
Ontologies for Dates and Duration

Michael Grüninger
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Abstract

Reasoning with dates and duration has long been addressed
by the community. Existing duration ontologies, however,
lack complete axiomatizations of their intended models;
many simply represent timedurations as real numbers and
treat the duration function as a metric on the timeline. We
show that such approaches are inadequate and provide a first-
order ontology of duration that overcomes these limitations.

Introduction

Reasoning about durations in the context of a calendar com-
posed of dates is a fundamental capability required for
many applications, from supply-chain management and e-
commerce to narrative analysis. For example, we would like
a suite of ontologies that can be used to infer that an order is
late if we know that today is Friday and the order was sent
on Monday, but the order takes only two days to arrive.

Earlier approaches to ontologies for durations, dates, and
calendars lack complete axiomatizations – intended seman-
tics is specified in documentation but there are insufficient
axioms to guarantee that all models are intended, or else
arithmetic is used as the intended model (that is, reasoning
about timedurations reduces to reasoning about real num-
bers). We want to find the weakest first-order theory with
the minimal set of assumptions that axiomatizes the class of
intended models, rather than use a specific intended model.

In this paper we introduce three first-order ontologies that
axiomatize intuitions about durations, dates, and calendars.
Existing ontologies for duration use a particular algebraic
field (such as the rational or real numbers) to reason about
duration. In the Duration Ontology presented in this paper,
timedurations do not form a field, since we do not multiply
timedurations, although we do want to multiply timedura-
tions by a scalar (i.e. element of a field). Instead, timedura-
tions form a vector space. The duration function is therefore
a vector-valued function, and it cannot be a metric (which
would be a function from the timeline to a field). Further-
more, the axioms for metric spaces alone are too weak to
axiomatize the intended models that formalize the intuitions
for the duration function.
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The duration ontology presented in this paper also lays
the foundations for an ontology of dates. Since dates have
multiple repeatable occurrences at different timepoints, we
define them as a class of activities in the Dates Ontology.
Calendars are complex activities composed of dates, and the
axioms that specify how such complex activities occur are
introduced in the Calendar Ontology. Specific calendars,
such as the Gregorian and lunar calendars, are domain theo-
ries that are extensions of the Calendar Ontology.

Methodology

The problem of ontology evaluation is becoming increas-
ingly important. The obvious logical criterion for ontology
evaluation is consistency. Strictly speaking, we only need
to show that a model exists in order to demonstrate that a
first-order theory is consistent. Constructing a single model,
however, runs the risk of having demonstrated satisfiabil-
ity for a restricted case; for example, one could construct a
model of a process ontology in which no processes occur,
without realizing that the axiomatization might mistakenly
be inconsistent with any theory in which processes do oc-
cur. We therefore need a complete characterization of all
models of the ontology up to isomorphism. One approach to
this problem is to use representation theorems – we evalu-
ate the adequacy of the ontology with respect to some well-
understood class of mathematical structures (such as partial
orderings, graph theory, and geometry) that capture the in-
tended interpretations of the ontology’s terms.

In order to specify and prove representation theorems, we
first define various substructures of any M ∈ M

1. For
each class of substructures, we prove that the class exists
and is nonempty, and then we provide a characterization of
the structures in the class up to isomorphism. Next, we pro-
vide a definition of the class M, which will often include
additional conditions on the ways in which the substructures

1In this paper, we will be using the following notation:
Structures are denoted by calligraphic font:

M,N ,M′,M1, ....
Classes of structures are denoted by M, N, ...
The domain of a structure M is denoted by M . Elements of a

structure are denoted by boldface font.
The extension of an n-ary relation R in a structure M is denoted
by the n-tuple 〈a1, ..., an〉 ∈ R.
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can be combined. For each relation, we provide a charac-
terization of its extension with respect to the substructures
defined earlier.

Given the definition of M, we then prove that the class
exists and is nonempty; this is necessary because of the ad-
ditional conditions in the definition of M on the combina-
tion of substructures. This also provides a characterization
of the structures in the class up to isomorphism. We prove
the representation theorem in two parts – we prove that ev-
ery structure in the class is a model of the ontology and then
prove that every countable model of the ontology is elemen-
tary equivalent to some structure in the class.

