
Testing Independencies in Bayesian Networks with i-Separation

Cory J. Butz
butz@cs.uregina.ca

University of Regina
Canada

André E. dos Santos
dossantos@cs.uregina.ca

University of Regina
Canada

Jhonatan S. Oliveira
oliveira@cs.uregina.ca
University of Regina

Canada

Christophe Gonzales
christophe.gonzales@lip6.fr

Université Pierre et Marie Curie
France

Abstract

Testing independencies in Bayesian networks (BNs) is a
fundamental task in probabilistic reasoning. In this pa-
per, we propose inaugural-separation (i-separation) as
a new method for testing independencies in BNs. We
establish the correctness of i-separation. Our method
has several theoretical and practical advantages. There
are at least five ways in which i-separation is simpler
than d-separation, the classical method for testing inde-
pendencies in BNs, of which the most important is that
“blocking” works in an intuitive fashion. In practice, our
empirical evaluation shows that i-separation tends to be
faster than d-separation in large BNs.

Introduction

Pearl (1993) states that perhaps the founding of Bayesian
networks (BNs) (Pearl 1988) made its greatest impact
through the notion of d-separation. Directed-separation (d-
separation) (Pearl 1986) is a graphical method for decid-
ing which conditional independence relations are implied by
the directed acyclic graph (DAG) of a BN. To test whether
two sets X and Z of variables are conditionally indepen-
dent given a third set Y of variables, denoted I(X,Y, Z),
d-separation checks whether every path from X to Z is
“blocked” by Y . This involves classifying every variable be-
tween X and Z on each of these paths into one of three cat-
egories. This classification may involve consulting variables
not appearing on the path itself. Unfortunately, many have
had difficulties in understanding d-separation (Pearl 2009),
perhaps due to the following two drawbacks. First, the same
variable can assume different classifications depending on
the path being considered. Second, sometimes a path is not
“blocked” by Y even though it necessarily traverses Y .

This paper puts forth inaugural-separation (i-separation)
as a novel method for testing independencies in BNs. We in-
troduce the notion of an inaugural variable, the salient fea-
ture of which is that in testing I(X,Y, Z), any path from
X to Z involving an inaugural variable is “blocked.” This
means that paths involving inaugural variables can be ig-
nored. On the paths not involving inaugural variables, only

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

those variables belonging to Y need to be classified as to
whether they belong to one category. Our method has several
theoretical and practical advantages. On the theoretical side,
i-separation is simpler than d-separation. Rather than test-
ing all paths between X and Z, i-separation tests only those
paths not involving inaugural variables. On these paths, in-
stead of classifying all variables, i-separation classify only
those variables that are members of Y . As compared to d-
separation, which classifies variables into three categories,
i-separation only requires binary classification. And classifi-
cation in i-separation only involves consulting variables on
the path itself. Thus, i-separation involves fewer paths, fewer
variables, and fewer categories. In addition, “blocking” is
intuitive in i-separation, namely, a path is “blocked” by Y
if and only if it traverses through Y . From a practical per-
spective, our experimental results indicate that i-separation
is especially effective in large BNs.

Background

Let U = {v1, v2, . . . , vn} be a finite set of variables. Let
B denote a directed acyclic graph (DAG) on U . A directed
path from v1 to vk is a sequence v1, v2, . . . , vk with arcs
(vi, vi+1) in B, i = 1, 2, . . . , k − 1. For each vi ∈ U , the
ancestors of vi, denoted An(vi), are those variables having
a directed path to vi, while the descendants of vi, denoted
De(vi), are those variables to which vi has a directed path.
For a set X ⊆ U , we define An(X) and De(X) in the ob-
vious way. The children Ch(vi) and parents Pa(vi) of vi
are those vj such that (vi, vj) ∈ B and (vj , vi) ∈ B, re-
spectively. An undirected path in a DAG is a path ignoring
directions. A directed edge (vi, vj) ∈ B may be written as
(vj , vi) in an undirected path. A singleton set {v} may be
written as v, {v1, v2, . . . , vn} as v1v2 · · · vn, and X ∪ Y as
XY .

