
Bayesian Network Inference with Simple Propagation

Cory J. Butz
butz@cs.uregina.ca

University of Regina
Canada

Jhonatan S. Oliveira
oliveira@cs.uregina.ca
University of Regina

Canada

André E. dos Santos
dossantos@cs.uregina.ca

University of Regina
Canada

Anders L. Madsen
anders@hugin.com

HUGIN EXPERT A/S
Aalborg University

Denmark

Abstract

We propose Simple Propagation (SP) as a new join tree
propagation algorithm for exact inference in discrete
Bayesian networks. We establish the correctness of SP.
The striking feature of SP is that its message construc-
tion exploits the factorization of potentials at a sending
node, but without the overhead of building and exam-
ining graphs as done in Lazy Propagation (LP). Exper-
imental results on numerous benchmark Bayesian net-
works show that SP is often faster than LP.

Introduction

Join tree propagation (JTP) is central to the theory and prac-
tice of probabilistic expert systems (Shafer 1996). Here, ex-
act inference in a discrete Bayesian network (BN) (Pearl
1988) is conducted on a secondary structure, called a join
tree, built from the directed acyclic graph of a BN. Even
though the computational and space complexity of JTP is
exponential in the tree-width of the network, in general, we
care not about the worse case, but about the cases we en-
counter in practice (Koller and Friedman 2009). For real-
world BNs, several JTP approaches appear to work quite
well. Given observed evidence, messages are systematically
propagated such that posterior probabilities can be computed
for every non-evidence variable. More specifically, each BN
conditional probability table, having been updated with ob-
served evidence, is assigned to precisely one join tree node
containing its variables. Classical JTP algorithms (Shafer
1996) form one potential per node by multiplying together
the tables at each node.

In contrast, Lazy Propagation (LP) (Madsen and Jensen
1999; Madsen 2004) keep a multiplicative factorization of
potentials at each node. This allows LP to remove two kinds
of irrelevant potentials during message construction. Irrel-
evant potentials involving barren variables (Madsen and
Jensen 1999) are removed first from the factorization. Next,
irrelevant potentials based on testing independencies in-
duced by evidence are removed from the factorization. Here,
a potential is irrelevant if and only if certain variables are
separated in the moralization Gm

1 of the domain graph (Mad-
sen 2004) G1 built from the factorization. In the remaining

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

relevant potentials, all variables not appearing in the separa-
tor need to be marginalized away. The order in which these
variables are marginalized, called an elimination ordering
(Madsen and Butz 2012), is determined by examining the
moralization Gm

2 of the domain graph G2 built from the fac-
torization of relevant potentials. The resulting factorization
is the message propagated.

In this paper, we propose Simple Propagation (SP) as a
new JTP algorithm for exact inference in discrete BNs. SP
consists of three simple steps. First, remove irrelevant po-
tentials based on barren variables. Second, marginalize the
relevant variables. More specifically, while the factorization
at a sending node contains a potential with a non-evidence
variable in the separator and another not in the separator,
then the latter must be marginalized away. Third, propagate
only those potentials exclusively containing variables in the
separator. We establish the correctness of SP. Thus, SP is
equivalent to LP, but without following key tenets of LP. SP
never explicitly tests independencies, nor does it determine
elimination orderings. This means SP saves the overhead of
having to build and examine graphs. In experimental results
on 28 benchmark cases, SP is faster than LP in 18 cases, ties
LP in 5 cases, and is slower than LP in 5 cases.

Background

Let U = {v1, v2, . . . , vn} be a finite set of variables, each
with a finite domain, and V be the domain of U . A potential
on V is a function φ such that φ(v) ≥ 0 for each v ∈ V , and
at least one φ(v) > 0. Henceforth, we say φ is on U instead
of V . A joint probability distribution is a potential P on U ,
denoted P (U), that sums to one. For disjoint X,Y ⊆ U ,
a conditional probability table (CPT) P (X|Y) is a poten-
tial over X ∪ Y that sums to one for each value y of Y .
For simplified notation, {v1, v2, . . . , vn} may be written as
v1v2 · · · vn, and X ∪ Y as XY .

