris-
oner’s Dilemma where the players exchange money or to-
kens. In this work, the number of tokens given by a person
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to his or her partner was used as a ground truth trust data.
Initially videos were manually coded for several non-verbal
cues like leaning forward or backward, touching different
parts of body, head and face, head signals like shaking, nod-
ding, smile signals, eye contact and arm signals. Using a
Support Vector Machine (SVM) model the researchers con-
cluded that joint cues like face touching, arms crossed, lean-
ing backwards and hand touching were most informative of
the distrust state (or negative trust) of the human in the AI
agent or other human partner. The duration of occurrences
of these joint signals as well as the temporal relationship be-
tween non-verbal cues, (for example, smiling → face touch-
ing → hand touching ...) were found to be strongly corre-
lated with trust. The researchers captured temporal relation-
ships with two different Hidden Markov Models, one for low
trust and the second Hidden Markov Model for high trust.
They compared the performance of this trust model with fea-
tures engineered from domain knowledge against that with
features learnt from variable ranking. The algorithm using
domain knowledge outperformed human prediction as well
as that using learnt feature. Later on, Lee et al. proposed
a software framework to replace manual video coding with
automatic detection of gesture primitives like eye gaze, arms
position and so on using 3D motion capture(Lee, Knox, and
Breazeal 2013). Autonomous vehicles will have a host of
sensors that can be leveraged to record such non-verbal cues
of human trust as the above study. However, the most infor-
mative non-verbal cues of trust in the context of autonomous
vehicles may be different from those in the closed lab en-
vironment, where the interaction is between two players of
economic games. It should also be possible to interpret hu-
man trust in an autonomous vehicle agent from the emo-
tional state of the human.

The same built-in sensor suite in the car may be deployed
to infer emotional state of the user. Jain et al. could pre-
dict driver intent 3.5 seconds before maneuvers using in car
video camera. It may also be relevant to infer a driver or a
user’s state of trust using physiological sensors. For exam-
ple, on seeing a novel kind of obstacle or when a car’s behav-
ior does not match the users mental model of car’s perfor-
mance, an alert driver may show physiological signs of dis-
trust in the form of stress. In order to estimate drivers emo-
tional states, researchers are exploring several sensing op-
tions (Kim, Chun, and Dey 2015), (Ji, Zhu, and Lan 2004),
which include head and gaze tracking for attention (Smith,
Shah, and da Vitoria Lobo 2003), pupillometry for arousal
(Palinko et al. 2010), variations in heart rate (Healey and Pi-
card 2000), stress measurement (Healey and Picard 2005),
force sensors built into the seats for postures and visual
sensing. As mentioned earlier in this paper, besides infer-
ring how much trust a user has in his autonomous vehicle
partner, it is also important for the vehicle to understand
how much it can trust the instructions of its human partner.
Trust, thus defined on a sliding scale can be the deciding
factor for ceding control to a human operator or even asking
for help from the user in unknown circumstances. This trust
will be a function of the level of alertness and physiological
states of the user and the mechanical stress in the car result-
ing from human intervention. Of these, the former that can

again be computed from the same set of physiological and
camera sensors. These sensors, however, need not be built
into the car. The users mobile phone or fitness sensors, for
example, can share the raw data and/ or the inference with
the car if needed. With some initial days of training with
self-reported trust, the above sensing and inference mecha-
nisms can provide longer term trust monitoring without in-
terruptions. Additional sensors will be required to monitor
the state of the car like mechanical stress or wear and tear
as a result of human action or intervention. To allow further
research in mutual human-autonomous vehicle trust and to
validate existing trust models, a framework that integrates
multi-modal sensing, data aggregation and interface design
is of utmost importance. In the following section, we pro-
pose such a framework.

Framework for Trust Modeling
We propose a potential framework for mutual trust that can
enable further research on trust between a human and his/her
autonomous vehicle partner and integration of a trust mod-
ule in human - car interaction experiments. The framework
should be flexible enough to accommodate diverse sensing
modalities and active, passive, reactive or predictive infer-
ence of trust between a human and autonomous vehicle. Fur-
thermore it should provide adequate storage to maintain and
update personalized model of dynamics of trust over the life
time of the vehicle. This framework encompasses two differ-
ent trust modules, for user’s trust and vehicle’s trust (which
we call agent trust henceforth) respectively.

User Trust - The Autonomous vehicle deploys this soft-
ware module to infer how much trust the user has in the ve-
hicle performance, at real time, and aggregated over a time
frame using frequency of interventions, non-verbal cues like
gesture primitives and physiological primitives, which are
learnt in turn from in-car and user-mounted sensor data.
Trust can be computed on a sliding scale as proposed by
(Desai et al. 2013).

Agent Trust - The Autonomous vehicle deploys this
software module to infer how much it can trust the user in
help solicitation under known or unknown circumstances
or cede control to the user. This trust is also computed
real time and aggregated over a time window. Trust can be
computed based on mechanical stress and stability state
of the vehicle in response to following a human decision
or predicted based on user’s physiological primitives. A
Cloud connected vehicle may also be able to compare
the instructions or judgement of the user against that of a
larger population of other cloud connected agents in similar
contexts.