A Bayesian network (BN) (Pearl 1988) is a DAG B
on U together with conditional probability tables (CPTs)
P (v1|Pa(v1)), P (v2|Pa(v2)), . . ., P (vn|Pa(vn)). For ex-
ample, Figure 1 shows a BN, where CPTs P (a), P (b), . . .,
P (j|i) are not provided. We call B a BN, if no confusion
arises. The product of the CPTs for B on U is a joint proba-
bility distribution P (U) (Pearl 1988). The conditional inde-
pendence (Pearl 1988) of X and Z given Y holding in P (U)

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

644

Figure 1: A DAG B.

is denoted IP (X,Y, Z). It is known that if I(X,Y, Z) holds
in B, then IP (X,Y, Z) holds in P (U).

d-Separation (Pearl 1988) tests independencies in DAGs
and can be presented as follows (Darwiche 2009). Let X ,
Y , and Z be pairwise disjoint sets of variables in a DAG B.
We say X and Z are d-separated by Y , denoted I(X,Y, Z),
if at least one variable on every undirected path from X to
Z is closed. On a path, there are three kinds of variable v:
(i) a sequential variable means v is a parent of one of its
neighbours and a child of the other; (ii) a divergent variable
is when v is a parent of both neighbours; and (iii) a con-
vergent variable is when v is a child of both neighbours. A
variable v is either open or closed. A sequential or divergent
variable is closed, if v ∈ Y . A convergent variable is closed,
if (v ∪ De(v)) ∩ Y = ∅. A path with a closed variable is
blocked; otherwise, it is active.

Example 1. Let us test I(a, de, g) in the DAG B of Fig-
ure 1 using d-separation. It can be verified that there are 17
undirected paths from a to g. Path (a, d), (d, g) is blocked,
since sequential variable d is closed. Similarly, the path
(a, c), (c, f), (d, f), (d, g) is blocked, since divergent vari-
able d is closed. Moreover, the path (a, c), (c, f), (f, h),
(g, h) is blocked, since convergent variable h is closed. It
can be verified that the other 14 paths are blocked. There-
fore, I(a, de, g) holds. It can be verified that I(a, d, g) does
not hold in B.

i-Separation

Inaugural-separation (i-separation) is proposed as a novel
method for testing independencies in BNs.

A variable vk is called a v-structure (Pearl 2009) in a DAG
B, if B contains directed edges (vi, vk) and (vj , vk), but not
a directed edge between variables vi and vj . For example,
variable h is a v-structure in DAG B of Figure 1, since B
contains directed edges (f, h) and (g, h), and does not con-
tain a directed edge between variables f and g. Variable f is
also a v-structure, since B contains directed edges (c, f) and
(e, f), and does contain a directed edge between variables c
and e. Similarly, d and g are also v-structures.

Given an independence I(X,Y, Z) to be tested in a DAG
B, a variable v is inaugural, if either of the following two

conditions are satisfied: (i) v is a v-structure and

({v} ∪De(v)) ∩XY Z = ∅; (1)

or (ii) v is a descendant of a variable satisfying (i). We de-
note by V the set of all inaugural variables.

Example 2. Consider testing I(a, de, g) in the DAG B of
Figure 1. Variable f is inaugural, since it is a v-structure
and, by (1),

({f} ∪ {h}) ∩ {a, d, e, g} = ∅.
Consequently, by condition (ii), h is also inaugural, since
h is a descendant of f . On the contrary, variable d is a v-
structure, but is not inaugural, since

({d} ∪ {f, g, h}) ∩ {a, d, e, g} �= ∅.

The concept of a serial variable is needed in i-separation.

Definition 1. Consider any undirected path
. . . , (vi, vj), (vj , vk), . . . passing through variable vj
in a DAG B. We call vj serial, if at most one of vi and vk is
in Pa(vj).

Example 3. Referring to the DAG in Figure 1, consider
the path (a, d), (d, g) passing through variable d. Since
a ∈ Pa(d) and g /∈ Pa(d), d is serial. On the other
hand, variable d is not serial on the path (a, d), (d, b), since
a, b ∈ Pa(d).

Note that sequential variables are serial, as are divergent
variables. We now formally introduce i-separation.