A Bayesian network (BN) (Pearl 1988) is a directed
acyclic graph (DAG) B on U together with CPTs
P (v1|Pa(v1)), P (v2|Pa(v2)), . . ., P (vn|Pa(vn)), where
Pa(vi) denotes the parents (immediate predecessors) of vi
in B. For example, Figure 1 depicts a BN, where CPTs
P (a), P (b|a), . . . , P (m|g, l) are not shown. We call B a BN,
if no confusion arises. The product of the CPTs for B on U
is a joint probability distribution P (U).

The conditional independence (Pearl 1988) of X and Z

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

650

Figure 1: A BN extended from (Madsen and Jensen 1999).

given Y holding in P (U) is denoted I(X,Y, Z), where X ,
Y , and Z are pairwise disjoint subsets of U . If needed, the
property that I(X,Y, Z) is equivalent to I(X−Y, Y, Z−Y)
(Pearl 1988) can be applied to make the three sets pairwise
disjoint; otherwise, I(X,Y, Z) is not well-formed.

A join tree (Shafer 1996) is a tree with sets of variables as
nodes, and with the property that any variable in two nodes
is also in any node on the path between the two. The sepa-
rator (Shafer 1996) S between any two neighbouring nodes
Ni and Nj is S = Ni ∩ Nj . A DAG B can be converted
into a join tree via the moralization and triangulation pro-
cedures. The moralization (Pearl 1988) Bm of B is obtained
by adding undirected edges between all pairs of vertices with
a common child and then dropping directionality. An undi-
rected graph is triangulated (Pearl 1988), if each cycle of
length four or more has an edge between two nonadjacent
variables in the cycle. Each maximal clique (complete sub-
graph) (Pearl 1988) of the triangulated graph is represented
by a node in the join tree.

Prior to inference, the BN CPTs are updated by deleting
all rows (configurations) disagreeing with the observed ev-
idence E = e, if any. Lastly, each CPT P (vi|Pa(vi)) is
assigned to exactly one join tree node N containing the vari-
ables vi ∪ Pa(vi). We now say the join tree is initialized.

Example 1. One possible join tree for the BN B in Figure 1
has the following three nodes:

N1 = {a, b, c},
N2 = {b, c, d, e, f, g, h, i, j, l,m}, and
N3 = {i, j, k, l,m}.

Let the observed evidence in B be d = 0. Those CPTs con-
taining d are updated by keeping only those rows with d = 0.
Assigning the CPTs to N1, N2, and N3 can yield the follow-
ing respective factorizations F1, F2, and F3:

F1 = {P (a), P (b|a), P (c|a)},
F2 = {P (d = 0|b, c), P (e|d = 0), P (f |d = 0, e),

P (g|e), P (h|e), P (i|d = 0, h), P (j|i), P (m|g, l)},
F3 = {P (k|j), P (l|k)}.

Rather than multiplying together the CPTs at each node,
Lazy Propagation (LP) (Madsen and Jensen 1999) main-
tains a multiplicative factorization. Doing so allows LP in
message construction to safely remove (without performing
numerical computation) two kinds of irrelevant potentials
from the factorization. The first kind of irrelevant potential
is based upon the notion of barren variables (Madsen and
Jensen 1999). Given a factorization F , and with respect to a
separator S, the procedure REMOVEBARREN recursively re-
moves each potential φ(W |Z), if no variable in W appears
in another potential in F and W ∩ S = ∅. Detecting the
second kind of irrelevant potential is more involved.

LP tests separation in a graph, a process that reflects
testing independencies induced by evidence, to safely re-
move irrelevant potentials from the factorization. A poten-
tial is irrelevant if and only if the corresponding separation
holds in the graph. The original LP (Madsen and Jensen
1999) applied d-separation (Pearl 1988) in the given BN
B. The extensions of LP (Madsen 2004) test separation in
the domain graph constructed from the factorization under
consideration. The domain graph (Madsen 2004) of a po-
tential φ(W |Z) is a graph with undirected edges between
vi, vj ∈ W and directed edges from each vk ∈ Z to each
vl ∈ W . The domain graph of a set of potentials is defined
in the obvious way.

All remaining potentials are relevant. Now, all variables
not appearing in the separator need to be marginalized. The
order in which these variables are marginalized, called an
elimination ordering (Madsen and Butz 2012), is determined
by examining the moralization Gm

2 of the domain graph G2

built from the factorization of relevant potentials. Note that
the moralization of a domain graph also adds undirected
edges between all pairs of vertices with children connected
by an undirected path before dropping directionality. Fill-in
weight is one heuristic for finding good elimination order-
ings in LP (Madsen and Butz 2012).

