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Abstract

Applications of robotic and wearable sensors based systems
for human assistance or health monitoring have been gain-
ing popularity in recent years. Among its diverse applica-
tions, therapeutic robotic systems have been utilized in the
muscular physiotherapies for movement training, wrist and
arm treatment for injuries and overexertions, and other thera-
pies. Applications of wearable sensors for human assistance
or health monitoring have been also gaining popularity in re-
cent years. Wireless wearable sensor systems enable proac-
tive personal health management and the ubiquitous monitor-
ing of vital signs to keep an active watch on immediate health
conditions.

In this paper, we develop a system that consists of multiple
wearable sensors, software agents and robots, where a robot
has the intelligence to process its own observed data, the col-
lected wearable sensor data, and to aggregate the information
into a single compiled report. Our system is also able to de-
tect severe abnormalities with the well-being of the monitored
individual as detected by the sensors and to create immedi-
ate alerts. Our preliminary experimental results show that our
system is accurate in detecting and monitoring basic human
conditions. We posit that the approach of non-invasive mon-
itoring, when combined with an alert system, will make this
a desirable personalized well-being monitoring system in fu-
ture health care.

Introduction

With the growing special-needs and aging (baby boomer)
populations there is an increasing need for the personal-
ized care to allow people with physical limitations or dis-
abilities to continue living independently. Socially assis-
tive robotics technology for the members of special-needs
populations has been outlined as one of the key areas in
robotics that can be instrumental in facilitating indepen-
dence and mobility associated with those who suffer from
disability and aging-related disorders (Christensen et al.
2013). Robotic systems have been used for various ther-
apies such as movement training, wrist and arm rehabil-
itation, and others (Krebs et al. 2007; Lum et al. 2002;
Nef and Riener 2005). In (Fasola and Matari¢ 2012), for in-
stance, socially assistive robotic systems were designed to
engage elderly people in physical exercise.
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Recently, wearable sensors, have been used to assist hu-
mans to monitor health conditions (Pantelopoulos and Bour-
bakis 2010) and to enable proactive and ubiquitous personal
health management. Additionally, wireless sensor networks
have the potential to greatly improve the study of diseases
that affect motor abilities. Small, wearable sensors that mea-
sure hand or foot movements, posture, and physiological
conditions can provide quantitative data for the better un-
derstanding of disease to develop more effective therapies.
Wearable sensor platforms have already been developed in
motion analysis for the treatment of neuro-motor disorders,
(i.e., Parkinson’s Disease, epilepsy, and stroke (Lorincz et
al. 2009). Wearable sensors are also able to take vital mea-
surements (i.e., temperature, blood pressure and etc.), which
could be used to monitor health and the person’s general
well-being (Pantelopoulos and Bourbakis 2010). However,
wireless sensor networks have limited capabilities in terms
of their computation, storage, and the ability to send infor-
mation. Additionally, each sensor generally monitors its lo-
cal environmental conditions from a two-dimensional set-
ting. Able to perform high computational tasks, robotic sys-
tems allow us to overcome these challenges when they are
fitted to work in tandem with wireless sensors.

In this paper, we present an overview of a system, com-
posed from multiple robots, wearable sensors, and software
agents, to provide uninterrupted, unintrusive and person-
alized monitoring of a user’s current health in his or her
own environment. Our system contains autonomous mobile
robots and wearable sensors (WSs), in which each sensor
is equipped to collect the necessary data to monitor a per-
son’s health conditions. In our system, robots share tasks of
monitoring user’s movements and they are able to communi-
cate with each other to make changes to their tasks if neces-
sary during the monitoring. Since suffering a fall or a stoke
will accompany strict changes in behavior, working collec-
tively as a unit to process the user’s behavioral and health
information, the robots are able to more aptly determine any
abnormal trends to signal the warnings of potentially life-
threatening conditions. At regular intervals, the multi-robot
system prepares a compiled report of all the processed in-
formation to keep a person’s caretaker (i.e., doctors, family,
etc.) informed of any changes in health status. If the system
determines that there is a threat (i.e., a developing illness or
other abnormality), then the system is equipped to immedi-



ately warn the caretaker.