Definition 2. Let X , Y , and Z be pairwise disjoint sets of
variables in a DAG B. Then i-separation tests I(X,Y, Z)
by first pruning inaugural variables from B. For every undi-
rected path from X to Z in the resulting sub-DAG, if there
exists a variable in Y that is serial, then I(X,Y, Z) holds;
otherwise, I(X,Y, Z) does not hold.

Example 4. Let us test I(a, de, g) in the DAG B of Figure 1
using i-separation. Inaugural variables f and h are pruned,
yielding the sub-DAG in Figure 2 (i). Here, there are four
undirected paths from a to g, as shown in (ii)-(v) of Figure 2.
In (ii) and (iv), e ∈ Y and e is serial. In (iii) and (v), d ∈ Y
and d is serial. Therefore, I(a, de, g) holds. It can be verified
that I(a, d, g) does not hold in B by i-separation.

We now present the main result of our paper.

Theorem 1. Independence I(X,Y, Z) holds in a DAG B
by d-separation if and only if I(X,Y, Z) holds in B by i-
separation.

Proof. (⇒) Suppose I(X,Y, Z) holds in B by d-separation.
By definition, all paths in B from X to Z are blocked.
Thereby, all paths in B from X to Z not involving inaugural
variables are blocked. By definition, I(X,Y, Z) holds in B
by i-separation.

(⇐) Suppose I(X,Y, Z) holds in B by i-separation. By
definition, all paths in B from X to Z not involving inaugu-
ral variables are blocked. Let V be the set of all inaugural
variables in B. Consider any undirected path in B from X to

645

(i) (ii)

(iii) (iv) (v)

Figure 2: i-Separation prunes inaugural variables f and h
from the DAG B of Figure 1 when testing I(a, de, g), and
then classifies only variables d and e in the four paths in
(ii)-(v).

Z involving at least one inaugural variable v ∈ V . Without
loss of generality, there are two cases to consider.

(i) (v1, v),(v, v2), where v1, v2 /∈ V . This means that
(v1, v) and (v2, v) are directed edges in B; otherwise, v1
and v2 are members of De(v), which, by (1), means that
v1, v2 ∈ V . By (1), (v ∪ De(v)) ∩ Y = ∅. Thus, v is a
closed convergent variable. Therefore, this path involving an
inaugural variable v is blocked in d-separation.

(ii) (v1, v),(v, v2), where v1 /∈ V and v2 ∈ V . Here,
v1 /∈ V means that (v1, v) is a directed edge in B. First,
suppose that (v2, v) is a directed edge in B. Therefore, v
is a closed convergent variable. Thus, this path involving
an inaugural variable v is blocked in d-separation. Sec-
ond, suppose that (v, v2) is a directed edge in B. By (1),
De(v) ∩ XY Z = ∅. Thus, any undirected path from X
using (v1, v),(v, v2) and continuing to Z necessarily tra-
verses a convergent variable v′. Now, v′ ∈ De(v). Since
v′ is inaugural, by (1), (v′ ∪De(v′)) ∩XY Z = ∅. Thus,
(v′ ∪De(v′)) ∩ Y = ∅. By definition, v′ is a closed conver-
gent variable. Thus, this path involving an inaugural variable
v is blocked in d-separation.

By (i) and (ii), I(X,Y, Z) holds in B by d-separation.

Example 5. I(a, de, g) holds in B of Figure 1 by d-
separation in Example 1, and I(a, de, g) holds in B by i-
separation in Example 4. On the other hand, I(a, d, g) nei-
ther holds by d-separation, nor by i-separation.

Corollary 1. When testing independence I(X,Y, Z) in
a DAG B, if an undirected path . . . , (vi, vj), (vj , vk), . . .
passes through an inaugural variable v in B, then this path
is blocked by a closed convergent variable.

Example 6. When testing I(a, de, g) in the DAG B of Fig-
ure 1 with d-separation, the path (a, c), (c, f), (f, h), (g, h)
passes through inaugural variable f , for instance. By Corol-
lary 1, this path is blocked in d-separation by a closed con-

(i) (ii) (iii)

Figure 3: In d-separation, when testing I(a, de, g) in B of
Figure 1, variable d is closed sequential in (i), open conver-
gent in (ii), and closed divergent in (iii).

vergent variable, which is variable h in this instance.

