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Abstract

Feature selection is an efficient technique for data dimension
reduction in data mining and machine learning. Unsupervised
feature selection is much more difficult than supervised fea-
ture selection due to the lack of label information. Discrim-
inant analysis is powerful to select discriminative features,
while local structure preservation is important to unsuper-
vised feature selection. In this paper, we incorporate discrimi-
nant analysis, local structure preservation and l2,1- norm reg-
ularization into a joint framework for unsupervised feature
selection. The global structure of data is captured by the dis-
criminant analysis, while the local manifold structure is re-
vealed by the locality preserving projections. By imposing
row sparsity on the transformation matrix, the resultant for-
mulation optimizes for selecting the most discriminative fea-
tures which can better capture both the global and local struc-
ture of data. We develop an efficient algorithm to solve the
l2,1-norm-based optimization problem in our method. Exper-
imental results on different types of real-world data demon-
strate the effectiveness of the proposed method.

Introduction

In the fields of data mining, machine learning, and computer
vision, the data samples are often represented by a large
number of features (Jain and Zongker 1997). The large num-
ber of features that often contain a lot of redundant and noisy
information, make great challenges such as the curses of di-
mensionality and high computation cost. Feature selection is
one main technique for dimensionality reduction that aims to
extract the most useful features and eliminate the noisy ones
(Guyon and Elisseeff 1997). Feature selection brings the im-
mediate effects for applications including: speeding up the
algorithms, reducing the risk of over fitting, and improving
the accuracy of the predictive results (Dy and Brodley 2004).
Based on the availability of label information, feature selec-
tion methods can be broadly classified into supervised and
unsupervised methods (I. Guyon and Vapnik 2002). Unsu-
pervised feature selection is considered as a more challeng-
ing problem, since the definition of relevance of features be-
comes unclear due to the lack of label information (Dy and
Brodley 2000).
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Unsupervised feature selection has attracted increasing
attention in recent years (P. Zhu and Shiu 2015). Without
the information of class label, unsupervised feature selec-
tion extracts features that effectively maintain the impor-
tant underlying structure of data, such as the global structure
(X. Liu and Liu 2014) and the local structure (Z. Zhao and
Liu 2010). Many methods have been proposed to preserve
the global structure of data, such as the Maximum Variance
(MaxVar) method and the global pairwise similarity method
(e.g., with a Gaussian kernel) (X. Liu and Liu 2014).

Instead of the global structure, a family of unsupervised
feature selection methods choose features that preserve the
local structure of data. The importance of preserving lo-
cal structure has been well recognized in the recent devel-
opment of unsupervised feature selection methods. Typical
methods include: the Laplacian Score (i.e., LapScor) method
(X. He and Niyogi 2006), the Multi-Cluster Feature Se-
lection (i.e., MCFS) method (D. Cai and He 2010), Joint
Embedding Learning and Sparse Regression (i.e., JELSR)
method (C. Hou and Wu 2011). LapScore considers the lo-
cal preserving property of individual feature while neglects
the correlation among features (S. Alelyani and Liu 2013).
MCFS selects the features that can best preserve the multi-
cluster structure by manifold learning and l1 regulariza-
tion. JELSR uses the similarity via locally linear approxi-
mation to construct graph and unifies embedding learning
and sparse regression to perform feature selection.

Compared with the global preserving unsupervised fea-
ture selection methods, the local preserving methods have
been proved to perform better in many cases (Z. Zhao and
Liu 2010). However, most of the local preserving unsu-
pervised feature selection methods neglect the discrimina-
tive information of features. Discriminant analysis is im-
portant to unsupervised feature selection, which aims to se-
lect the discriminative features such that the within-class
distance is as small as possible and the between-class dis-
tance is as large as possible (R. Duda and Stork 2001;
Fukunaga 2013). Yang et al. (Y. Yang 2011) proposed a local
discriminant analysis method (i.e., UDFS) for unsupervised
feature selection. UDFS defines a local discriminative score
to evaluate the within-class scatter and the between-class
scatter for each data and its k nearest neighbors, in which the
discriminative information mainly depends on the neighbor-
hoods. Instead of the local discriminant analysis, Tang et al.
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(J. Tang and Liu 2014) developed global discriminant anal-
ysis for unsupervised scenarios to select the discriminative
features. However, this method only considers to preserve
the global data structure but neglects to preserve the local
data structure.