Related Work

Over the last two decades wireless sensor networks have
been popular in applications for environmental monitoring
tasks. Sensor networks have been used to monitor habi-
tats (Mainwaring et al. 2002), the moisture level of the soil
(Cardell-Oliver et al. 2004), conditions in and around build-
ing (Jang, Healy, and Skibniewski 2008). Unlike regular
wireless sensors, wearable sensor systems, comprising of
various types of small sensors that can be warn on the per-
son, allow for mobility. Wearable sensor systems have been
identified as a potential low-cost solution for continuous,
ubiquitous, all-day and omnipotent health, mental and activ-
ity status monitoring (Pantelopoulos and Bourbakis 2010).
Many of the current wearable systems are able to provide re-
liable vital signs measurements that can be used to monitor
a person’s well-being (Pantelopoulos and Bourbakis 2010).
Wearable sensor systems have also been developed in mo-
tion analysis research for the treatment of neuro-motor dis-
orders, such as Parkinson’s Disease, epilepsy, and stroke. In
(Lorincz et al. 2009), a wearable sensor network platform,
called Mercury, is discussed that is able to monitor patients
with Parkinson’s disease and detect epileptic seizures during
long-term studies. Individual sensors in Mercury compute
high-level features from the raw data, while a base station
performs data collection and adjusts sensor node parameters
based on energy availability, radio link quality, and applica-
tion specific policies. Accidental falls is a serious problem in
the aging population and for people suffering from seizures,
thus the early detection of fall is very important to rescue
the subjects and avoid the incorrect prognosis. Zhang et al.
(Zhang et al. 2006) propose a fall detection technique based
on the support vector machine algorithm.

Robots have been used for health related problems, such
as therapies involving movement training, wrist and arm re-
habilitation, and others. For example, in (Nef and Riener
2005) a new robot, ARMin, for arm therapy is presented,
which can be used in patients’ daily activities in clinics.
ARMin has a semi-exoskeleton structure with six degrees
of freedom, and is equipped with position and force sen-
sors. Krebs er al. (Krebs et al. 2007) developed a robot
for wrist rehabilitation, providing three rotational degrees-
of-freedom. Their experimental results with 200 stroke sur-
vivors showed a reduction of impairment in movements con-
fined to the exercised joints. Researchers (Lum et al. 2002)
have also compared the effects of robot-assisted movement
training with conventional techniques for the rehabilitation
of upper-limb motor function after stroke. Their experiments
conducted in the Department of Veterans Affairs rehabil-
itation research and development center with 27 partici-
pants with chronic hemiparesis, show that the robot-assisted
movements had advantages in terms of clinical and biome-
chanical measures. In (Fasola and Matari¢ 2012), a socially
assistive robot (SAR) system was designed to engage elderly
users in physical exercise. The results of SAR validate the
system approach and effectiveness at motivating physical
exercise in older adults according to a variety of user per-
formance and outcomes measures. The results also show a
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clear preference by older adults for the physically embodied
robot coach over the virtual coach in terms of enjoyableness,
helpfulness, and social attraction, among other factors.

Robotic systems can also be used in applications where
mobility is important and thus the usage of the station-
ary wireless sensors would not be possible. In (Dhariwal,
Sukhatme, and Requicha 2004) a simple, yet novel, ap-
proach based on a biased random walk is proposed to locate
and track gradient sources such as temperature, light, PH and
salinity. The proposed approach is validated through experi-
ments involving one robot in a phototaxis experiment. Jadal-
iha and Choi (Jadaliha and Choi 2013) develop a scheme
for the problem of monitoring an environmental process in a
large region by a small number of robotic sensors. They test
their approach by monitoring the temperature of an outdoor
swimming pool, as sampled by an autonomous aquatic sur-
face robot. Robotic systems can be viewed as mobile wire-
less sensors that can be used in cooperation with the sta-
tionary wireless sensors. Tekdas et al. (Tekdas et al. 2009)
develop a system that integrates mobile robots with wire-
less sensors. The authors utilize autonomous robots as data
mules that visit static sensors within their communication
range, get the data from the sensors, and return to a remote
base station to offload the collected data. One of the benefits
of this approach is that a sensor-based system saves on en-
ergy consumption which prolongs the lifetime of the sensor
network.