Advantages

Salient features of i-separation are described.
When testing I(X,Y, Z) in a BN B, by Theorem 1, any

path involving an inaugural variable can be ignored.

Example 7. When testing I(a, de, g) in the BN in Figure 1,
there are 17 undirected paths from a to g. By Theorem 1, 13
of these paths can be ignored, since they involve inaugural
variables f or h. Only the four undirected paths of Figure 2
(ii)-(v) need to be considered when testing I(a, de, g).

In the paths not involving inaugural variables, i-separation
classifies a variable only if it belongs to Y .

Example 8. Recall the path in Figure 2 (ii) when testing
I(a, de, g). d-Separation will classify variables c, d, b, and
e but i-separation will classify only d and e, since d, e ∈ Y .

For the variables in Y on the paths not involving inaugural
variables, i-separation classifies only for serial variables.

Example 9. Recall testing I(a, de, g) in B of Figure 1.
i-Separation classifies only whether d and e are serial in
Figure 2 (ii) and (iv), and whether d is serial in Figure 2
(iii) and (v).

Recall that d-separation classifies a variable into one of
three categories, namely, sequential, divergent, and conver-
gent. It should be noted that in d-separation a variable can
assume different classifications depending upon the path be-
ing considered. When testing I(a, de, g) in B of Figure 1,
variable d can be closed sequential, open convergent, and
closed divergent, as illustrated in Figure 3, respectively.

Most importantly, the notion of “blocking” is sometimes
counter-intuitive in d-separation.

Example 10. Recall the three paths in Figure 3 consid-
ered by d-separation when testing I(a, d, g) in B of Figure
1. Even though each of the three paths from variable a to
variable g necessarily traverses through variable d, only the
paths in (i) and (iii) are considered “blocked.”

Example 10 emphasizes that even though the path in Fig-
ure 3 (ii) necessarily traverses through variable d, the path
is not considered as “blocked” by d. In i-separation, “block-
ing” works in the intuitive fashion.

646

Example 11. In testing I(a, de, g), i-separation checks for
a serial variable in Y blocking each path of Figure 2 (ii)-(v).
Variable e blocks the paths in (ii) and (iv), since e ∈ Y and
e is serial. Variable d blocks the paths in (iii) and (v), since
d ∈ Y and d is serial.

One last advantage in testing whether a path is active or
blocked is that i-separation only considers the variables on
this path, whereas d-separation may necessarily consult de-
scendants of some of these variables. For example, when
testing I(a, f, e) in B of Figure 1, consider the path (a, d),
(b, d), (b, e). Here, i-separation will only examine variables
b and d on the path, but d-separation will also consult vari-
ables f , g, and h that are not on the path, since checking
whether convergent variable d is closed requires examining
De(d).

Experimental Results

Geiger at al. (1989) provide a linear-time complexity algo-
rithm for implementing d-separation. Rather than checking
whether every path between X and Z is blocked, the imple-
mentation determines all variables that are reachable from X
on active paths. If a variable in Z is reached, then I(X,Y, Z)
does not hold.

The linear implementation of d-separation given in Algo-
rithm 1 (Koller and Friedman 2009) has two phases. Phase
I determines the ancestors An(Y) of Y in the DAG B us-
ing the algorithm ANCESTORS (not shown). Phase II, uses
the output of Phase I to determine all variables reachable
from X via active paths. This is more involved, since the al-
gorithm must keep track of whether a variable v is visited
from a child, denoted (↑, v), or visited from a parent, de-
noted (↓, v). In Algorithm 1, L is the set of variables to be
visited, R is the set of reachable variables via active paths,
and V is the set of variables that have been visited.

Example 12. Let us apply Algorithm 1 to test
I(nedbarea,markgrm, dgv5980) in the Barley BN
(Kristensen and Rasmussen 2002) partially illustrated in
Figure 4. Phase I determines A = {partigerm, jordinf,
frspdag, saatid, markgrm} in line 4. In Phase II, lines 6
and 7 set L = {(↑, nedbarea)}. After initializing V and R
to be empty, the main loop starts on line 10.

