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Abstract

A continuous time Bayesian network is a graphical
model capable of describing discrete state systems that
evolve in continuous time. Unfortunately, the number of
parameters required for each node in the graph is expo-
nential in the number of parents of the node, which can
be prohibitively large for many real-world systems. To
mitigate this problem, we propose a Noisy-OR model
for continuous time Bayesian networks, which can re-
duce the number of required parameters from exponen-
tial to linear. We describe the model, as well as the pro-
cess required to compute the remaining unspecified pa-
rameters. Finally, we experimentally validate the cor-
rectness of the proposed Noisy-OR formulation.

Introduction

Many-real world problems can be solved by modeling the
state of a system as it evolves over time. If the states of
that system are discrete, continuous time Markov processes
(CTMPs) provide an effective framework for achieving this
task. Unfortunately, the size of a CTMP is exponential in
the number of variables in the system. To mitigate this
problem, continuous time Bayesian networks (CTBNs) have
been proposed as a model that factors the underlying CTMP
using conditional independencies (Nodelman, Shelton, and
Koller 2002). These conditional independencies are encoded
in a directed graph structure so that each node need only de-
scribe the state transition behavior for a single variable given
each instantiation of the parent states. The size of the re-
sulting model is exponential in the largest parent set in the
graph.

Although this framework significantly reduces the num-
ber of necessary parameters, for some applications the
model may still be too complex. If even a single node in the
network has a large parent set, the complexity of the model
may make learning and inference tasks intractable. Further-
more, the space required to store the model in memory may
be unreasonable, resulting in slow query response times. To
avoid this, parameterizing the model must be simplified fur-
ther.

This problem has been handled in the Bayesian network
(BN) community using numerous methods, one of the most
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popular being the Noisy-OR model. Noisy-OR works by
assuming there is a disjunctive interaction among the par-
ents of a node, rather than a conjunctive interaction. This
assumption is usually interpreted in the context of a cause
and effect model where each parent node is seen as an event
sufficient to cause behavior in the child node. For this rea-
son, the Noisy-OR model requires only that a node be pa-
rameterized for the instances where a single parent event oc-
curs, rather than every parent-state combination. The result-
ing model is linear in the size of the largest parent set rather
than exponential, as is usually the case with BNs.

Although the Noisy-OR model and several extensions
have been studied thoroughly in the context of BNs, no such
research has been presented in the CTBN literature. This is
a significant limitation for CTBNs, especially when dealing
with real-world networks that exhibit disjunctive causal re-
lationships with a large number of causes. In this paper, we
present the Noisy-OR model as it works in continuous time
and describe how it can be used with CTBNs.

Background

To describe how Noisy-OR can be extended for CTBNs, we
begin by providing a brief overview of how CTBNs oper-
ate and how Noisy-OR works in the context of BNs. For
more information about CTBNs, the reader is referred to
Nodelman’s original work on the subject (Nodelman, Shel-
ton, and Koller 2002). For additional material on the Noisy-
OR model, see the work of Pearl and other authors listed in
the Noisy-OR background section (Pearl 1988).

BNs provide a factored representation of a joint probabil-
ity distribution over a set of variables. This is achieved by
using a directed graph to encode conditional independencies
in the distribution. The nodes in the graph represent the vari-
ables in the joint distribution, while the edges describe direct
conditional dependencies. Each node is parameterized using
a conditional probability table (CPT) that indicates the prob-
ability of the variable being in each state conditioned on each
instantiation of the states of the parents in the network.

While BNs provide compact representations capable of
modeling static systems, some problems require reasoning
about systems that evolve in continuous time. A CTMP con-
sists of an initial distribution P over the set of states in a
system, and an intensity matrix Q that describes the tran-
sition behavior between states over time. More specifically,
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the entry qij in row i, column j of matrix Q indicates that the
time it takes to transition from state i to state j is drawn from
an exponential distribution with rate qij . Diagonal entries qii
are constrained to be the negative sum of the remaining en-
tries in the row, such that each row sums to zero. The entire
time that the system spends in a state i before transitioning
to another state is characterized by an exponential distribu-
tion with a rate of −qii. Since the transition is drawn from
an exponential distribution, the expected time that the sys-
tem spends in state i is 1/qii.