In this paper, we develop the global discriminant analysis
for unsupervised feature selection, meanwhile, we consider
the preservation of local data structure. That is, we incorpo-
rate discriminant analysis, local structure preservation and
l2,1-norm regularization into a joint framework for unsuper-
vised feature selection. The global structure of data is cap-
tured by the discriminant analysis, and the local manifold
structure is revealed by the locality preserving projections
(LLP) (Niyogi 2004). Since we consider both global and lo-
cal structure preservation, our proposed method is referred
to as GLFS. The proposed GLFS method is flexible and ex-
tendable, since besides LLP there are a lot of local mod-
els can be incorporated to preserve the local data structure.
To avoid the trivial solution of linear discriminant analysis
for feature selection, we consider the nontrivial solution by
a new formulation in GLFS. The resultant formulation of
GLFS optimizes for selecting the most discriminative fea-
tures which can better capture both the global and local data
structure. We also proposed an iterative algorithm to effec-
tively solve the optimization problem in the GLFS method.
Many experimental results are provided for demonstration.

Related Methods

In this paper, we use x1 , ..., xn to denote the n unlabeled
data samples, xi ∈ R

m and X = [x1, ..., xn] ∈ R
m×n is

the data matrix. Let {f1, ..., fm} be the set of features where
m is the number of features. Feature selection is to select d
features form f1, ..., fm to represent the original data, where
d < m. We use I to denote the identity matrix, and let 1n ∈
R

n denote a column vector with all of its elements being 1.
The centering matrix is Hn = I − 1

n1n1
T
n . For a matrix

A ∈ R
u×v , its l2,1-norm is defined as

‖A‖2,1 =
∑u

i=1

√∑v

j=1
A2

i,j . (1)

Consider that x1 , ..., xn are sampled from c clusters. Let
Y = [y1, ..., yn]

T ∈ {0, 1}n×c denote the label matrix,
where yi ∈ {0, 1}c×1 is the label vector of xi. The jth

element of yi is 1 if xi is in the jth cluster, and 0 other-
wise. The scaled cluster indicator matrix F is defined as
F = [F1, ..., Fn]

T = Y (Y TY )−1/2. It is obvious that
FTF = (Y TY )−1/2Y TY (Y TY )−1/2 = Ic. The total scat-
ter matrix St and the between-cluster scatter matrix Sb are
defined as (Fukunaga 2013)

St =
∑n

i=1
(xi − μ)(xi − μ)T = X̃X̃T , (2)

Sb =
∑c

i=1
ni(μi − μ)(μi − μ)T = X̃FFT X̃T , (3)

where μ is the mean of all data, μi is the mean of data in
the ith cluster, ni is the number of data in the ith cluster,
X̃ = XHn is the data matrix after being centered.

The linear discriminant analysis is to find a linear trans-
formation W ∈ R

m×q (q < m) that projects X from the m-
dimensional space to the q-dimensional space. In the lower
dimensional space, the within-cluster distance is minimized
while the between-cluster distance is maximized as (Fuku-
naga 2013)

max
W

Tr((WTStW )−1WTSbW ). (4)

Inspired by (Fukunaga 2013), Tang et al. (J. Tang and
Liu 2014) utilized the linear discriminant analysis for unsu-
pervised feature selection and formulated the optimization
problem as

max
W,F

Tr((WTStW )−1WTSbW )− α‖W‖2,1,

s.t.F = Y (Y TY )−1/2,
(5)

where the term ‖W‖2,1 is introduced to ensure that W is
sparse in rows, and α is a parameter to control the sparsity
of W . Let W = [w1, ..., wn]

T ∈ R
m×q , where wi is the ith

row of W . Since wi corresponds to the weight of feature fi,
the sparsity constraint on rows makes W suitable for feature
selection. Each feature fi is ranked according to ‖wi‖2 in
descending order and the top rank d features are selected.

However, Tao et al. (H. Tao and Yi 2015) have proved
that (5) has a trivial solution of all zeros. The transforma-
tion matrix W may lose its function of selecting features if
it leads to a solution near to the trivial solution. In this paper,
we consider the nontrivial solution of (5), which also inher-
its the merit of selecting the most discriminative features.
Meanwhile, we consider to preserve the local data structure
in the low dimensional space by the transformation matrix
W .

The Proposed Method

In this section, we propose a novel method for unsupervised
feature selection, which is referred to as GLFS.