The characterization up to isomorphism of the models of
an ontology through representation theorems has several dis-
tinct advantages. First, unintended models are more easily
identified, since the representation theorems characterize all
models of the ontology. We also gain insight into any im-
plicit assumptions within the axiomatization which may ac-
tually eliminate models that were intended. Second, any de-
cidability and complexity results that have been established
for the classes of mathematical structures in the representa-
tion theorems can be extended to the ontology itself. Finally,
the characterization of models supports the specification of
semantic mappings to other ontologies, since such mappings
between ontologies preserve substructures of their models.

Duration Ontology

One fundamental insight is that timedurations do not form
a field, such as the reals or rationals, as many approaches
((Rescher & Urquhart 1971), (Navarrete et al. 2002),
(Knight & Ma 1994b), (Knight & Ma 1994a), (Kautz & Lad-
kin 1991), (Hobbs & Pan 2004)) have assumed. Although
we do want to be able to add durations together, the prod-
uct of two timedurations is not a timeduration; thus, multi-
plication is not a function on the set of timedurations, and
the underlying structure for timedurations cannot be a field.
Nevertheless, we do want to be able to specify scalar mul-
tiples of timedurations (e.g. one task takes twice as long as
another). If such scalars are elements of a field, then the in-
tended models for timedurations must be vector spaces. If
the scalars are elements of a ring (e.g. the integers), then
the intended models for timedurations would be a module.
If we consider problems in which the duration of an activity
depends on distance and velocity, then we want to specify
at least rational multiples of timedurations, and hence the
scalars would form a field. Vector spaces have the additional
advantage of being decidable (), whereas modules in general
are not.

Timedurations alone are not sufficient for a duration on-
tology; we also need a function that assigns timedurations
to time intervals or pairs of timepoints. Since earlier ap-
proaches have assumed that timedurations formed a field,
they have treated this function as metric ((Hajnicz 1996),
(Rescher & Urquhart 1971), (Barber 1993)). Given that
timedurations actually form a vector space, the duration
function is no longer a metric, and we must find a suitable
class of vector-valued functions to adequately capture the
intended models.

Structures for Representing Duration

Using these intuitions, we now formally specify the classes
of structures that will be used to characterize the intended
models of timedurations and the duration function, namely,
timelines, ordered vector spaces, and vector maps.

Timelines Ontologies of time have been thoroughly stud-
ied in the literature, both from a model-theoretic (van Ben-
them 1991) and axiomatic (Hayes 1996) perspective. In this
paper, we use the ontology whose models are a linear or-
dering over timepoints2; we do not impose any additional
assumptions about density or discreteness.

Definition 1. A structure T = 〈T, <〉 is a timeline iff it is
isomorphic to a countable linear ordering.

Although the axioms that we introduce in Tduration as-
sume that there are no endpoints, the axioms can be eas-
ily be extended to time ontologies whose models do include
endpoints at infinity.

Ordered Vector Spaces In addition to the above argu-
ments in favor of timedurations forming a vector space, we
also want to define an ordering over timedurations (e.g. a
week is longer than a day but shorter than a week). This
leads to the following class of structures:

Definition 2. D = 〈D, zero,add,mult,one, lesser〉 is
an ordered vector space iff D is a vector space whose ele-
ments are partially ordered.

Vector Maps Within differential topology, a vector-
valued function on the space R

n is known as a vector field.
in which a unique vector is associated with each element of
R

n. The duration function is also a vector-valued function,
since it maps pairs of timepoints to a unique timeduration.
However, since we want a mapping δ from T × T to the
vector space D, we need to generalize the notion of vector
field.