Continuous time Bayesian networks (CTBNs) borrow
many concepts from Bayesian networks, but rather than fac-
toring a joint probability distribution, a CTBN factors a
CTMP. The initial distribution and intensity matrix for a
CTMP are exponential in the size of the variables for a sys-
tem, since each row or column represents a full instantiation
to every variable. To avoid this problem, a CTBN uses a di-
rected network structure much like the one used in a BN to
encode conditional independencies. This allows the full in-
tensity matrix for the Markov process to be decomposed into
a set of conditional intensity matrices (CIMs) for each node.
One CIM is defined for each instantiation of a node’s par-
ents, and each CIM describes the state transition behavior
over a state-space local to the node’s variable.

Related Work
Pearl first proposed a binary Noisy-OR model for BNs, and
in this work he argued that a system qualifies for Noisy-OR
if it meets the assumptions of accountability and exception
independence (Pearl 1988). Accountability refers to the no-
tion that at least a single parent must be True if a child is
observed to be True, since the model can be interpreted as
causal. Exception independence means that the factors that
inhibit causation are independent of one another. This can
be interpreted as a series of AND gates for each parent,
where the inputs include the cause and a negated inhibitor
mechanism. The output of these AND gates are then passed
through as inputs to an OR gate, which produces a Noisy-OR
model. Finally, Pearl shows how parameters in the CPTs can
be calculated on the fly using this model.

The Noisy-OR gate has been applied successfully to a va-
riety of real-world problems that require modeling disjunc-
tive interaction in BNs. Oniśko et al. use Noisy-OR to re-
duce the number of parameters that must be specified for
use in small datasets (Oniśko, Druzdzel, and Wasyluk 2001).
The authors learn the reduced set of parameters in the BN by
using a small set of patient records for the purpose of diag-
nosing liver disorders. Murphy and Mian review methods
for learning dynamic BNs for the purpose of modeling gene
expression data, and describe how Noisy-OR gates allow for
compact parameterization of the CPTs in the networks (Mur-
phy and Mian 1999). Bobbio et al. show how to convert fault
trees into BNs by using Noisy-OR nodes, which capture the
disjunctive causation assumed by a fault tree (Bobbio et al.
2001). Strasser and Sheppard provide an automated method
for deriving a BN from a D-matrix, which is a model that de-
scribes the relationships between system faults and the tests
that monitor them (Strasser and Sheppard 2013). They spec-
ify the test nodes to use the Noisy-OR gate model, which

retains the original semantics of the fault-test relationships
described by the D-matrix.

There have been several extensions to the Noisy-OR
model since its original formulation. Henrion extends the
original Noisy-OR model by relaxing the assumption that
a variable may only enter the True state if a parent is in the
True state (Henrion 1987). This is done by introducing an-
other parent called a “leak” node that is always on, which
represents the potential for unmodeled events to cause the
child to become True. Much of our work is based on research
performed by Srinivas, which further generalizes the Noisy-
OR model (Srinivas 1993). While Pearl’s original model as-
sumes binary variables and a logical OR function, Srinivas’
generalization allows for multi-state variables and the use of
any discrete function. In concurrent research, Diez also de-
scribes a multi-state version of the Noisy-OR model (Diez
1993). Finally, Heckerman discusses the Noisy-OR model
within the context of a more general framework called causal
independence, which describes the notion of any indepen-
dence that can be used to simplify the exponential parame-
terization required for the CPTs in a BN (Heckerman 1993;
Heckerman and Breese 1994; 1996).

The Noisy-OR model has been studied within the context
of BNs, but no work has been done to extend its usage to
CTBNs. Cao demonstrated how CIMs may be parameter-
ized to emulate AND and OR gates for the purpose of mod-
eling fault trees within the CTBN framework (Cao 2011).
This parameterization is accomplished by using infinity for
the rates of the intensity matrix to ensure instantaneous tran-
sitions to a True state based on valid AND/OR configura-
tions of the parents. Zero values are used to guarantee that a
transition does not occur until a proper configuration is ob-
served, and also that no transition occurs after moving into
a True state. Unlike our approach, Cao is modeling a logical
OR gate using CTBN nodes with deterministic transitions.