Select (↑, nedbarea) on line 11. As (↑, nedbarea) /∈ V
on line 13 and nedbarea /∈ Y on line 14, variable nedbarea
is reachable, yielding R = {nedbarea} on line 15. Next,
set V = {(↑, nedbarea)} on line 16. Since (↑, nedbarea)
satisfies line 17, on lines 18 and 19, L = {(↑, komm)}.
Then, lines 20 and 21 set L = {(↑, komm), (↓, nmin)}.
This ends the iteration for (↑, nedbarea).

Starting the next iteration of the while loop, select
(↑, komm). It can be verified at the end of this iteration, we
have L = {(↓, nmin), (↓, nedbarea), (↓, aar mod)} and
R = {nedbarea, komm}.

Select (↓, nmin) on line 11 for the next iteration. Again,
it can be verified that at the end of the iteration, we will have
obtained L = {(↓, nedbarea), (↓, aar mod), (↓, jordn),
(↓,mod nmin)} and

R = {nedbarea, komm,nmin}. (2)

Algorithm 1 (Koller and Friedman 2009) Find nodes reach-
able from X given Y via active paths in DAG B

1: procedure REACHABLE(X ,Y ,B)
2: � Phase I: insert Y and all ancestors of Y into A
3: An(Y) ← ANCESTORS(Y,B)
4: A ← An(Y) ∪ Y
5: � Phase II: traverse active paths starting from X
6: for v ∈ X do � (Node,direction) to be visited
7: L ← L ∪ {(↑, v)}
8: V ← ∅ � (Node,direction) marked as visited
9: R ← ∅ � Nodes reachable via active path

10: while L �= ∅ do � While variables to be checked
11: Select (d, v) in L
12: L ← L− {(d, v)}
13: if (d, v) /∈ V then
14: if v /∈ Y then
15: R ← R ∪ {v} � v is reachable
16: V ← V ∪ {(d, v)} � Mark (d, v) as visited
17: if d =↑ and v /∈ Y then
18: for vi ∈ Pa(v) do
19: L ← L ∪ {(↑, vi)}
20: for vi ∈ Ch(v) do
21: L ← L ∪ {(↓, vi)}
22: else if d =↓ then
23: if v /∈ Y then
24: for vi ∈ Ch(v) do
25: L ← L ∪ {(↓, vi)}
26: if v ∈ A then
27: for vi ∈ Pa(v) do
28: L ← L ∪ {(↑, vi)}
29: return R

The rest of the example follows similarly, yielding all
reachable variables

R = {nedbarea, komm,nmin, aar mod, jordn,

mod nmin, ntilg, . . . , aks vgt}. (3)

It can be verified that dgv5980 /∈ R. Therefore, the indepen-
dence I(nedbarea,markgrm, dgv5980) holds.

The linear implementation of d-separation considers all
active paths until they become blocked. Our key improve-
ment is the identification of a class of active paths that are
doomed to become blocked. By Corollary 1, any path from
X to Z involving an inaugural variable is blocked.

Given an independence I(X,Y, Z), Algorithm 2 deter-
mines the set of inaugural variables in B.
Example 13. Consider the Barley BN partially de-
picted in Figure 4. With respect to the independence
I(nedbarea,markgrm, dgv5980), algorithm 2 returns all
inaugural variables, including nmin and aar mod.

Algorithm 2 can be inefficient, since some inaugurals
may not be reachable from X using active paths. For in-
stance, in Figure 4, inaugural variable ngtilg is not reach-
able from nedbarea using active paths. Thereby, a more ef-
ficient approach is to mimic the linear implementation of

647

Figure 4: When testing I(nedbarea,markgrm, dgv5980) in the Barley BN (only partially depicted), the traversal of paths
from nedbarea to dgv5980 can be stopped once they encounter either inaugural variables aaar mode or nmin.

Algorithm 2 Find all inaugural variables in B, given inde-
pendence I(X,Y, Z).

