
Maintaining Focus: Overcoming Attention Deficit Disorder in Contingent
Planning

Ron Alford, Ugur Kuter, Dana Nau, Elnatan Reisner
Department of Computer Science

and Institute for Advanced Computer Studies
University of Maryland,

College Park, MD 20742, USA
{ronwalf,ukuter,nau,elnatan}@cs.umd.edu

Robert Goldman
Smart Information Flow Technologies

(d/b/a SIFT, LLC)
211 N. First St., Suite 300

Minneapolis, MN 55401, USA
rpgoldman@SIFT.info

Abstract

In our experiments with four well-known systems for solv-
ing partially observable planning problems (Contingent-FF,
MBP, PKS, and POND), we were greatly surprised to find that
they could only solve problems with a small number of con-
tingencies. Apparently they were repeatedly trying to solve
many combinations of contingencies at once, thus unneces-
sarily using up huge amounts of time and space.
This difficulty can be alleviated if the planner can maintain
focus on the contingency that it is currently trying to solve.
We provide a way to accomplish this by incorporating fo-
cusing information directly into the planning domain’s oper-
ators, without any need to modify the planning algorithm it-
self. This enables the above planners to solve larger problems
and to solve them much more quickly.
We also provide a new planner, FOCUS, in which focusing
information can be provided as a separate input. This pro-
vides even better performance by allowing the planner to uti-
lize more extensive focusing information.

Introduction

This paper deals with extending classical planning to par-
tially observable planning problems, i.e., problems where
the world is only partially known at planning time, and ob-
servations or queries must be done during plan execution, in
order to decide which actions should actually be executed.

In the published literature, such planning problems have
also been called contingent, conditional, and incomplete-
information planning problems. However, those terms have
also been used to refer to other kinds of planning problems
(e.g., problems that require a conformant solution because
no observations can be done during plan execution, or prob-
lems in which the actions have nondeterministic or proba-
bilistic outcomes). Hence in an effort to avoid ambiguity,
we will use the term Partially Observable Classical plan-
ning problem, or POC problem for short.

The best-known POC planning systems include
Contingent-FF (Hoffmann and Brafman 2005), MBP
(Cimatti et al. 2003), PKS (Petrick and Bacchus 2002),
and POND (Bryce, Kambhampati, and Smith 2006). We
have performed experimental comparisons of these planners
in four benchmark problems used for these planners: the
Unix domain, the Medicate domain, the Rovers domain,

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and a POC version of the Robot Navigation domain. In our
tests, we expanded the problems by increasing the number
of objects: the number of files, patients, objectives, or
packages, respectively.

To our great surprise, we discovered that none of the four
planners could solve problems that involved more than a
small number of objects. The difficulty appeared to be a
combinatorial explosion in the number of contingencies. For
example, if there are n files or packages whose locations are
unknown, or n patients who have unknown infections, then
the number of combinations of locations or infections is ex-
ponential in n.

Apparently the reason why this difficulty did not appear
in the authors’ original tests was that most of their test prob-
lems were simple enough that there was no way for a com-
binatorial explosion to occur.1,2

The subject of this paper is how to enable POC planners
to overcome combinatorial explosion in the number of com-
binations of contingencies. We describe a general technique
that makes systematic modifications to planning domain’s
operators to help a planner focus its search on whichever
contingency the planner is currently trying to solve. In our
experiments, this focusing information provided significant
improvements in the planners’ performance, and it did not
require any modifications to the planners themselves.

We also describe a new POC planning algorithm, FOCUS,
that can make use of much more extensive focusing informa-
tion. FOCUS can make use of focusing information written
in a format similar to the HTN methods used in SHOP2 (Nau
et al. 2003). In our experiments, this focusing information
enabled FOCUS to solve all of our planning problems very
rapidly.

Formalism

Our definition of a POC planning domain is a generalization
of that of a classical planning domain (e.g., (Ghallab, Nau,

1For example, there was one file to be moved in the Unix do-
main, one patient in the Medicate domain, and one objective in the
Rovers domain.