In many monitoring applications, robots need to make de-
cisions about how to interpret their sensing, what kinds of
information to communicate to other robots, and how in-
formation obtained from other robots and sensors should be
aggregated. Although, robotic systems have been applied to
environmental monitoring problems, they have been gener-
ally used as data collecting and measuring agents. When ap-
plied to tackle health related problems, only single robotic
systems have been proposed for specific tasks. In this paper,
we develop a multi-robotic solution, which works in collab-
oration with the wearable sensors.By using multiple robots
and multiple sensors, our system produces fault tolerant and
accurate results.

A Cooperative Robotic-Sensor System

Figure 1 shows the interactions between various components
of our system. A person employs multiple WSs to collect
data regarding his or her activity levels or other vital condi-
tions (i.e., temperature, heart rate, altitude, magnitude, an-
gle, etc.). This data is then stored in a database, which con-
tains triggers for emergency situations. For example, if a dra-
matic fall or a dangerous spike in temperature is detected
during the analysis of sensor data, then the database trigger
sends a warning via connected software agents, to remote
systems located at the users home and to systems which
are accessible by relatives and doctors. In addition to the
wearable sensors, mobile robots provide an external view
of the user and his or her environment. To determine the
user’s movements and motions mobile robots utilize a tech-
nique similar to (Machida et al. 2012). The benefit of using



Sensor
& E L]
Sensor =) 4= Sensor Raspberry Pi
measurement (Database)
data
Get sensor Trigger|
Sensor

Robot @ 2=

>

Aggregated
report

Turtlebot 1 Turtlebot 2

Home care

Aggregated|
report

report
Trigger.

[ DOCtors ] [ Relatives
Emergency

Figure 1: The diagram of our system interactions.

multiple robots for monitoring a person’s well-being lies in
their capability to accomplish complex tasks in a coopera-
tive manner. For example, multiple robots are able to share
tasks such as tracking of the person, aggregating information
and compiling the report, or confirming an emergency situa-
tion. In addition, if one robot needs to recharge, it can do so,
without the interruption to the continuous monitoring. Each
mobile robot in our system is intelligent, with a software
agent that participates in a cooperative task sharing and de-
cision making process. At regular intervals, our system pre-
pares a compiled report of all the processed information to
provide a monitored person’s caretaker (i.e., doctors, family,
etc.) information regarding any changes in health status. If
the system determines that there is a threat (i.e., a developing
illness or other abnormality), then the system is equipped to
immediately warn the caretaker, either through the database
triggers or, if that fails, directly through the system.

Figure 2 shows the flow of our developed system. Since
the focus of our paper is to illustrate that integrated multi-
robot and wearable sensor system is possible, accurate and
useful, we utilize existing state-of-the-art techniques for task
allocation and data aggregation, and we omit the details
of those techniques in this paper. The tasks in our system
include following the monitored user and collecting user
movement and motion data, obtaining the sensor data from
the database, aggregating the data and making a decision on
what to include in the final report, or if an emergency alert
should be sent. The tasks have priorities, which may change
during the monitoring task, and the robots are sequentially
assigned the tasks starting with the highest priority task.
We classify the robots in our system as monitoring robots
and decision making(DM) robots. One or more monitoring
robots have to follow the user and monitor its motions and
movements. In the case when the monitoring robot has lost
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track of the user, it creates a new task enabling another robot
to be called for help and then both robots proceed to nav-
igate the environment until one of them reinstates contact
with the user. DM robot can participate in the monitoring
task, but is also responsible for aggregating all of the sensor
data and compiling a report or creating an emergency alert.
Allowing the system to perform all of the computation (ag-
gregation, decision making and taking an action) in a mobile
manner on a robot, allows our system to be easily deployed
to any user’s environment and to adopt to a new environment
if necessary.