Based upon the eloquent discussion of JTP in (Shafer
1996), we describe LP’s execution on an initialized join tree
with a chosen root using five rules:

Rule 1. Augment each node N with evidence variables E.

Rule 2. Each non-root node waits to send its message to a
given neighbour until it has received messages from
all its other neighbours.

Rule 3. The root waits to send messages to its neighbours
until it has received messages from them all.

Rule 4. When a node is ready to compute its message to a
particular neighbour, it calls MC(F , S, E) in Algo-
rithm 1, where F is the set of assigned CPTs and all
incoming messages received, S is the separator, and
E is the set of evidence variables.

Rule 5. If a separator has received a message m from one
of its two nodes, it sets the other message m′ to be
m′ = m′ −m, when it is received.

Example 2. In the initialized join tree in Example 1, Rule
1 of LP sets N1 = N1 ∪ {d}, N2 = N2 ∪ {d}, and
N3 = N3∪{d}, since the evidence is d = 0. If N3 is chosen

651

(i) LP constructs the domain graph G1 of F in (3).

(ii) LP uses separation analysis in the moralization Gm
1 of G1 in (i)

to determine irrelevant potentials in F of (3).

(iii) LP builds the domain graph G2 of F in (4) formed by relevant
potentials.

(iv) LP uses the moralization Gm
2 of G2 in (iii) to obtain an elimi-

nation ordering for variables e, g, and h.

Figure 2: LP’s use of graphs to test independencies and de-
termine elimination orderings at node N2 in Example 2.

as root, Rules 2 and 3 mean that messages will be passed as
follows: m1 from N1 to N2; m2 from N2 to N3; m3 from

Algorithm 1 Message Construction.

1: procedure MC(F , S, E)
2: F = REMOVEBARREN(F , S)
3: Construct the domain graph G1 of F
4: Construct the moralization Gm

1 of G1

5: for each potential φ(X) in F do
6: if I(X,E, S) holds in Gm

1 then
7: F = F − {φ(X)}
8: Construct the domain graph G2 of F
9: Construct the moralization Gm

2 of G2

10: Determine an elimination ordering σ in Gm
2

11: for each v in σ do
12: F = SUMOUT(v, F)
13: return F

N3 to N2; and, m4 from N2 to N1. The discussion becomes
interesting after N1 sends N2 its message m1 computed as:

P (b, c) =
∑

a

P (a, b, c) =
∑

a

P (a) · P (b|a) · P (c|a). (1)

N2 calls MC(F , S, E) to construct its message m2 to N3,
where S = {d, i, j, l,m}, E = {d}, and F is:

F = F2 ∪ {P (b, c)}. (2)

In line 2, REMOVEBARREN removes P (f |d = 0, e) from
F , since variable f appears in no other potential of F and
{f} ∩ S = ∅, giving

F = {P (b, c), P (d = 0|b, c), P (e|d = 0), P (g|e),
P (h|e), P (i|d = 0, h), P (j|i), P (m|g, l)}. (3)

Next, in line 3, the domain graph G1 in Figure 2 (i) is
constructed from F . In line 4, the moralization Gm

1 of G1

is depicted in Figure 2 (ii). In line 5, considering poten-
tial P (b, c), LP tests I(bc, d, ijlm) in Gm

1 , namely, whether
evidence variable d separates the variables b and c in
P (b, c) from the separator variables S. Since this sepa-
ration in Gm

1 holds, LP safely removes irrelevant poten-
tial P (b, c) from F , as seen in line 7. Similarly, for po-
tential P (d = 0|b, c), I(bc, d, ijlm) holds in Gm

1 mean-
ing that P (d = 0|b, c) also is removed from F in line 7.
For the other six potentials in F , it can be verified that
I(e, d, ijlm), I(eg, d, ijlm), I(eh, d, ijlm), I(ih, d, ijlm),
I(ij, d, ijlm), and I(glm, d, ijlm) do not hold in Gm

1 by
separation analysis or are not well-formed.

The remainder of MC is to compute
∑

e,g,h F , where

F = {P (e|d = 0), P (g|e), P (h|e), P (i|d = 0, h),

P (j|i), P (m|g, l)}. (4)

In line 8, the domain graph G2 of F is depicted in Figure
2 (iii). The moralization Gm

2 of G2, illustrated in Figure 2
(iv), is obtained in line 9. Here, the fill-in weight heuristic
can yield the elimination ordering σ = (h, e, g). Assuming
binary variables, the fill-in weight of h in Figure 2 (iv) is 4,
since the weight of the edge (e, i) to be added is 2 · 2 = 4.