Survival analysis models describe systems using a sur-
vival function S(t) = P (T > t), and the related lifetime
distribution function F (t) = P (T ≤ t) = 1 − S(t) (John-
son 1999). These functions indicate the probability that an
event occurs at some time t after or before a specified time
of interest T . The derivatives of these functions are typi-
cally denoted as s(t) and f(t) respectively. When viewed
as a causal network where nodes can transition from non-
failing states to failing states, a CTBN can be thought of as
a survival model where the lifetime distribution function is
equal to the exponential distribution F (t) = 1− exp(−λt).
This can be related back to the survival function as follows:
S(t) = 1− (1− exp(−λt)) = exp(−λt).

The hazard function for survival models is defined as the
instantaneous event probability over time. A variety of para-
metric distributions are used in the survival analysis litera-
ture (Kleinbaum and Klein 2012). When using an exponen-
tial distribution, the hazard function is defined as

H(t) =
f(t)

S(t)
=

λ exp(−λt)

exp(−λt)
= λ,

which is the constant transition rate for the exponential dis-
tribution. While survival models are typically represented
using a regression model with time as the sole response vari-
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U1 · · · Ui · · · Un

X

Figure 1: The Noisy-OR network structure.

able, a CTBN models the state of multiple variables that
change as time progresses. Another notable difference is that
CTBNs assume an exponential distribution, while survival
models are less restrictive in terms of the supported distribu-
tions. There are many systems whose survival follow non-
exponential distributions, and CTBNs have been extended
to include more complex parametric distributions (Perreault
et al. 2015).

Noisy-OR in Bayesian Networks
The Noisy-OR model is a generalized version of the logi-
cal OR gate, capable of capturing the non-determinism in
a system with disjunctive interactions. There are n binary
inputs u1, . . . , un and a single binary output x. The domain
for each ui and x consists of the states False and True, which
we denote using 0 and 1 respectively. The output x takes on
a value of 1 if one of the inputs ui is in state 1.

The Noisy-OR model can be described generally as an
OR gate with inputs u1, . . . , un and an output of x. The BN
structure is shown in Figure 1, where the inputs are repre-
sented using nodes U1, . . . , Un, and the output is the node
X . A lowercase ui is used to refer to an instantiation of node
Ui, and x is considered to be an instantiation of X . With-
out loss of generality, let ũi denote the specific set of parent
node instantiations {u0

0, · · · , u0
i−1, u

1
i , u

0
i+1, · · · , u0

n}, such
that only node Ui has a value of 1, while the remaining vari-
ables in U are set to 0.

We say that if a single parent Ui is in state 1, it will cause
X to be 1 with probability λi, and 0 with probability (1−λi),
as shown in the following:

P (x1|ũi) = λi

P (x0|ũi) = (1− λi).

The probability that X is in state 0 given its entire parent set
U is calculated as the product of the probabilities P (X =
0|ũi) for each Ui that is in state 0. We denote the subset of
parents that are in state 1 as ũ+, as shown below:

P (x0|U) =
∏

ui∈ũ+

P (x0|ũi)

=
∏

ui∈ũ+

(1− λi).

U � Set of parent variables: {U1, · · · , Un}
u � An instantiations of U: {u1, · · · , un}
ũi � The instantiation u where only ui = 1:

{u0
0, · · · , u0

i−1, u
1
i , u

0
i+1, · · · , u0

n}
ũ+ � The subset of parents in state 1.

xs[t] � X is in state s at time t.
xs[t1, t2) � X is in state s over the interval [t1, t2).

φ0
u(t) � Probability of not transitioning to state 1

after by time t given parent values u:
P (x0[t1, t2)|x0[t1])

φ0→1
u (t) � Probability of transitioning to state

1 by time t given parent values u:
P (x0[t1, t1 + δ) ∧ x1[t1 + δ, t2)|x0[t1])

Table 1: Notation

We can use this to calculate the probability that X is in state
1 by taking 1 minus this probability, as follows:

P (x1|U) = 1− P (x0|U)

= 1−
∏

ui∈ũ+

(1− λi).