2The Robot Navigation domain used in the published tests of
MBP has large combinations of a kind of contingency that MBP
can easily handle. Our version of the domain contained a different
kind of contingency that caused MBP much more difficulty. For
more details, see our “More Extensive Focusing” section.

177

Proceedings of the Twenty-Second International FLAIRS Conference (2009)



and Traverso 2004, Chapter 2)).
We define a belief state as a set b of ground literals. b con-

tains all ground literals that are currently known to be true.
If A is the set of all possible atoms, then the set of unknowns
is U = A − b − neg(b), where neg(b) is the set of all lit-
erals that are negations of literals in b. A completion of b
is any classical state (i.e., set of ground atoms) that contains
all of the positive literals in b and none of the atoms whose
negations are in b. K(b) is the set of all completions of b.3

A planning operator o has preconditions pre(o) and ef-
fects eff (o), both of which are sets of literals. An action α
is any ground instance of o. α is applicable in a belief state
b if pre(α) ⊆ b. If α is applicable, the result of applying it is
γ(b, α) = {b − neg(eff (α))} ∪ eff (α), where neg(eff (α))
is the set of all literals that are negations of the literals in
eff (a).

There is an action observe(p), for observing (at execution
time) the ground atom p’s current truth value. If p is true and
currently observable, observe(p)’s effect is p. If p is false
and currently observable, then observe(p)’s effect is ¬p. If
p is not currently observable then observe(p) has no effect.
Thus, the result of applying observe(p) in a belief state b is
γ(b, observe(p)) = {(b ∪ {p}), (b ∪ {¬p})}.

A POC planning problem is a 4-tuple P = (O,N, b0, g),
where O is the set of operators, N is the set of sensing
actions, b0 is the initial belief state, and g is the goal. A
completion of P is any classical planning problem P ′ =
(O, s0, g) such that s0 is a completion of b0. K(P ) is the set
of all completions of P .

A policy is a set of pairs π = {(b1, a1), . . . , (bn, an)},
where each bi is a belief state, each ai is an action, and
K(bi)∩K(bj) = ∅ whenever i �= j. π’s execution structure
is a digraph Σπ in which the nodes are all of the belief states
that can be reached by applying actions in π, and the edges
are the state transitions for those actions. If there’s a path in
Σπ from b1 to b2, then b1 is a π-ancestor of b2 and b2 is a
π-descendant of b1. A leaf in Σπ is a belief state for which
π does not specify any actions. A dead-end is a belief state b
if there are no applicable actions in b or b does not have any
leaf π-descendants.

A policy π is a solution of a POC planning problem P if
every node in Σπ is a π-ancestor of at least one goal node
and every leaf node satisfies the goals of P .

Theorem 1 π is a solution for P iff π is a solution for every
completion of P .

Baseline Experiments

We compared Contingent-FF, MBP, PKS, and POND ex-
perimentally in the following well-known planning domains
that we modified for POC planning: Unix (Petrick and
Bacchus 2002), Robot Navigation (Cimatti et al. 2003;
Kabanza, Barbeau, and St-Denis 1997), Medicate, (Pet-
rick and Bacchus 2002; Hoffmann and Brafman 2005), and

3Note that the number of the states in K(b) is combinatorial in
the number of the ground atoms in the planning domain since for
each atom a in U , there will be two states in K(b): a will be true
in one and false in the other.

Table 1: CPU times in seconds for Contingent-FF, MBP,
PKS, and POND. Each data point is the average of 100
randomly generated problems. For Contingent-FF we used
the“enforced observations” option reported in (Hoffmann
and Brafman 2005). Missing data points indicate that the
planner either ran out of memory or exceeded our 2-hour
time limit.

(a) The Unix domain

No. of files: 1 2 3 4 5
Contingent-FF 0.02 0.98 24.99 — —

MBP 1.08 — — — —
PKS — — — — —

POND 0.37 — — — —

(b) The Robot Navigation Domain

No. of packages: 1 2 3 4 5
Contingent-FF 0.02 0.33 5.57 — —

MBP 0.08 — — — —
PKS 1.32 265.95 — — —

POND — — — — —

(c) The Medicate Domain

No. of patients: 1 2 3 4 5
Contingent-FF 0.01 0.13 1.87 18.25 —

PKS 1.32 265.95 — — —
POND 0.00 — — — —

(d) The Rovers Domain

No. of objectives: 1 2 3 4 5
Contingent-FF 0.01 0.20 3.17 — —

PKS 1.32 265.95 — — —
POND 0.14 — — — —

Rovers (Fox and Long 2002; Hoffmann and Brafman 2005;
Bryce, Kambhampati, and Smith 2006).