652

Following σ = (h, e, g), LP computes in lines 11 and 12:

P (i|d = 0, e) =
∑

h

P (h|e) · P (i|d = 0, h),

P (g, i|d = 0) =
∑

e

P (e|d = 0) · P (g|e) · P (i|d = 0, e),

and

P (i,m|d = 0, l) =
∑

g

P (g, i|d = 0) · P (m|g, l).

LP sends message m2 = F = {P (j|i), P (i,m|d = 0, l)}
to N3 in line 13. This concludes the inward phase. In the
outward phase, it can be shown that N3 sends P (l|j) to N2,
while N2 sends P (d = 0|b, c) to N1.

The important point of Example 2 is that, as illustrated in
Figure 2, LP’s message construction involves building do-
main graphs and their moralizations to test independencies
and to determine elimination orderings.

Simple Propagation

Simple propagation (SP) is a novel JTP algorithm, since its
message construction, called Simple Message Construction
(SMC) and given in Algorithm 2, exploits the factorization
of potentials without building and examining graphs. SP fol-
lows the same rules as LP, except it calls SMC in Rule 4.

Algorithm 2 Simple Message Construction.

1: procedure SMC(F , S, E)
2: F = REMOVEBARREN(F , S)
3: while ∃ φ(X) ∈ F with v /∈ S −E, v′ ∈ S −E do
4: F = SUMOUT(v, F)
5: return {φ(X) ∈ F | X ⊆ S}

In the following example, we emphasize line 3 of SMC.
By “one in, one out,” we mean a potential in F has a non-
evidence variable in the separator and another non-evidence
variable not in the separator.
Example 3. Let N3 be the root of the initialized join tree
in Example 1. Rule 1 augments each node with d. By Rule
2, N1 is ready to send its message to N2. By Rule 4, N1

calls SMC(F , S, E) with F = {P (a), P (b|a), P (c|a)},
S = {b, c, d}, and E = {d}. In line 2, no potentials are
removed by REMOVEBARREN. In line 3, potential P (b|a)
contains non-evidence variable b in the separator and non-
evidence variable a not in the separator. In line 4, SP elimi-
nates a as in (1). Hence, N1 sends message P (b, c) to N2.

Node N2 calls SMC(F , S, E) to compute its message to
node N3, where factorization F is in (2), separator S =
{d, i, j, l,m}, and E = {d}. In line 2, REMOVEBARREN
removes P (f |d = 0, e) from F , giving (3).

In order to aid the reader in visualizing the “one in, one
out” feature of SP in line 3, we graphically depict in Fig-
ure 3 the potentials in F of (3) based upon the techniques
described in (Butz, Oliveira, and dos Santos 2015). For ex-
ample, P (b, c) is represented as a closed curve around white
variables b and c, while P (m|g, l) is represented as closed

curve around white variable m and black variables g and l.
In P (m|g, l), for instance, m and l are non-evidence vari-
ables in the separator and g is a non-evidence variable not
in the separator, as can be seen in Figure 3. Thus, in line 4,
g is eliminated as

P (m|e, l) =
∑

g

P (g|e) · P (m|g, l),

yielding the new factorization:

F = {P (b, c), P (d = 0|b, c), P (e|d = 0), P (h|e),
P (i|d = 0, h), P (j|i), P (m|e, l)}. (5)

In the potential, say P (m|e, l), m and l are non-evidence
variables in the separator and e is a non-evidence variable
not in the separator. Thus, SP eliminates e as

P (h,m|d = 0, l) =
∑

e

P (e|d = 0) · P (h|e) · P (m|e, l),

giving the following factorization:

F = {P (b, c), P (d = 0|b, c), P (i|d = 0, h),

P (j|i), P (h,m|d = 0, l)}.
Now, in P (i|d = 0, h), for instance, i is a non-evidence

variable in the separator and h is a non-evidence variable
not in the separator. Thus, SP eliminates h as

P (i,m|d = 0, l) =
∑

h

P (i|d = 0, h) · P (h,m|d = 0, l),

leaving:

F = {P (b, c), P (d = 0|b, c), P (j|i), P (i,m|d = 0, l)}.
SP sends message m2 = {P (j|i), P (i,m|d = 0, l)} to N3

in line 5. The outward phase is not described.
The key point of Example 3 is that SP message construc-

tion does not involve building and examining graphs.