Noisy-OR in Continuous Time Bayesian

Networks

To describe Noisy-OR in CTBNs, we again use ũi to indi-
cate an instantiation of the parent set U where only node Ui

is in state 1. Let [t1, t2) be a time interval from t1 to t2, such
that the length of the interval is t = t2 − t1. Next, we use
x0[t1, t2) to indicate that variable X is in state 0 during the
interval [t1, t2), and x1[t1, t2) to indicate that it is in state 1
during that interval. Similarly, we use x0[t] and x1[t] to in-
dicate that the variable X is in state 0 or 1 at a discrete time
t. Let φ0(t) denote P (x0[t1, t2)|x0[t1]). This is the proba-
bility that X remains in state 0 for the entire time interval
[t1, t2), and does not transition to 1. Next, let φ0→1(t) de-
note P (x0[t1, t1 + δ) ∧ x1[t1 + δ, t2)|x0[t1]), where δ is
some discrete point in the time interval [t1, t2). This is the
probability that X transitions from state 0 to state 1 some-
time during the time interval [t1, t2). A subscript is used to
show conditional dependence on a state instantiation of U.
A summary of the notation used throughout the following
section is provided in Table 1.

The CIMs for node X are as follows:

QX|u =

( 0 1

0 −λu λu

1 μu −μu

)
.

The parameters in these matrices describe the rate at which
the variable is expected to transition to another state. Using
this, the probability density function f and the cumulative
distribution function F can be defined for transitioning from
state 0 to state 1, as follows:

fλu(t) = λ exp(−λut)

Fλu(t) = 1− exp(−λut).
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Assuming we are starting at time t1, Fλu(t) defines the prob-
ability of transitioning from a state of 0 to a state of 1 by time
t1 + t = t2. The probability of having transitioned from
state 0 to state 1 by time t2 is therefore given by φ0→1

u (t) =
1− exp(−λut). This means that φ0

u(t) = exp(−λut).
The Noisy-OR network structure for the CTBN is the

same as the BN shown in Figure 1. As with a BN, we as-
sume that the presence of each parent on its own is capable
of defining the behavior of X . As before, the goal is to pa-
rameterize X only for the cases where at most a single parent
is in state 1. First, we assign initial distributions such that all
nodes start in state 0 deterministically. Next, we parameter-
ize the intensity matrix for the case where no parents are in
state 1 to ensure that there is a 0 rate of transition to state 1.
Finally, we parameterize each of the n CIMs QX|ũi

using
the parameters λX|ũi

and μX|ũi
. The probability of X tran-

sitioning, and not transitioning, to a 1 state by time t2 is then
given by the following two equations.

φ0→1
ũi

(t) = 1− exp(−λX|ũi
t)

φ0
ũi
(t) = exp(−λX|ũi

t)

Using the available n + 1 CIMs, we now compute the CIM
for any arbitrary assignment of parents u. We calculate the
CIMs of X given state instantiations where multiple parents
are in state 1 as follows.

φ0
u(t) =

∏
ui∈ũ+

φ0
ũi
(t)

=
∏

ui∈ũ+

exp(−λX|ũi
t)

By taking 1 minus this probability, we are left with the prob-
ability of transitioning to a state of 1 by time t2 is reached
given any instantiation of parents u.

φ0→1
u (t) = 1− φ0

u(t)

= 1−
∏

ui∈ũ+

φ0
ũi
(t)

= 1−
∏

ui∈ũ+

exp(−λX|ũi
t)

This probability allows us to calculate the intensities for the
matrix QX|u, where u is some instantiation of the parent set
U and more that one variable has a value of 1. Recalling
that φ0→1

u (t) = 1 − exp(−λX|ut), we can solve for λX|u
and use it to populate the corresponding CIM.

1− exp(−λ{X|u}t) = φ0→1
u (t)

1− exp(−λ{X|u}t) = 1−
∏

ui∈ũ+

exp(−λ{X|ũi}t)

exp(−λ{X|u}t) =
∏

ui∈ũ+

exp(−λ{X|ũi}t)

−λ{X|u}t =
∑

ui∈ũ+

−λ{X|ũi}t

λ{X|u}t = t
∑

ui∈ũ+

λ{X|ũi}

Note that the t on the left side of the equation is equivalent
to the t on the right, indicating that the equality holds for any
and all times t in the future. Given this, we can treat t as a
constant, resulting in the following.

λ{X|u} =
∑

ui∈ũ+

λ{X|ũi} (1)

We see that the parameter λ{X|u} can be calculated simply
by summing the individual λ{X|ũi} terms for each parent
ui in U that is in state 1. The same process can be used to
derive the parameter μ{X|u} for any CIM.