In particular, DM robot needs to obtain and aggregate
data from wearable sensors and from the other robots and
then it has to choose the appropriate action (i.e., what to in-
clude in the report or if an emergency alert should be sent).
We note that some of the data is complementary (different
sensor measurements) and some is competitive (same mea-
surements from different sensors). We use the current popu-
lar technique for the competitive data aggregation, known
as Kalman filter, and utilize a very simple decision mak-
ing approach. Once the competitive data is aggregated, the
DM robot analyzes the data by comparing the current ag-
gregated observation data and previous recorded aggregated
data from the database to determine whether the user has
an abnormal condition. The difference between two datasets
can help the system to determine the user’s well-being con-
dition such as the difference between user’s current posi-
tion and previous position, current temperature and previous
temperature, etc. The difference between these two datasets
must stay in the range of some thresholds value. Otherwise,
the system will think the user has an abnormal status and
needs to do create an emergency alert to help user. For ex-
ample, for the temperature change, |Tre — Teur| <= t, DM
agent determines whether the temperature change between
previous observation and current observation is irregular, by
checking if the current temperature, 7., has changed sig-
nificantly from the previous temperature, T},.., where ¢ is
the threshold value for the temperature change. However,
since it is possible that factors like user exercise or hot out-
door temperature could cause his or her body temperature to
rise, our system also checks the complementary sensor data
to prevent accidental emergency report issued by the system.
Finally, the aggregated competitive data and complementary
data is combined into a single report.

Experimental Results

We implemented our system using two Turtlebot II robots
and several WSs using FLORA - wearable electronic plat-
form, including GPS, accelerometer, compass, temperature
sensors, among others. Partial set up of the sensor system is
shown in Figure 3. Flora wearable sensors were sufficient for
our proof-of-method experiments as they provide a diverse
number of sensors that are easy to integrate. The database,
containing the sensor data, is stored on a Raspberry Pi B
computer, which can conveniently fit into a pocket along
with the sensors. At the beginning of the experiment, the
robots are sequentially (robot 1 and 2) assigned the two main
tasks. One robot follows the person and records the person’s
movements (changes in altitude, direction, distance traveled,
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Figure 2: Flowchart showing the systematic methodology of our system

etc.), while the other robot at specified intervals collects
the sensor data from the database and gets the data from
its team-member robot. If a monitoring robot needs help
(confirming an emergency situation or locating the user), it
calls its team member for help. The Turtlebot II robots use
a Kinect sensor to monitor and record the movements of the
person, including the distance that the person travels. The
robots utilize a technique similar to (Machida et al. 2012)
for motion analysis using a 3D Kinect sensor. The robots
and sensors are tasked with monitoring a person’s behavior
over a period of time. This simple experiment allows us to
test our model in a controlled environment.

In order to acquire the sensors data, we used different
hardware components and software packages. For our sys-
tem, we employed the Raspberry Pi ran a Raspbian Linux
OS with a MySQL version 5.5.46 and Python 3.2. To col-
lect the data, we first programmed the FLORA main board,
using Arduino-1.6.4, to return all of the sensor values in 1
second cycles (i.e. 1 second = 1 time step). A Python pro-
gram was then run on the Raspberry Pi to connect it to the
Flora main board to handle the returned sensor values. The
returned values were then stored in a local MySQL database.
Our data collection, performed by a Python program runs
continuously: collecting and storing the sensor data until it
is terminated. A sample collected sensor data is shown in
Table 1. When the database has exhausted the Raspberry Pi
memory, the data (stored in the database) is automatically

432

Figure 3: Wearable sensor system used in our experiments.

sent to the user’s computer, and the Raspberry Pi can then
overwrite the previous sensor values in its local database.

In our experiments, we restricted the possible aggregated
observational values to the set {0, 1,2, 3}, corresponding to
the following actions, {“just send the report for a normal sit-
uation”, “notify the caregiver”, “notify the doctor”, “emer-
gency”}. We ran the experiments for two hours, with data
readings each second, where one of the co-authors wore the

sensor system and imitated various situations, including sit-



Table 1: A sample data produced by the sensors.

ID Date Time Accelerator (x,y,z) | Magnitude (x,y,z) Gyro (x,y,z) Temp
1 15/11/2015 | 20:29:40 | 1.10,-8.53, -4.83 -2.62,-1.69,0.24 2.18,-2.19, -8.35 15.63
100 | 15/11/2015 | 20:30:32 | 1.17, -8.40, -4.80 -2.62,-1.43,0.56 2.67,-2.68, -8.44 19.62
800 | 15/11/2015 | 20:45:17 | 6.58,-11.78, -4.88 0.11, 0.19, -0.01 33.94,22.12,22.98 | 37.87
1200 | 15/11/2015 | 20:48:29 | 5.97,-8.13,-1.40 0.37,0.18,-0.20 | -55.21,5.94,-17.70 | 41.87