Correctness

Suppose a join tree node N is ready to send its message to a
neighbour node N ′ and calls SMC(F , S, E). After the call
REMOVEBARREN(F) in line 2, we partition F in line 3 into
four disjoint sets in order to show correctness. Let

Fin = {φ(X) ∈ F | X ⊆ S}
and

Fin−out = {φ(X) ∈ F | X contains both
a v /∈ S − E and a v′ ∈ S − E}.

Fout is defined as those potentials of F that were multiplied
in the call SMC(F , S, E) by N , excluding those potentials
defined in Fin−out. Lastly,

Frest = F − (Fin ∪ Fin−out ∪ Fout).

For instance, in SP, recall N2’s call SMC(F , S, E) in Exam-
ple 3. Here, F is given in (3). As illustrated by the shading
in Figure 3,

Fin = {P (j|i)},
Fin−out = {P (i|d = 0, h), P (m|g, l)},

Fout = {P (e|d = 0), P (g|e), P (h|e)},
Frest = {P (b, c), P (d = 0|b, c)}.

653

Figure 3: Visualizing the “one in, one out” property exploited in SP by graphically depicting the potentials in F of (3) at N2.
Variable g, for instance, needs to be eliminated, since potential P (m|g, l) has l and m in S − E and g not in S − E.

Let R be the set of variables appearing in the potentials of
Frest and let O = (N − S)−R. This means that O and R
are disjoint and that

N − S = OR. (6)

In Lemma 1, Lemma 2, and Theorem 1, we write
∏

φ∈F φ
as F for simplified notation.
Lemma 1. In the call SMC(F , S, E) by join tree node N ,
the output message m is:

m = Fin ·
∑

O

Fin−out · Fout. (7)

Proof. By definition, no potential in Frest is multiplied in
the call SMC(F , S, E). Thus, no potential of Frest is in-
cluded in m, since R∩S = ∅ in line 5. On the contrary, line
5 means that every potential in Fin is necessarily included
in m. Equation (7) immediately follows.

Lemma 2. The product of the potentials in Frest is the
marginal distribution P (R).

Proof. By definition, we have:

P (R) =
∑

OS

Fin · Fin−out · Fout · Frest ·m′,

where m′ is the message sent from N ′ to N . Thus,

P (R) =
∑

S

∑

O

Fin · Fin−out · Fout · Frest ·m′

=
∑

S

Frest ·m′ · Fin ·
∑

O

Fin−out · Fout.

By Lemma 1, we obtain:

P (R) =
∑

S

Frest ·m′ ·m.

Since P (S) = m′ ·m (Shafer 1996), we have:

P (R) =
∑

S

Frest · P (S).

By manipulation,

P (R) = Frest ·
∑

S

P (S)

= Frest · 1
= Frest.

We now show the main result of this paper, namely, that
the SP algorithm is sound.
Theorem 1. The call SMC(F , S, E) by a join tree node N
is equal to

∑
N−S F .

Proof. Using (6), Lemma 1, and manipulation, we obtain:
∑

N−S

F =
∑

N−S

Fin · Fin−out · Fout · Frest

=
∑

OR

Fin · Fin−out · Fout · Frest

=
∑

O

∑

R

Fin · Fin−out · Fout · Frest

= Fin ·
∑

O

∑

R

Fin−out · Fout · Frest

= Fin ·
∑

O

Fin−out · Fout ·
∑

R

Frest.

By Lemma 2,
∑

N−S

F = Fin ·
∑

O

Fin−out · Fout ·
∑

R

P (R)

= Fin ·
∑

O

Fin−out · Fout · 1

= Fin ·
∑

O

Fin−out · Fout

= m.

Experimental Results

We report an empirical comparison between SP and LP.
The experiments were performed on the 28 benchmark BNs
listed in column 1 of Table 1. Column 2 shows the number

654

Table 1: Average time of LP and SP to propagate messages
and compute posteriors over 100 runs in each BN.