A schematic of the potential components of the Mutual
Trust framework in Figure 1. We assume that the sensor
suite, the gestural primitives and the physiological primi-
tives can be accessed from a standard Human - Robot Inter-
action (HRI) platform. The arrows represent data and infor-
mation flow between the cloud, the HRI platform, car server
and Mutual Trust module. Besides real time and aggregated
trust, the two other necessary components of the system are
interface to access results of the mutual trust models and
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Figure 1: Trust Modeling Framework showing components
and information flow

interface to enable human inputs as ground truth in trust
research. The results of the mutual trust models can be re-
quested by a control distribution module which decides the
flow of control between human and autonomous agent or by
a personalized to optimal control switch. The latter is a pro-
posed module that alters the car control parameters between
user preferred and optimal settings. For example, as a user
gains trust in an autonomous car, the car may slowly shift
from user preferred braking distance to optimal braking dis-
tance. The results of the trust model may also be utilized
by human - robot interaction interface to generate appropri-
ate communication between the partners during research or
operational phase of the car. For example, the human help
seeking module of the vehicle may actively request trust re-
sults of the agent in the user. Likewise, an input interface
to record ground truth human trust can be designed to sup-
port one or more input types like button press, gesture, facial
expressions previously agreed upon and voice feedback.

Discussion

Several researchers in human-automation interaction have
agreed upon the importance of mutual modeling for success
of interaction. Trust is an indispensable part of this model.
In natural human-human interaction a human automatically
mentalizes how much trust another team member has in him.
For AI agents like autonomous car, reciprocal model is not
natural. The AI agent must be designed to develop, main-
tain and update this model through the course of interac-
tion with humans. Most of the trust models in the literature
have focused on the dynamics of a humans trust on automa-
tion. These approaches, however, do not allow online mod-
eling as yet. Most of these models are set in an asymmetric
control setting, where the human operator still has absolute

capability to intervene in the operation of the automation
at will. One of the major shortcomings of these models is
that, they are not mutual, in that, a machine does not have a
model of human. In other words, the AI agent does not know
whether it can trust the human partner under certain situa-
tions. In a truly collaborative setting of human car driving,
where the decision making shifts between the human and the
agent based on individual strengths, a mutual model of trust
is indispensable. It would therefore be necessary to further
develop sensing hardware and a computational framework
that can not only acquire information to infer human trust in
the car, but is also necessary to model the cars trust in the
user or the driver. Furthermore, this computational frame-
work should accommodate the evolution of trust between
human and their car over time.

Therefore, we proposed a framework for potentially inte-
grating Mutual Trust computation into a standard Human -
Robot Interaction platform. This framework includes User
trust and Agent trust, the two basic components of Mutual
trust, that can harness multi-modal sensor data from the car,
user’s wearables or handheld device, prior trust aggregate
and other car experience data from the Cloud and feature
primitives like gaze, facial expression etc. from a standard
low-cost HRI platform. Real time trust results may be stored
in in-car database servers. Aggregated trust over a window
must be accessed by the car server for allocating control and
decision making between the user and the AI agent, for so-
liciting help under unknown situations and for selecting the
degree of personalization to user preferences.

The Mutual Trust Module may be integrated into au-
tonomous vehicle research, experiments and operations in
several ways. Some HRI researchers have integrated their
HRI software into Robot Operating Systems (ROS) library
as ROS nodes. Android phones and iPads have been success-
fully used by researchers as user input device, robot face
and data visualization platforms. Most of the smartphones
phones have a multitude to sensors that can enable data ac-
quisition for computation of gesture primitives as well as
some physiological primitives like heart rate. In its most ba-
sic implementation, therefore, mutual trust module could be
a multi-platform app that can be installed on a car server or
a smartphone that users or researchers could plug into the
vehicle dashboard.

Lastly, trust is a sensitive topic that can affect minor user
comfort in the autonomous vehicle to more safety critical
decisions. User discomfort may be incurred, for example,
in situations where the agent may not be maintaining the
user perceived safe distance to braking. More safety critical
decisions must be taken when an autonomous vehicle faces
an unknown obstacle. Under such circumstances a corrupt
trust model prevents transfer of control to the user. However,
in Mutual Trust model the control transfer depends on both
agent trust and user trust and hence may be more robust,
particularly when the car has access to data from other cars’
experiences.

Conclusion
In this paper we made an attempt to establish a case for mu-
tual modeling of trust in human autonomous vehicle inter-
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action for a successful driving experience and presented a
review of quantitative models of human trust in automation
from literature. Assuming autonomous vehicle driving will
be a true teamwork that will leverage respective strengths
of the human and machine partners, we conclude that cur-
rent experimental research in human car interaction must
be improved to accommodate the dynamic nature mutual
trust between a car owner and his car. We also found that
there is significant scope for future research in the domain
of mutual modeling for human car interaction and hardware
and computational frameworks (for sensing, data aggrega-
tion, processing and modeling) that can support the same
over time. We proposed a framework for integrating Mutual
Trust computation with a standard Human - Robot Interac-
tion modeling and research platform. This framework allows
to model user trust in car and car’s trust in user separately
using multi-modal sensor data from the car, user’s wearable
or handheld device, prior trust aggregate, other cars’ experi-
ence data from the Cloud and feature primitives like gaze, fa-
cial expression etc. from a standard low-cost Human - Robot
Interaction platform.
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