Aggregated Observation Value

Time

Figure 4: The aggregated observation value for the snippet
of the experiments corresponding to a three level change in
observation value.

ting, standing, walking, quick fall, slow fall, running (slow
and fast). To vary the temperature, an ice packet and then a
heat wrap was applied to the user to imitate the decrease and
increase in temperature, correspondingly. Figure 4 shows
the results for when the observation value changed from 0
to 2 and then to 3 (i.e. from the normal situation, to a doc-
tor’s notification and then to an emergency notification. This
part of the experiment corresponded to an increased heart
rate followed by a drastic fall in the initial 15 time steps, in-
dicating the need to initially notify the doctor of a fall and
then to contact emergency personnel for the increasing seri-
ousness of the fall. During the next 15 time steps, the heart
rate returns to normal, changing the observation value to 2,
but then the temperature drastically changed, prompting an
emergency notification again.

At each time step, DM robot conducts data processing that
goes through the sensor data in the database and aggregates
it with its own data. The information generated by the robots
concerns a user’s movement/motion data (i.e. the distance,
altitude, magnitude and the acceleration of user movement
in a 3D space). DM robot determines its observational value
based on the aggregated wearable sensor data and the robot
sensor data, and selects an action (what is included in the
report) based on this analysis. The report is then sent re-
motely to three different machines: the user’s own machine,
the doctor’s machine and that of the caregiver (or relatives).
A partial sample report is shown in Table 2.

Threshold parameter for each type of data is an important
parameter for our simple decision making technique. We ran
experiments with various values of the thresholds. For ex-
ample, for the temperature data set, a lower value for the
threshold is not very accurate. This can be seen in Figure 5,
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Figure 5: The threshold value.

where a lower threshold value of 0.11 is misaligned with
the other two compared threshold values. This result was
also confirmed when accuracy values for various threshold
values were compared. In our experiments we chose tested
threshold values that produced the highest accuracy for each
type of data.

Table 3 shows the overall system’s accuracy percentages,
which were calculated by comparing the calculated aggre-
gated observation values and chosen actions by our tech-
nique against the manually recorded “events” (i.e., the time
step at which the drastic fall or temperature rise occurred).
Since incorrectly estimating the emergency notification ob-
servations is more costly than the normal observations, the
decision rules prefer to choose actions for notifying the doc-
tor or the emergency personnel. Therefore, the accuracy for
those states was higher than for the normal state.

Conclusion

In this paper we presented a preliminary, but a robust and a
coherent system with the potential of improving the quality
of lives through monitoring a user’s health for the early de-
tection of abnormal behavior. Our system combines a multi-
robot system with a wearable sensor technology for a more
comprehensive monitoring of the user’s well-being.

We are currently working on an implementation that, ad-
ditionally to our current system, uses the sensors that can
take vital measurements. We are also working on develop-
ing more sophisticated learning techniques for aggregation
and decision making. In the future, in addition to the mon-



Table 2: A sample report produced using our method.

Date Time Movement Status Distance Traveled | Temperature Status Heart Rate
15/11/2015 | 17:18:32 Normal Movement Normal Distance Normal Temperature Normal Heart Rate
15/11/2015 | 08:34:16 Abnormal Movement Abnormal Distance | Normal Temperature Low Heart Rate

Altitude changed by 200 cm | Total of 0.1 miles 60 beats per minute
15/1172015 | 16:35:59 Normal Movement Normal Distance | Abnormal Temperature | Normal Heart Rate
Temp increased by 2C
15/11/2015 | 23:20:10 Abnormal Movement Abnormal Distance | Normal Temperature High Heart Rate
High changes in acceleration | Total of 5.2 miles 102 beats per minute

Table 3: Accuracy of our preliminary system

Condition Accuracy
Normal 93%
Slightly abnormal (notify caregiver) 94%
Abnormal (notify doctor) 97%
Very abnormal (emergency) 100%

itoring a person’s conditions, we will implement a solution
for the multi-agent robotic system to provide motivation for
cognitive and physical exercises to the user by considering
the history of the user’s daily tasks and coaching the user to
fulfil the appropriate tasks. Our multi-robot system will also
be able to interoperate with existing systems, such as per-
son’s medical records from the doctor and in-home station-
ary sensors to create and process supplementary statistics to
further the user’s medical care.
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