The Objective Function

By incorporating discriminant analysis, local structure
preservation and l2,1-norm regularization, the proposed
GLFS method is formulated as

min
W,F

−Tr((WTStW )−1WTSbW ) + α‖W‖2,1
+βTr(WTXLXTW ),

s.t.FFT = Ic, F ≥ 0,

(6)

where L ∈ R
n×n is a matrix that conserves the local ge-

ometric structure of data, α and β are two balanced pa-
rameters. We relax the condition of F = Y (Y TY )−1/2 to
FFT = Ic in (6) as in (Y. Yang 2011). Since the nonneg-
ative constraint of F can help to relieve the deviation from
the true solution (Y. Yang and Zhou 2011), we constrain F
to be nonnegative.

To avoid the trivial solution of all zeros in (6), we con-
strain the transformation matrix W to be uncorrelated with
respect to St , i.e., WTStW = I , similar to that considered
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in (H. Tao and Yi 2015). The objective function of GLFS
becomes

min
W,F

−Tr(WTSbW ) + α‖W‖2,1
+βTr(WTXLXTW ),

s.t.FFT = Ic, F ≥ 0,WTStW = I.

(7)

Note that in the objective function of GLFS in (7), many
methods can be used to conserve the local data struc-
ture, such as locality preserving projections (LLP) (Niyogi
2004) and locally linear embedding (LLE) (Roweis and Saul
2000). For the sake of convenience, in this paper, we use the
LLP method to conserve the local data structure. The LPP
method aims to preserve the similarity of the original data in
the lower dimensional space and forms the transformation
matrix W by solving the following optimization problem

min
W

∑n

i,j=1
‖xT

i W − xT
j W‖22Sij , (8)

where Sij is the pairwise similarity between xi and xj .
Based on the k-nearest neighbor graph, Sij is calculated as

Sij =

{
exp(−‖xi−xj‖2

2σ2 ), xi and xj are connected,
0, otherwise.

(9)
Let L = D−S be the Laplacian matrix, where S is the sim-
ilarity matrix with Sij as its entries, D is the n× n diagonal
matrix with Dii =

∑n
j=1 Sij on the diagonal. Then, (10)

can be equivalently expressed as

min
W

Tr(WTXLXTW ). (10)

The proposed GLFS method, i.e., the objective function in
(7) integrates (10) to conserve the local geometric structure.

Optimization

In (7), the optimization problem is not convex when both
W and F are optimized simultaneously, and the l2,1-norm
regularization term is non-smooth. To optimize the objective
function, we propose an iterative algorithm, which divides
the problem in (7) into two steps: learning the transformation
matrix W while fixing the scaled cluster indicator matrix F ,
and learning F while fixing W .

According to (2), (3) and FFT = Ic, we rewrite the ob-
jective function of GLFS as follows.

min
W,F

−Tr(WT X̃FFT X̃TW ) + α‖W‖2,1

+βTr(WTXLXTW ) +
γ

2
‖FTF − Ic‖2F ,

s.t.F ≥ 0,WT X̃X̃TW = I,

(11)

where γ > 0 is a parameter which should be large enough
to ensure the orthogonality.

When F is fixed, we need to solve the following problem
by denoting B = βXLXT − X̃FFT X̃T .

min
W

Tr(WTBW ) + α‖W‖2,1,
s.t.WT X̃X̃TW = I.

(12)

By constructing an auxiliary function, Tr((WTBW ) +
α‖W‖2,1 can be rewritten as Tr((WTBW ) +
αTr(WTUW ), where U ∈ R

m×m is a diagonal ma-
trix with the ith diagonal element as

Uii =
1

2‖wi‖2 . (13)

Then, rewrite (12), we obtain

min
W

Tr(WT (B + αU)W ),

s.t.WT X̃X̃TW = I.
(14)

The solution of (14) can be obtained by solving the follow-
ing generalized eigenproblem.

(B + αU)w̃ = λX̃X̃T w̃. (15)

The matrix W ∈ R
m×q , containing the eigenvectors corre-

sponding to the q smallest eigenvalues as the column vec-
tors, is the solution of (14). Then, we normalize W such that
(WT X̃X̃TW )ii = 1, i = 1, ..., q.