1: procedure ALL-INAUGURALS(X ,Y ,Z,B)
2: I ← ∅ � all inaugural
3: I∗ ← ∅ � temporary result
4: V ′ ← all v-structures in B
5: An(XY Z) ← ANCESTORS(XY Z,B)
6: V ← V ′ − (An(XY Z) ∪XY Z)
7: for v ∈ V do
8: An(v) ← ANCESTORS({v},B)
9: if An(v) ∩ V = ∅ then

10: I∗ ← I∗ ∪ {v}
11: I ← I∗ ∪De(I∗)
12: return I

d-separation, except stopping the traversal of an active path
if it encounters an inaugural variable or it becomes blocked.

In an active path, a variable is neither closed, nor inau-
gural. Therefore, a variable v to be tested can be considered
inaugural, if it is a v-structure and v /∈ XY Z ∪An(XY Z).
This test is given in Algorithm 3.

Algorithm 3 Test if a reachable variable v is inaugural.

1: procedure INAUGURAL(v,A,B)
2: if v /∈ A then � If v not in XY Z ∪An(XY Z)
3: if Pa(v) > 1 then � If v is a v-structure
4: return true � v is inaugural
5: return false

The implementation of i-separation is presented in Algo-
rithm 4.

Example 14. Let us apply Algorithm 4 to test
I(nedbarea,markgrm, dgv5980) in the Barley BN
partially depicted in Figure 4. Phase I is the same as
in Example 12. In Phase II, lines 5 and 6 determine
A = {komm, partigerm, jordinf, frspdag, saatid,

rokap, jordtype, nedbarea,markgrm, dgv5980}. In
Phase III, lines 8 and 9 set L = {(↑, nedbarea)}. After
setting V = ∅ and R = ∅, the main loop starts on line 12.

Select (↑, nedbarea) in line 13. Now R = {nedbarea}.
Here, (↑, komm) is added to L, but not (↓, nmin),
since nmin ∈ I. It can be verified that selecting
(↑, komm) results in R = {nedbarea, komm} and L =
{(↓, nedbarea)}. Hence, selecting (↓, nedbarea), results
in L = ∅. Since dgv5980 /∈ R, the independence
I(nedbarea,markgrm, dgv5980) holds.

Observe that, in Example 14, i-separation does not add
variable nmin to the set of nodes to be visited, since nmin
is inaugural. In contrast, d-separation adds nmin to the set
of nodes that are reachable as in (2), then subsequently adds
jordn and mod nmin to the reachable set R in (3).

Table 1: Comparison of d-separation and i-separation with
1000 randomly generated independencies in each BN.

BN |N | Time
d-Sep (s)

Time
i-Sep (s)

Time
Savings

Child 20 0.751 1.003 -34%
Insurance 27 1.544 1.876 -22%
Water 32 1.374 1.742 -27%
Mildew 35 1.272 1.287 -1%
Alarm 37 0.9698 1.077 -11%
Barley 48 2.838 3.259 -15%
Hailfinder 56 1.620 1.9876 -23%
Hepar2 70 3.9817 6.438 -62%
Win95pts 76 1.3366 1.4293 -7%
Pathfinder 135 7.964 14.2821 -79%
Munin1 186 12.9175 11.1387 14%
Andes 223 24.607 23.0223 6%
Diabetes 413 134.571 120.0226 11%
Pigs 441 16.739 10.7111 36%
Link 724 91.707 56.661 38%
Munin2 1003 57.536 38.396 33%
Munin4 1038 145.388 76.899 47%
Munin3 1041 140.15 63.163 55%

We now report an empirical comparison of d-separation

648

Algorithm 4 Find nodes reachable from X given Y via ac-
tive paths in DAG B.