μ{X|u} =
∑

ui∈ũ+

μ{X|ũi} (2)

Approximate Inference with Noisy-OR Nodes

Importance sampling can be used to achieve inference over
a CTBN that contains Noisy-OR nodes. This works by sam-
pling trajectories from a proposal distribution P ′ that is
guaranteed to conform to evidence. The difference between
the proposal distribution P ′ and the true distribution P is
accounted for by weighting each sample by its likelihood.

Trajectories σ can be broken into segments σ[i] that
are partitioned based on when variables transition between
states. The likelihood of a trajectory is decomposable by
time and is, therefore, calculated by multiplying the likeli-
hood contributions for each segment of the trajectory. The
likelihood for a trajectory is as follows:

L′(σ) =
∏
u

∏
x

(q
M [x|u]
x|u exp(−qx|uT [x|u])

∏
x′ �=x

θ
M [x,x′|u]
xx′|u

where T [X|u] is the amount of time spent in state x,
M [x, x′|u] is the number of transitions from x to x′, M [x|u]
is the total number of transitions from x to any other state.
The CIM parameters q and θ are associated with T and M
respectively. These sufficient statistics are easily obtained
from the trajectory segment. T [X|u] is simply the dura-
tion of the segment, and M [x|u] is guaranteed to be zero
since there are no transitions in the segment by construction.
Given this, the likelihood can be rewritten specifically for a
trajectory statement.

L̃′(σ) =
∏
u

∏
x

(q0x|u exp(−qx|u(te − t))
∏
x′ �=x

θ0xx′|u

=
∏
u

∏
x

(exp(−qx|u(te − t))

Introducing Noisy-OR nodes to the network requires a slight
adjustment to the sampling process, as there is no longer
any guarantee that the rate parameters necessary for the al-
gorithm will be precomputed. The rates are necessary when
drawing from the exponential or truncated exponential dis-
tributions, as well as when computing the likelihoods for
the weights. We extend importance sampling by using Al-
gorithm 1 to obtain rates whenever they are required.

In the event the requested rate parameter comes from an
instantiation of the parents such that no more than one parent
is in state 1 at a time, then the rate parameter is retrieved

671



Algorithm 1 Retrieve Intensity

1: procedure GET-RATE(x,u)
2: qx|u ← 0
3: n ← ∑

ui∈u ui � Count parents in state 1
4: if n ≤ 1 then
5: qx|u ← QX|u[x, x]
6: else
7: for ui ∈ u do
8: if ui = 1 then
9: qx|u ← qx|u +QX|ui

[x, x]

10: return qx|u � The intensity

from the corresponding intensity matrix. If the rate is due to
multiple parent nodes being in state 1, then no such intensity
matrix exists and the intensity must be computed on the fly.
The generated rate parameter is calculated by summing the
corresponding rates from each CIM where the parent was
in state 1. This is shown in the algorithm on line 9, which
implicitly makes use of Equations 1 and 2. Note that there
is a potential increase in the computational complexity that
is linear in the number of parents when retrieving rates from
CIMs. Fortunately, the model can be represented with fewer
CIMs, which may reduce the need to retrieve information
from disk and save on expensive I/O operations.

Noisy-OR Expectation Comparison

In this section, we discuss experiments designed to validate
and explore the behavior of the proposed Noisy-OR param-
eterization. We compare the query results of a network pa-
rameterized using Noisy-OR with the expected probabilities
to show equivalence. This experiment is designed to further
justify the formulation of Noisy-OR in CTBNs by support-
ing the theoretical results already provided.

We constructed a network with three parents A, B and
C, and a single child node X as shown in Figure 2. Each
of the parents is parameterized with an initial distribution of
(0.5, 0.5) and a single CIM containing a rate of 1.0 for tran-
sitioning to either state 0 or 1. The child node X is parame-
terized with an initial distribution of (1.0, 0.0), and uses the
Noisy-OR model. This means that only four CIMs are speci-
fied for X rather than the full eight. The rate of transitioning
to state 1 given that no parents are in state 1 is 0.0. When
only A is in state 1, the rate is 0.75, only B is 0.85, and only
C is 0.8. For each CIM, the rate of transitioning from state
1 to state 0 is 0.0.

In the event that multiple parents enter state 1, the inten-
sities are not specified and will need to be computed. The
intensities are computed by summing the corresponding in-
tensities from the CIMs that are specified. The expectation
is that the resulting CIMs will cause a transition after some
time t in the future with a probability equal to the product of
the probabilities that would occur according to the specified
CIMs. To verify that this behavior is achieved, we compare
the probabilities obtained by querying the network with the
expected probability computed via multiplication.