BN Vars LP SP Savings
Water 32 0.06 0.05 17%
Oow 33 0.07 0.06 14%
Oow Bas 33 0.04 0.03 25%
Mildew 35 0.05 0.04 20%
Oow Solo 40 0.07 0.06 14%
Hkv2005 44 0.23 0.27 -17%
Barley 48 0.09 0.10 -11%
Kk 50 0.09 0.09 0%
Ship 50 0.16 0.17 -6%
Hailfinder 56 0.02 0.02 0%
Medianus 56 0.04 0.03 25%
3Nt 58 0.02 0.01 50%
Hepar Ii 70 0.03 0.03 0%
Win95Pts 76 0.03 0.03 0%
System V57 85 0.06 0.05 17%
Fwe Model8 109 0.14 0.15 -7%
Pathfinder 109 0.12 0.11 8%
Adapt T1 133 0.04 0.04 0%
Cc145 145 0.10 0.08 20%
Munin1 189 0.54 0.75 -39%
Andes 223 0.15 0.13 13%
Cc245 245 0.20 0.18 10%
Diabetes 413 0.34 0.31 9%
Adapt T2 671 0.24 0.22 8%
Amirali 681 0.45 0.41 9%
Munin2 1003 0.49 0.45 8%
Munin4 1041 0.61 0.57 7%
Munin3 1044 0.66 0.64 3%

of variables in each BN. Join trees were generated using the
total weight heuristic (Jensen 2014). The experimental anal-
ysis is performed using a Java 7 implementation running on
a Linux Ubuntu server (kernel 2.6.38-16-server) with a four-
core Intel Xeon(TM) E3-1270 Processor and 32 GB RAM.

For each network, 100 sets of evidence E = e are ran-
domly generated with both SP and LP using the same ev-
idence. The computation time is measured as the elapsed
(wall-clock) time for a full round of message passing
(inward and outward) and computing posterior marginals
P (v|E = e) for each non-evidence variable. The average
computation time is calculated over 100 runs and reported
for LP and SP in columns 3 and 4 of Table 1, respectively.

Table 1 shows that out of 28 BNs, SP was faster in 18
cases, tied LP in 5 cases, and was slower than LP in 5 cases.
SP tends to be faster than LP because SP does not spend
time building and examining graphs. On the other hand, re-
call how Algorithm 1 is used in LP’s Example 2. Lines 3-4
and 8-9 build the four graphs G1, Gm

1 , G2, and Gm
2 in Figure

2, respectively. Lines 5-7 use separation analysis to test in-
dependencies in Gm

1 . Lastly, line 10 analyzes Gm
2 in order to

determine a good elimination ordering. In stark contrast, SP
simply exploits the “one in, one out” property.

Conclusion

When a node N is ready to send a message to a neighbour
sharing variables S, LP can be seen as focusing on N −S to
identify irrelevant potentials, and then working with the rel-
evant potentials towards S. In comparison, SP can be viewed
as starting at the separator S and working with the relevant
potentials outward from S, thereby ignoring the irrelevant
potentials. Roughly speaking, in Figure 3, LP works left-to-
right, whereas SP works right-to-left.

Table 1 shows that SP tends to be faster than LP on opti-
mal join trees built from a sampling of real-world and bench-
marks BNs. It is possible, however, that LP will often be
faster than SP on non-optimal join trees or even larger BNs,
since there can be more variables to eliminate at each node,
along with more possible elimination orderings. Future work
will investigate the role of the particular join tree used in SP,
as well as how to represent LP in DNs.

Acknowledgements

Research supported by NSERC Discovery Grant 238880.

References

Butz, C. J.; Oliveira, J. S.; and dos Santos, A. E. 2015. Dar-
winian networks. In Proceedings of Twenty-Eighth Cana-
dian Artificial Intelligence Conference, 16–29.
Jensen, F. 2014. HUGIN API Reference Manual - V. 8.1.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.
Madsen, A. L., and Butz, C. J. 2012. On the importance of
elimination heuristics in lazy propagation. In Proceedings of
Sixth European Workshop on Probabilistic Graphical Mod-
els, 227–234.
Madsen, A. L., and Jensen, F. V. 1999. Lazy propagation: A
junction tree inference algorithm based on lazy evaluation.
Artificial Intelligence 113(1-2):203–245.
Madsen, A. L. 2004. An empirical evaluation of possible
variations of lazy propagation. In Proceedings of Twentieth
Uncertainty in Artificial Intelligence, 366–373.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.
Shafer, G. 1996. Probabilistic Expert Systems, volume 67.
Philadelphia: SIAM.

655