1: procedure I-REACHABLE(X ,Y ,B)
2: � Phase I: compute all ancestors of Y
3: An(Y) ← ANCESTORS(Y,B)
4: � Phase II: insert all ancestors of XY Z into A
5: An(XY Z) ← ANCESTORS(XY Z,B)
6: A ← XY Z ∪An(XY Z)
7: � Phase III: traverse active paths starting from X
8: for v ∈ X do
9: L ← {L ∪ (↑, v)} � visit v from child

10: V ← ∅
11: R ← ∅
12: while L �= ∅ do
13: Select (d, v) from L
14: L ← L− {(d, v)}
15: if (d, v) /∈ V then
16: V ← V ∪ {(d, v)}
17: � Is v serial?
18: if v /∈ Y then
19: R ← R ∪ {v}
20: if d =↑ then � up from child
21: for vi ∈ Pa(v) do
22: if !(INAUGURAL(vi, A,B)) then
23: L ← L ∪ {(↑, vi)}
24: for vi ∈ Ch(v) do
25: if !(INAUGURAL(vi, A,B)) then
26: L ← L ∪ {(↓, vi)}
27: else � down from parent
28: for vi ∈ Ch(v) do
29: if !(INAUGURAL(vi, A,B)) then
30: L ← L ∪ {(↓, vi)}
31: � Is v convergent?
32: if d =↓ and v ∈ (Y ∪An(Y)) then
33: for vi ∈ Pa(v) do
34: L ← L ∪ {(↑, vi)}
35: return R

and i-separation. Both methods were implemented in the
Python programming language. The experiments were con-
ducted on a 2.3 GHz Inter Core i7 with 8 GB RAM. The
evaluation was carried out on 18 real-world or benchmark
BNs listed in first column of Table 1. The second column
of Table 1 reports characteristics of each BN. For each BN,
1000 independencies I(X,Y, Z) were randomly generated,
where X , Y , and Z are singleton sets, and tested by d-
separation and by i-separation. The total time in seconds re-
quired by d-separation and i-separation are reported in the
third and fourth columns, respectively. The percentage of
time saved by i-separation is listed in the fifth column.

From Table 1, the implementation of i-separation is
slower than that of d-separation on all BNs with 135 or fewer
variables. The main reason is that Algorithm 1 only com-
putes An(Y), while Algorithm 4 computes An(Y) as well
as An(XY Z). In small networks, the time required to com-
pute An(XY Z) is greater than the time saved by exploiting

inaugural variables.
Table 1 also shows that i-separation is faster than d-

separation on all BNs with 186 or more variables. Time
savings appear to be proportional to network size, as larger
networks can have more paths. Thus, the time taken by i-
separation to computes An(XY Z) is less than the time
required to check paths unnecessarily. For example, con-
sider the Barley network in Figure 4. One randomly gener-
ated independence was I(nedbarrea,markrm, dgv5980).
Here, nmin and aarmode are inaugural variables. Thus,
i-separation only consider 4 tests, namely (↑, nedbarrea),
(↓, nmin), (↑, komm), (↓, aarmod). No other nodes can be
reached via active paths while ignoring inaugural variables.
In sharp contrast, d-separation would consider these 4 tests
as well as (↓,mod nmin), since both nmin and aarmod
are open sequential variables. Thus, d-separation will con-
tinue exploring reachable variables along these active paths,
until eventually determining each active path is blocked by
a closed convergent variable.

Conclusion

We proposed i-separation as a new method for testing in-
dependencies in BNs. Any path from X to Z in I(X,Y, Z)
involving an inaugural variable is blocked. Therefore, these
paths do not need to be checked and can be safely removed
from the BN. In the remaining paths, only variables in Y
of I(X,Y, Z) need to be considered. Only one kind of vari-
able, called serial, is utilized in i-separation. Finally, block-
ing works in the intuitive way. Our experimental results in-
dicate that i-separation is especially effective in large BNs.

Acknowledgements

Research supported by NSERC Discovery Grant 238880.

References

Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press.
Geiger, D.; Verma, T. S.; and Pearl, J. 1989. d-separation:
From theorems to algorithms. In Fifth Conference on Un-
certainty in Artificial Intelligence, 139–148.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.
Kristensen, K., and Rasmussen, I. A. 2002. The use of a
Bayesian network in the design of a decision support system
for growing malting barley without use of pesticides. Com-
puters and Electronics in Agriculture 33(3):197 – 217.
Pearl, J. 1986. Fusion, propagation and structuring in belief
networks. Artificial Intelligence 29:241–288.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.
Pearl, J. 1993. Belief networks revisited. Artificial Intelli-
gence 59:49–56.
Pearl, J. 2009. Causality. Cambridge University Press.

649