Next, when W is fixed, we need to solve the following
problem.

min
F
−Tr(WT X̃FFT X̃TW ) +

γ

2
‖FTF − Ic‖2F ,

s.t.F ≥ 0.
(16)

Since Tr(WT X̃FFT X̃TW ) = Tr(FT X̃TWWT X̃F ),
let M = −X̃TWWT X̃ , (16) can be rewritten as

min
F

Tr(FTMF ) +
γ

2
‖FTF − Ic‖2F ,

s.t.F ≥ 0.
(17)

Following (Y. Yang and Zhou 2011), we update F as

Fij ← Fij
(γF )ij

(MF + γFFTF )ij
. (18)

Then, we normalize F such that (FTF )ii = 1, i = 1, ..., n.
We summarize the procedure of the proposed GLFS

method in Algorithm 1. The most time consuming opera-
tion is to solve the generalized eigenproblem in (15). The
time complexity of the operation is O(m3) approximately.
Empirical results show that the convergence is fast and only
several iterations (less than 10 iterations in the presented
datasets) are needed to converge. Thus, the proposed method
scales well in practice.

Convergence Analysis

Algorithm 1 will monotonically decrease the value of the
objection function in (11) in each iteration.

We denote the formulation in (11) as

Θ(W,F ) = −Tr(WT X̃FFT X̃TW ) + α‖W‖2,1
+βTr(WTXLXTW ) +

γ

2
‖FTF − Ic‖2F .

(19)

We show that Θ(W t+1, F t+1) ≤ Θ(W t, F t).
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Algorithm 1 The proposed GLFS method
Require:

Data matrix, X ∈ R
m×n; Parameters α, β, γ, k, c, q;

Number of features to select d;
Ensure:

d selected features;
1: Construct the k-nearest neighbor graph and calculate L;
2: The iteration step t = 1; Initialize F 1 ∈ R

n×c and set
U1 ∈ R

m×m as an identity matrix;
3: Calculate B1 = βXLXT − X̃F 1(F 1)T X̃T ;
4: Calculate W 1 by solving the generalized engenproblem

(B1 + αU1)w̃ = λX̃X̃T w̃;
5: repeat

6: Calculate M t = −X̃TW t(W t)T X̃;
7: F t+1

ij = F t
ij

(γF t)ij
(MtF t+γF t(F t)TF t)ij

;
8: Update the diagonal matrix U t+1 with the ith diago-

nal element as U t+1
ii = 1

2‖wt
i‖2

;

9: Calculate Bt+1 = βXLXT − X̃F t+1(F t+1)T X̃T ;
10: Calculate W t+1 by solving the generalized engen-

problem (Bt+1 + αU t+1)w̃ = λX̃X̃T w̃;
11: t=t+1;
12: until Convergence
13: Sort each feature fi according to ‖wi‖2 in descending

order and select the top d ranked ones.

We first prove Θ(W t+1, F t) ≤ Θ(W t, F t) where F t is
fixed. With F t fixed, Θ(W t, F t) = Tr((W t)TBtW t) +
α‖W t‖2,1. In the (t+ 1)th iteration

W k+1 = min
W,WT X̃X̃TW=I

Tr(WT (Bt + αU t)W ), (20)

which indicates that

Tr((W t+1)T (Bt+1 + αU)W t+1)

≤ Tr((W t)T (Bt + αU)W t).
(21)

Since ‖W‖2,1 =
∑m

i=1 ‖wi‖2, we obtain

Tr((W t+1)TBt+1W t+1) + α‖W t+1‖2,1
+α

∑m

i=1
(
‖wt+1

i ‖22
2‖wt

i‖2
− ‖wt+1

i ‖2) ≤ Tr((W t)TBtW t)

+α‖W t‖2,1 + α
∑m

i=1
(
‖wt

i‖22
2‖wt

i‖2
− ‖wt

i‖2).
(22)

According to a Lemma in (F. Nie and Ding 2010), we know

‖wt+1
i ‖22

2‖wt
i‖2

− ‖wt+1
i ‖2 ≥ ‖wt

i‖22
2‖wt

i‖2
− ‖wt

i‖2. (23)

Combing (22) and (23), we have

Tr((W t+1)TBt+1W t+1) + α‖W t+1‖2,1
≤ Tr((W t)TBtW t) + α‖W t‖2,1

(24)

That is
Θ(W t+1, F t) ≤ Θ(W t, F t). (25)

Table 1: Properties of Datasets
Dataset # of samples # of Features # of Clusters
UMIST 575 644 20

ORL 400 1024 40
JAFFE 213 676 10

BA 1404 320 36
MNIST 2000 784 10
USPS 9298 256 10
Isolet5 1559 617 26

COIL20 1440 1024 20

Next, we can prove Θ(W t, F t+1) ≤ Θ(W t, F t) (W t is
fixed) by using the method in (Y. Yang and Zhou 2011).