The experiments were run on quad-core Xeon processors
running at a clock speed of 2.33 Ghz. Note that while we
used a multiprocessor system to run our experiments in par-
allel, none of the planners in our experiments used more than
a single processor.

Table 1 shows the results of the experiments. None of
the planners could solve problems in which there were more
than a small number of unknowns (i.e., file locations, pack-
age locations, infections, or waypoints at which scientific
objectives can be achieved). Contingent-FF’s “enforced-
observations” option, which enforces the observation ac-
tions as soon as they are applicable (otherwise, Contingent-
FF’s heuristic seemed to be ignoring them at their proper
places in the plan, yielding huge amount of search), enabled
it to do better than the other planners, but Contingent-FF still
could handle only a few unknowns. We have not run MBP
on Medicate and Rovers because it was not able to solve
these problems at all in the results reported in (Hoffmann
and Brafman 2005).

178



Maintaining Focus
We believe the poor performance results in Table 1 derive
from a kind of “attention deficit disorder” in the planners,
which occurs due to a combinatorial explosion in the number
of combinations of contingencies.

For example, in the Robot Navigation domain, if there are
n packages and 7 rooms, then there are 7n possible combi-
nations of initial locations for those packages. If the planner
cannot maintain focus on one contingency at a time, then
it can waste huge amounts of time and space generating
an alternative plan for each combination of contingencies.
This leads us to the following hypothesis: all four planners
should be able to solve POC planning problems more effi-
ciently if we can instruct them to focus only on a small num-
ber of contingencies at a time, rather than trying to consider
all of them at once.

In this section we’ll consider a specific kind of focus-
ing: that is, focusing on the actions relevant for a specific
task. For example, if the planner can focus on delivering
one package at a time, then there are only 7 possible loca-
tions for this package, hence 7 contingencies to consider.
The planning should go more efficiently if the planner fin-
ishes planning for this package before considering the pos-
sible locations of any other package.

It is possible to implement this kind of focusing by rewrit-
ing the planning operators for a domain, without any need to
modify the planners themselves. The technique is basically
as follows: (1) Allow the current state to contain an asser-
tion telling what subproblem a planner is currently trying to
solve, and introduce a “focusing” action to put this assertion
into the current state; (2) include this assertion in the pre-
conditions of the operators for the subproblem; and (3) in
the final action needed to complete the subproblem, include
an effect that removes the “focusing” assertion, to tell the
planner it can go on to some other subproblem.

As an example, here is an operator to assert that we are
focusing on a package x in Robot Navigation:

focus(x)
Precond: ¬focusing()
Effects: focusing(), focused-on(x)

We will include focusing() in the preconditions of all of
the robot’s movement operators, and include focused-on(x)
in the preconditions of the operators for picking up x and
putting it down. In addition, we will modify the operator for
putting down x so that its effects include ¬focusing() and
¬focused-on(x).

Furthermore, the operator for putting down a package x
is useful only when the robot is at x’s destination. Hence, to
focus the planner even further, we’ll add a precondition to
this operator to prevent it from being used except when the
robot is at x’s destination.

It is easy to make similar modifications to the other do-
mains. In the Unix domain, the focusing operator tells the
planner to focus on one file at a time; in the Medicate do-
main, it tells the planner to focus on a particular patient; and
so forth.

Experimental Results with Focusing. To test how well
the above focusing information would help Contingent-FF,

Table 2: CPU times for Contingent-FF, MBP, PKS, and
POND. Each data point is the average of 100 randomly
generated problems. Below, we used for Contingent-FF
the“enforced observations” option reported in (Hoffmann
and Brafman 2005). Missing data points indicate that the
planner either ran out of memory or exceeded our 2-hour
time limit.