There are, of course, many possible functions from T ×T
to the vector space D. We define the class of vector-valued
functions for duration using the automorphisms of the struc-
ture, that is, mappings from the structure to itself that pre-
serve values of the duration function δ:

δ(t1, t2) = δ(t3, t4) ⇔ ϕ(δ(t1, t2)) = ϕ(δ(t3, t4))

Intuitively, automorphisms of the timeline (which form
a group denoted by Aut(T ) should preserve the duration
function – if we shift timepoints along the timeline while
preserving their ordering, the values of the duration function
should not change. This insight leads to the following class
of structures:

Definition 3. Let T be a timeline and let D be an ordered
vector space.

The structure V〈δ, T × T ,D〉 is a vector map iff

δ : T × T → D

and
Aut(V) ∼= (Aut(T ) × Aut(T )

2The axioms for Ttime in CLIF (Com-
mon Logic Interchange Format) can be found at
http://www.stl.mie.utoronto.ca/colore/linear-time.clif

567



Given all of these classes of structures, we are now in a
position to define the class of structures M

duration that will
be used to characterize the models of the Duration Ontology.

Definition 4. Let M
duration be the following class of struc-

tures: M ∈ M
duration iff M = T ∪ D ∪ V, where

1. T = 〈timepoint,before〉 is a timeline;

2. D = 〈timeduration,add,mult, zero,one, lesser〉
is an ordered vector space;

3. V = 〈duration, T × T ,D〉 is a vector map.

Characterization Theorems for M
duration

In this section, we show that the class of structures
M

duration is nonempty. The characterization of timelines
up to isomorphism follows from (van Benthem 1991) and
the characterization of ordered vector spaces is presented in
(Peressini 1967). We therefore need to focus on the charac-
terization of vector maps and show that vector-valued func-
tions with the requisite automorphisms exist.

Definition 5. Suppose V = 〈δ, T × T ,D〉 is a vector map.
An integral curve C(d) in V is a subset of T × T such

that

C(d) = {(t1, t2) : δ(t1, t2) = d,d ∈ D}

In other words, an integral curve is an equivalence class
of pairs of timepoints that map to the same timeduration.
The following theorem shows that any vector map can be
decomposed into a set of integral curves:

Theorem 1. Let T be a timeline, let D be an ordered vector
space, and suppose

δ : T × T → D

The structure V = 〈δ, T × T ,D〉 is a vector map iff

1. V is a set of disjoint integral curves which is isomor-
phic to a linearly ordered subgroup of D which is order-
isomorphic to T .

2. Each integral curve in V is order-isomorphic to T .

Axiomatization of Tduration

The axioms of Tduration can be divided into two subtheories
– the first captures the notion of timedurations as elements
of ordered vector spaces, while the second capture the for-
malization of the duration function as a vector map. In par-
ticular, the second subtheory contains generalizations of the
axioms for metric spaces, and also guarantees that automor-
phisms of the timeline also preserve the ordering over time-
durations and that mappings that preserve the vector map are
also automorphisms of the timeline.

Tduration does not mention specific constants that de-
note particular timedurations such as second, hour, day,
or year. The axioms for such constants are not contained in
the Duration Ontology, but rather are specified in a domain
theory (Gruninger 2009) that extends Tduration, just as lin-
ear equations are domain theories for general vector spaces.
Thus, equations such as

hour = mult(60, second)

day = mult(24, hour)

define specific timedurations as the linear combinations of
other timedurations. This allows for different time-keeping
systems to share the same Duration Ontology.

Using a relative interpretation with the axiomatization in
(Peressini 1967), together with Theorem 1, we can prove the
representation theorem for models of Tduration:

Theorem 2. Any a countable model of Tduration ∪ Ttime

is elementary equivalent to some M ∈ M
duration, and

any structure in M
duration is isomorphic to a model of

Tduration ∪ Ttime.

Summary
Although reasoning with dates and duration has long been
addressed by the community, earlier ontologies have either
relied on an intended model such as the real numbers to
represent the notion of duration, or they have used incom-
plete axiomatizations. In this paper, we have introduced
first-order axiomatizations for durations. We have speci-
fied the classes of intended structures for these ontologies,
proven characterization theorems for these classes of struc-
tures, and proven representation theorems for the models of
the axioms. The resulting ontologies can serve as the basis
for future standardization work in efforts such as the OMG
Date-Time Vocabulary.
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