According to (25), we have Θ(W t+1, F t+1) ≤
Θ(W t, F t+1) ≤ Θ(W t, F t). Thus, the procedure in Algo-
rithm 1 is convergent.

Experiments

In this section, we conduct experiments to evaluate the per-
formance of the proposed GLFS method. We test the per-
formance in terms of clustering. After selecting the features,
clustering is performed by using only the selected features.

Experiment Setup

In our experiment, we use a diversity of eight public datasets
to compare the performance of different unsupervised fea-
ture selection methods. The datasets include three face im-
age datasets, i.e., UMIST 1, ORL2 and JAFFE3, three hand-
written digit datasets, i.e., Binary Alphabet (BA)4, MNIST2

and USPS 2, one spoken letter recognition data, i.e., Isolet5
2, and one object dataset, i.e., COIL20 2. Their properties are
summarized in Table 1.

We compare the proposed method with several well-
known unsupervised feature selection methods, includ-
ing LapScore (X. He and Niyogi 2006), MCFS (D. Cai
and He 2010), JELSR (C. Hou and Wu 2011), and
UDFS (Y. Yang 2011). We also compare these fea-
ture selection methods with the baseline method, which
uses all the features for clustering. We set the num-
ber of nearest neighbors as k = 5 for all the com-
pared methods. To fairly compare different unsupervised
feature selection method, we tune the parameters from
{10−6, 10−4, 102, 1, 102, 104, 106}. The number of selected
features is ranged from {50, 100, 150, 200, 250, 300}. Two
widely used evaluation metrics, i.e., Accuracy (ACC) and
Normalized Mutual Information (NMI) (Strehl and Ghosh
2002), are applied to evaluate the clustering results. We re-
port the best result of all the methods by using different pa-
rameters. We first perform each feature selection method to
select features and then perform K-means based on the se-
lected features. We repeat the clustering 20 times with ran-

1http://www.sheffield.ac.uk/eee/research/iel/research/face
2http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
3http://www.cs.nyu.edu/ roweis/data.html
4http://www.cs.nyu.edu/∼ roweis/data.html
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Table 2: Clustering Results (NMI % ± std) of Different Feature Selection Methods
Dataset UMIST ORL JAFFE BA MNIST USPS Isolet5 COIL20
All Features 64.1±5.2 67.2±4.8 73.5±5.8 56.0±2.0 47.7±2.5 63.5±6.2 67.3±3.0 72.0±4.3
LapScore 60.2±4.8 61.2±4.8 72.8±6.2 56.3±1.8 48.2±2.8 62.5±3.2 45.3±3.8 65.9±4.4
MCFS 64.8±4.6 69.1±2.0 76.2±4.4 56.5±1.8 50.8± 2.3 64.1±5.1 70.6±1.8 68.2±4.5
JELSR 65.2±4.2 70.4±1.7 76.8±4.8 56.9±1.3 52.0±2.2 64.6±4.7 69.8±2.3 70.2±4.8
UDFS 65.0±4.9 68.8±1.8 75.3±4.6 57.7±1.5 51.2± 2.0 62.4±5.1 68.2±2.8 72.4±4.1
GLFS 65.8±3.8 70.6±1.9 77.6±4.2 58.2±1.4 52.7±2.2 65.0±5.0 72.4±1.2 73.1±4.2

Table 3: Clustering Results (ACC % ± std) of Different Feature Selection Methods
Dataset UMIST ORL JAFFE BA MNIST USPS Isolet5 COIL20
All Features 43.0±3.7 45.6±6.0 68.2±6.5 38.5±3.1 52.4±5.0 60.2±3.6 45.7±4.5 57.5±3.2
LapScore 40.2±3.8 41.6±6.0 69.5±6.4 40.6±2.9 55.2±4.8 60.4±2.5 35.2±4.8 45.8±6.2
MCFS 42.8±3.6 48.4±5.2 72.4±5.8 41.2±2.8 56.8± 4.3 61.1±1.9 53.5±2.8 50.2±5.2
JELSR 44.9±3.2 50.0±4.8 72.6±5.4 40.3±3.0 57.1±4.2 61.2±2.0 51.5±3.7 56.2±4.3
UDFS 44.5±2.9 47.5±6.4 71.2±6.2 42.2±2.6 57.6± 4.0 60.8±2.6 51.2±4.5 57.2±2.8
GLFS 45.2±3.0 50.5±4.7 73.1±5.0 43.0±2.4 58.8±3.8 62.0±2.4 55.2±2.6 57.8±2.7

dom initializations and report the average results. All exper-
iments were run in MATLAB 8.5.0 (R2015a) on Mac OS X
10.10.3 with core i7 (i7-4650u) CPU and 8GB ram.