(a) Unix domain, with focusing

Files: 1 2 3 4 5
Contingent FF 0.02 0.27 4.53 59.39 —

MBP 0.74 3.94 — — —
PKS 0.11 0.99 8.27 67.58 664.98

POND 0.15 — — — —

(b) Robot Navigation domain, with focusing

Packages: 1 2 3 4 5
Contingent-FF 0.02 0.36 4.78 56.44 —

MBP 0.06 131.77 — — —
PKS 0.44 7.33 116.02 — —

POND — — — — —

(c) Medicate domain, with focusing

Patients: 1 2 3 4 5
Contingent-FF 0.00 0.05 0.58 3.95 —

PKS 0.00 0.06 0.38 1.73 10.13
POND 0.00 — — — —

(d) Rovers domain, with focusing

Objectives: 1 2 3 4 5
Contingent-FF 0.00 0.05 0.58 3.95 —

PKS 0.00 0.14 1.32 10.76 81.15
POND 1.13 — — — —

MBP, PKS, and POND, we ran them on the same planning
problems as before, using the modified planning domains
described above.

As shown in Table 2, most of the planners performed
much better than before. Except for POND, they all could
solve larger problems than before (especially PKS and
Contingent-FF), and in most cases they ran much faster than
before.

More Extensive Focusing

The previous section described one kind of focusing, imple-
mented as modifications to the planning domain’s operators.
Here are some other kinds of focusing that are more awk-
ward to implement in that fashion:

• Focusing on relevant actions at multiple levels of tasks,
subtasks, sub-subtasks, etc. This is a more complicated
version of the kind of focusing discussed in the previous
section.

• Focusing on the information relevant for deciding on the
current action. When solving one task x, there may be
many unknowns whose values are irrelevant for solving
x. In developing a plan for x, we shouldn’t plan sepa-
rately for each possible combination of values of these

179



Procedure FOCUS(O, N, b0, w0, M)
π ← ∅; B ← {(b0, w0)};
loop
remove any pair (b, w) from B s.t. w is the empty HTN
if B = ∅ then return(π)
select a pair (b, w) ∈ B and remove it from B
if b does not appear in π then

select a task t from w that has no predecessors
if t is a primitive task then

t corresponds to an action a
B ← ReFocus(B, b, w, t, a)
if B = failure then return failure

else if t is a nonprimitive task then
nondeterministically choose a method m ∈ M for t
B ← ReFocus(B, b, w, t, m)
if B = failure then return failure

else if b is dead-end in π then return(failure)

Procedure ReFocus(B, b, w, t, x)
if x an action for task t that is applicable in b then
insert (b, x) into π
remove t from w and insert (γ(b, t), w) into B

if x an HTN method for t that is applicable in b then
remove t from w
insert into w the decomposition of t specified in m
insert (b, w) in B

else if x has precondition p �∈ b and observe(p) ∈ N then
insert (b, observe(p)) into π
B ← B ∪ {(b′, w) | b′ ∈ γ(b, observe(p))}

else return failure

Figure 1: Pseudocode for FOCUS. In the above, b0 is the
initial belief state, w0 is the initial HTN task network, and
M is the set of HTN methods.

unknowns, because our plan for x will be the same in
every case. For example, if we are in room4, then the
open/closed status of door 4 matters, but the open/closed
status of doors 2, 3, 5, 6, and 7 doesn’t: the same set of
actions will be applicable in the current state, regardless
of whether those doors are open or closed.
MBP and POND already implement a version of this kind
of focusing, by planning over sets of states—for example,
the set of all states in which door 4 is open—rather than
individual states. They use a special-purpose data struc-
ture called a Binary Decision Diagram (BDD) to repre-
sent a set of states.

• Focusing on a specified task ordering. In some cases, it
may be useful to impose an ordering on tasks or actions.
As one example, to deliver a package x in the Robot Nav-
igation Domain, we should find x, pick it up, move to
x’s destination, and put x down; and in the Unix domain,
there is a similar ordering on the actions for finding and
moving a file. As another example, rather than consider-
ing all 24 sequences in which we could deliver n pack-
ages, we might want to impose an arbitrary ordering such
as package1, package2, package3, package4.