Evidence was applied for the four cases where multi-

A B C

X

Figure 2: Network structure used in the expectation compar-
ison experiment. X uses a Noisy-OR parameterization.

Queried Expected
P (X|AB) 0.6876482 0.6865322
P (X|BC) 0.6956636 0.6963848
P (X|AC) 0.7031165 0.7033511
P (X|ABC) 0.7896124 0.7885470

Table 2: The Queried column shows the probability of X be-
ing in state 1 given the four combinations of A, B, and C be-
ing in state 1 as returned by inference, which requires CIMs
generated on the fly. This can be compared to the Expected
column, which shows the exact value computed manually.

ple parents were in state 1 over the interval of time t =
[0.0, 2.0). The probability of X being in state 1 was queried
at 100 evenly spaced timesteps over this time interval. The
expected probability was computed as the product of the
probabilities for the cases where individual parents are in
state 1. The mean differences for all timesteps are shown in
Table 2. A paired equivalence test with a 0.005 region of
similarity and a significance level of 0.05 was used to com-
pare the queried result to the expected probability. For all
cases, it was found that the probability obtained by querying
the Noisy-OR parameterized CTBN was equivalent to the
corresponding expected probability.

Applications

The Noisy-OR model is useful for any scenario where the
parents of a variable have disjunctive interactions, for exam-
ple, when the model can be interpreted as causal. In these
networks, the state of a parent is considered to be an event
that causes the state of a child node, which is viewed as an
effect. Disjunctive interaction occurs when any parent on its
own is sufficient to explain the behavior of the child.

Due to its compatibility with causal networks, Noisy-OR
has been used in BNs for the purpose of diagnostics. These
diagnostic models consist of a set of faults and a set of tests.
Using a standard BN parameterization, the CPT for a test
node is exponential in the number of faults that it monitors.
Fortunately it is often the case that the occurrence of any
fault is sufficient to cause a test to fail. This disjunctive in-
teraction between the faults allows for a Noisy-OR param-
eterization of the tests, reducing the size of the CPT to be
linear in the number of monitored faults.

These diagnostic models have proved useful in the med-
ical domain, where faults in the network are considered to
be a disease, and tests are referred to as findings. One such
diagnostic model that has been studied in the literature is the
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Quick Medical Reference, Decision- Theoretic (QMR-DT)
network (Shwe et al. 1991). Heckerman demonstrated the
effectiveness of the Noisy-OR parameterization in BNs by
applying it to the QMR-DT model (Heckerman 1990).

CTBNs allow us to look beyond diagnostic models, and
instead focus on prognostic models that are capable of pre-
dicting faults that may occur at some time in the future.
As an example, the QMR-DT model could be extended to
perform prognostics using a CTBN with the same network
structure. By adapting the Noisy-OR model for CTBNs, it
is now possible to model real-world temporal problems that
would have otherwise been intractable.

Conclusion

We have described how the Noisy-OR model works in the
context of CTBNs. This parameterization reduces the num-
ber of specified CIMs to be linear in the number of parents
rather than exponential. It was shown how to calculate the
unspecified rates for CIMs where multiple parents are in
state 1 by summing the rates from specified CIMs. Finally,
inference involving Noisy-OR nodes was demonstrated by
using a modified version of importance sampling. These re-
sults were then validated experimentally.

Note that while the Noisy-OR model reduces the number
of CIMs that must be specified, the complexity of inference
remains the same. This is evident by the Get-Rate pro-
cedure, which allows importance sampling to operate as if
the full set of CIMs were available. Future work will fo-
cus on exploiting the Noisy-OR structure to reduce infer-
ence complexity. Another area of interest is the automatic
identification of potential Noisy-OR nodes. Existing work
has been done on sensitivity analysis for CTBNs to identify
how changes to parameterization affect the resulting model
behavior (Sturlaugson and Sheppard 2015). Sensitivity anal-
ysis could be used to compare existing nodes in a CTBN to
the corresponding Noisy-OR formulation to identify poten-
tial candidates for conversion to the Noisy-OR parameteri-
zation. Finally we would like to generalize this Noisy-OR
model to permit non-binary states and additional functions
aside from the OR gate.
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