Experimental results

First, we compare the performance of the feature selection
methods and summarize the clustering results on the eight
datasets in Table 2 and Table 3. We can see from the two
tables that most of the unsupervised feature selection meth-
ods performs better than the baseline method. Feature selec-
tion can improve the accuracy of clustering results. Since the
LapScore method neglects the correlation among features, it
can not improve the accuracy of clustering results for many
datasets. JELSR, UDFS and GLFS use l2,1-norm regular-
ization for sparsity constraint on the transformation matrix,
while MCFS uses l1-norm sparsity constraint. On most of
the datasets, JELSR, UDFS and GLFS perform better than
MCFS. Both UDFS and GLFS apply discriminant analysis
for feature selection, which results in more accurate cluster-
ing than other methods on most of the data sets. The dif-
ferences between UDFS and GLFS are that UDFS utilizes
local discriminant analysis while GLFS utilizes global dis-
criminant analysis. As shown in Table 2 and Table 3, the
proposed GLFS method obtains best performance on all the
eight datasets. That is because GLFS utilizes the global dis-
criminant analysis and the local structure preservation si-
multaneously, which is able to select the most discriminative
features to better capture both the global and local structure
of data.

Then, we study the performance variation of GLFS with
respect to the parameters α, β and the number of selected
features. Due to the limited space, we only present the re-
sults in terms of NMI and objective values over UMIST,
JAFFE, BA and Isolet5 datasets. The experimental results
are shown in Fig. 1 and Fig. 2. We can see from these figures
that the proposed GLFS method is not sensitive to the pa-
rameters α and β with wide range. On most of the datasets,

the results are very stable when the number of selected fea-
tures is larger.

Conclusion

In this paper, we propose a novel unsupervised feature selec-
tion method, which incorporates discriminant analysis, local
structure preservation and l2,1- norm regularization into a
joint framework. The proposed method optimizes for select-
ing the most discriminative features which can better cap-
ture both the global and local structure of data. We derive an
efficient algorithm to solve the optimization problem of the
proposed method and show that the algorithm will monoton-
ically decrease the objective until convergence. Experiments
on various types of datasets demonstrate the advantages of
the proposed method.

Acknowledgments

This work was supported in part by JST/CREST and MEXT
KAKENHI (Grant No.25286097).

References

C. Hou, F. Nie, D. Y., and Wu, Y. 2011. Feature selec-
tion via joint embedding learning and sparse regression. In
Proceedings of International Joint Conference on Artificial
Intelligence, 1324–1329.
D. Cai, C. Z., and He, X. 2010. Unsupervised feature selec-
tion for multi-cluster data. In Proceedings of ACM SIGKDD
international conference on Knowledge discovery and data
mining, 333–342.
Dy, J. G., and Brodley, C. E. 2000. Visualization and interac-
tive feature selection for unsupervised data. In Proceedings
of ACM SIGKDD international conference on Knowledge
discovery and data mining, 360–364.
Dy, J. G., and Brodley, C. E. 2004. Feature selection for un-
supervised learning. Journal of Machine Learning Research
5:845–889.

458



300

Features

250
200

150
100

50
10

6
10

4
10

2

1

α

10
-
2

10
-
4

10
-
6

0.6

0

0.2

0.8

0.4

N
M
I

(a) UMIST

300

Features

250
200

150
100

50
10

6
10

4
10

2

1

 α

10
-
2

10
-
4

10
-
6

0.6

0

0.2

0.8

0.4

N
M
I

(b) JAFFE

300

Features

250
200

150
100

50
10

6
10

4
10

2

1

α

10
-
2

10
-
4

10
-
6

0.6

0.4

0

0.2

N
M
I

(c) BA

300

Features

250
200

150
100

50
10

6
10

4
10

2

1

α

10
-
2

10
-
4

10
-
6

0.6

0

0.2

0.8

0.4

N
M
I

(d) Isolet5

Figure 1: Normalized Mutual Information (NMI) of GLFS with different α and feature numbers when β = 102.
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Figure 2: Normalized Mutual Information (NMI) of GLFS with different β and feature numbers when α = 102.
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