The FOCUS Algorithm. To enable advanced kinds of fo-
cusing such as the ones discussed above, we decided that
instead of trying to make modifications to the planning op-

Table 3: CPU times in seconds for FOCUS, as a function of
the number of files, packages or patients.

Files or
packages: 1 2 3 4 5
Unix: 0.01 0.02 0.04 4.23 14.47
Robot Nav.: 0.57 1.64 3.09 5.26 8.15
Medicate: 0.00 0.03 0.06 0.11 0.20

erators, it would be easier to write the focusing information
as Hierarchical Task Network (HTN) methods. To accom-
plish this, we wrote a new planner called FOCUS4 that can
utilize focusing information written as HTN methods. The
pseudocode for FOCUS shown in Figure 1. FOCUS’s HTN
methods are written in a format similar to the format of
SHOP2’s methods (Nau et al. 2003), but generalized for
use in POC domains.

FOCUS’s input consists of an initial belief state b0, a set
O of planning operators, a set N of observation actions. The
goals of the planning problem are expressed as tasks. FO-
CUS searches over a space of belief states. In order to plan
for the various possible states in each belief state, it essen-
tially does an AND-OR search (Nilsson 1980) in which each
OR-branch corresponds to the choice of alternative methods
for nonprimitive tasks, and each AND branch (which is rep-
resented by the set B in Figure 1) corresponds to the possi-
ble outcomes of the observe actions. In order to solve B,
FOCUS must solve all of task networks that appear in B.
FOCUS terminates when all of the task networks in B are
empty; at that point, the policy π is a solution to the POC
planning problem and FOCUS returns it.

FOCUS’s task-decomposition process (the ReFocus sub-
routine in Figure 1) is similar to SHOP2’s, but differs in sev-
eral significant respects:
• Let pre be the preconditions of the operator or method x.

In FOCUS, x is applicable in a belief state b if pre ⊆ b,
that is, if each precondition p ∈ pre is known to be true
in b.

• If pre contains a precondition p whose truth value is un-
known in b, then FOCUS checks whether there is an ac-
tion observe(p). If there is, then FOCUS generates two
successor belief states: b′ for the case where p is true, and
b′′ for the case where p is false; and it inserts the new
pairs (b′, w) and (b′′, w) into B. Note that FOCUS does
not modify the current HTN w; this won’t happen until
later in one of FOCUS’s subsequent loop iterations.

• If p is false in b, or if p’s truth value is unknown in b and
there is no observation action for p, then FOCUS returns
failure.

Experimental Results. We tested FOCUS’s performance
on the Unix, Robot Navigation, and Medicate domains, 5 un-
der the same experimental conditions described earlier. For

4FOCUS is an acronym for “Focus On Contingencies Until
Solved.”

5Based on our experience with the other three domains, we ex-
pect that FOCUS will do quite well on the Rovers domain, but we
have not yet had time to carry out those experiments. We intend to

180



each domain, we wrote an HTN description of some ways to
focus in that domain.6

As an example of the kind of information encoded in these
HTN descriptions, consider the Robot Navigation domain.
For the task of delivering a package x, the relevant opera-
tions include the subtask of finding x, the operation of pick-
ing x up, the subtask of moving to x’s destination, and the
operation of putting x down. All of that can be easily spec-
ified as a single HTN method. For the subtask of moving
to x’s destination, the relevant operations include opening
the door of the current room, moving to the hallway, open-
ing the door of the destination room, and moving into that
room. This can easily be specified as another HTN method.

The HTN representation made it possible to provide fo-
cusing information for each task without needing to encode
additional preconditions and effects into the operators. Fur-
thermore, it made for very efficient planning. As shown in
Table 3, FOCUS very quickly solved all of the problems in
our test suites.

Related Work

One of the earliest POC planning algorithm is CNLP (Peot
and Smith 1992), a partial-order causal-link planner (a
variant of SNLP) that generates conditional plans. Cas-
sandra (Pryor and Collins 1996) was another partial-order
planner contemporaneous with CNLP. Plinth (Goldman and
Boddy 1994), differed from Cassandra and CNLP in being
a linear (total-order) planner; this made it considerably sim-
pler, and avoided CNLP’s incompleteness issues.

In this paper, we considered four state-of-the-art planners
that can deal with partial-observability in planning domains.
PKS is a simple forward-chaining planning algorithm ca-
pable of performing depth-first or breadth-first search over
a space of “knowledge” states. Each such state specifies a
particular type of knowledge for planning, including facts
known at planning time and facts whose truth value will be
known at execution time. PKS generates conditional plans
with branching points based on the knowledge for what is
true/false at planning time and what will be true/false at ex-
ecution.

MBP is probably the best-known planner for nondeter-
ministic environments. It incorporates several algorithms
based on symbolic model-checking (Cimatti et al. 2003),
including algorithms to to deal with partial observability
(Bertoli et al. 2006) in nondeterministic domains. In MBP,
belief states are defined as sets of states that represent com-
mon observations, and compactly represented using Binary
Decision Diagrams (BDDs) (Bryant 1992).

Contingent-FF (Hoffmann and Brafman 2005) is a POC
planner that is an extension of the well-known FF planner
(Hoffmann and Nebel 2001). Contingent-FF represents be-
lief states implicitly, as partial sequences of actions, as op-
possed to an explicit representation as in our formalism here.
Contingent-FF conducts its planning as an AND-OR plan-
ning process, similar to FOCUS. The difference is the AND-

do so in the near future.
6Our HTN domain descriptions are posted at http://www.cs.

umd.edu/users/ronwalf/2009/focus/.

OR search (Nilsson 1980) is guided by FF-style domain-
independent heuristics that are computed based on relax-
ations of POC planning problems.

POND (Bryce, Kambhampati, and Smith 2006) is also
based on AO* search as Contingent-FF. POND includes
some complicated planning-graph based heuristics for plan-
ning over belief states that are implemented via BDDs. Ear-
lier experiments with POND demonstrated that it outper-
forms Contingent-FF and MBP in some planning bench-
marks. In our planning domains, however, both Contingent-
FF and MBP performed better than POND and solved larger
problems. One possible explanation is that the heuristic se-
lection of the successor states and actions in our domains
does not conform well with the BDD-based state and pol-
icy representations in POND, which usually require sets
of states be described via well structured logical formulas
(Cimatti et al. 2003; Kuter and Nau 2004).

The C-SHOP planner described in (Bouguerra and Karls-
son 2004) is an earlier investigation into using HTN plan-
ning in partially-observable domains. However, C-SHOP is
based on the SHOP planner (Nau et al. 1999); hence un-
like FOCUS it cannot interleave subtasks. Also, C-SHOP
models observations over belief states via special tasks in
an HTN that need to be provided by the domain expert and
must include domain knowledge about probabilities and ob-
servation tasks. FOCUS does not require such knowledge:
its HTN methods only contain information about how to fo-
cus its attention.

Finally, the work reported in (Baier, Fritz, and McIlraith
2007) describes a way to take a body of procedural domain
knowledge specified in an Algol-like language and translates
it into PDDL so that any classical planner that uses PDDL as
input planning language is able to use the translated domain
knowledge. We believe this work nicely dovetails with our
notion of using focus operators, but it does not address POC
plannning, as we do. It would be interesting as a future work
to use this approach for generating domain knowledge for
our framework described here.

Conclusions

For ordinary classical planning, planning graphs provided a
very powerful technique for focusing a planner on a partic-
ular part of the search space. The planning graph provides a
collection of operators, and ordering constraints on those op-
erators, such that if a solution exists at all, a solution can be
found using those operators with those ordering constraints.

For POC planning, a similar degree of focusing power
is harder to attain. In our initial set of experiments with
Contingent-FF, MBP, PKS, and POND—planners that rep-
resent the state-of-the-art in POC planning—none of them
was able to solve planning problems with more than a few
objects, because they were unable to focus on just a few of
them at a time.

We have shown how some elementary focusing infor-
mation can be encoded directly into POC planning opera-
tors, without making any modifications to the planning algo-
rithms. As shown in our second set of experiments, this en-
abled Contingent-FF, MBP, and PKS to solve problems more

181



quickly and solve bigger problems than they could solve be-
fore. The focusing information, however, did not improved
the performance of POND since, we believe, the focusing
information we mentioned above did not have any affect in
constraining BDD representations in POND.

In addition, we have described a new planner called FO-
CUS, that makes use of focusing information written in an
HTN-like language. FOCUS very quickly solved even our
largest test problems.

As we explained earlier, the focusing information used
by FOCUS is written in an HTN-like language because it
would have been awkward to encode it directly into ordi-
nary POC planning operators. On the other hand, we believe
it will be possible to develop an algorithm to take the same
focusing information used by FOCUS, and translate it au-
tomatically into POC planning operators. Developing such
an algorithm will be a focus (please excuse the pun) of our
near-term work. This will provide a way to incorporate FO-
CUS’s focusing information into Contingent-FF, MBP, PKS,
POND, and any other POC planning algorithm.

In the future, we intend to explore ways to automatically
extract focusing information from the execution traces of so-
lutions to planning problems in a domain. Currently, either
in the form of focus operators or in more expressive HTNs
for the FOCUS algorithm, this knowledge is hand-written
by the domain experts. In addition to the idea mentioned in
the previous section, another way we intend to investigate is
to use goal-regression techniques to extract focusing knowl-
edge given execution traces for planning problems.

Acknowledgments. This work was supported in part
by AFOSR grant FA95500610405, NAVAIR contract
N6133906C0149, DARPA’s Transfer Learning Program,
DARPA IPTO grant FA8650-06-C-7606, and NSF grant
IIS0412812. The opinions in this paper are those of the au-
thors and do not necessarily reflect the opinions of the fun-
ders.

References

Baier, J.; Fritz, C.; and McIlraith, S. 2007. Exploiting procedural
domain-specific control knowledge in state-of-the-art planners. In
Proceedings of the International Conference on Automated Plan-
ning and Scheduling (ICAPS).
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2006.
Strong Planning under Partial Observability. Artificial Intelli-
gence 170:337–384.
Bouguerra, A., and Karlsson, L. 2004. Hierarchical task plan-
ning under uncertainty. In 3rd Italian Workshop on Planning and
Scheduling (AI*IA-04).
Bryant, R. E. 1992. Symbolic boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys 24(3):293–
318.
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Planning
Graph Heuristics for Belief Space Search. Journal of Artificial
Intelligence Research 26:35–99.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003. Weak,
strong, and strong cyclic planning via symbolic model checking.
Artificial Intelligence 147(1-2):35–84.

Fox, M., and Long, D. 2002. International planning competition.
http://www.dur.ac.uk/d.p.long/competition.html.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Plan-
ning: Theory and Practice. Morgan Kaufmann.
Goldman, R. P., and Boddy, M. S. 1994. Conditional linear plan-
ning. In AIPS-94, 80–85.
Hoffmann, J., and Brafman, R. 2005. Contingent Planning via
Heuristic Forward Search with Implicit Belief States. In Proceed-
ings of the 15th International Conference on Automated Planning
and Scheduling.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of Artificial
Intelligence Research 14:253–302.
Kabanza, F.; Barbeau, M.; and St-Denis, R. 1997. Planning con-
trol rules for reactive agents. Artificial Intelligence 95(1):67–113.
Kuter, U., and Nau, D. 2004. Forward-chaining planning in non-
deterministic domains. In AAAI-2004.
Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In IJCAI-99.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu, D.;
and Yaman, F. 2003. SHOP2: An HTN planning system. JAIR
20:379–404.
Nilsson, N. 1980. Principles of Artificial Intelligence. Morgan
Kaufmann.
Peot, M., and Smith, D. 1992. Conditional nonlinear planning.
In AIPS-92, 189–197.
Petrick, R., and Bacchus, F. 2002. A knowledge-based approach
to planning with incomplete information and sensing. In AIPS-02.
Pryor, L., and Collins, G. 1996. Planning for contingencies: A
decision-based approach. JAIR 4:287–339.

182




