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Abstract

An area coverage control law in cooperation with reinforce-
ment learning techniques is proposed for deploying multi-
ple autonomous agents in a two-dimensional planar area. A
scalar field characterizes the risk density in the area to be
covered yielding nonuniform placement of agents while pro-
viding optimal coverage. This problem has traditionally been
addressed in the literature to date using conventional control
techniques, such as proportional and proportional–derivative
controllers. In most cases, agents’ actuator energy required
to drive them in optimal configurations in the workspace
is not taken into considerations. Here the maximum cover-
age is achieved with minimum actuator energy required by
each agent. Similar to existing coverage control techniques,
the proposed algorithm takes into consideration time-varying
risk density. Area coverage is modeled using Voronoi tessel-
lations governed by agents. Theoretical results are demon-
strated through a set of computer simulations where multiple
agents are able to deploy themselves, thus paving the way for
efficient distributed Voronoi coverage control problems.

Introduction
The problem of cooperative multi-agent decision making
and control is to deploy a group of agents over an envi-
ronment to perform various tasks including sensing, data
collection and surveillance. This topic covers a wide range
of applications in varied fields. Applications in military
and civilian domains, such as harbor protection (Simetti
et al. 2010; Kitowski 2012; Miah et al. 2014), perime-
ter surveillance (Pimenta et al. 2013; Zhang, Fricke, and
Garg 2013), search and rescue missions (Hu et al. 2013;
Allouche and Boukhtouta 2010), and cooperative estimation
(Spinello and Stilwell 2014).

In the last two decades, researchers have proposed vari-
ous solutions to a lot of interesting sensor network coverage
problems based on the work of (Cortes et al. 2002). Recent
contributions and meaningful extensions of the framework
devised in (Cortes et al. 2004) have been proposed in the lit-
erature (Bullo, Cortés, and Martı́nez 2009; Martinez, Cortes,
and Bullo 2007). In (Corts, Martnez, and Bullo 2005) the
problem of limited-range interaction between agents was
addressed. The work described in this paper is similar the
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coverage control problem presented in (Lee, Diaz-Mercado,
and Egerstedt 2015a; 2015b; Miah et al. 2014) which uses
the geometrical notion of a Voronoi partition to assign the
agents to different parts of an environment.

Many processes in industry can benefit from control al-
gorithms that learn to optimise a certain cost function.
Reinforcement learning (RL) is such a learning method.
The user sets a certain goal by specifying a suitable re-
ward function for the RL controller. The RL controller then
learns to maximize the cumulative reward received over
time in order to reach that goal. The proposed recursive
least square actor-critic Neural Network (NN) solution im-
plemented in this paper is preferred over the gradient de-
scent approach (Al-Tamimi, Lewis, and Abu-Khalaf 2008;
Vamvoudakis and Lewis 2009; Vrabie et al. 2007; Vrabie
and Lewis 2009) since it offers significant advantages in-
cluding the ability to extract more information from each
additional observation (Bradtke, Ydstie, and Barto 1994)
and would thus be expected to converge with fewer training
samples. Moreover, this paper implements the synchronous
discrete-time adaptation of both actor and critic NNs.

The contributions of the paper are two folds. First, it in-
volves the formulation of a nonlinear error coverage func-
tion linearized for dynamic discrete-time multi-agent sys-
tems, where information flow is restricted by a communica-
tion graph structure. Most of the prior works in the Voronoi-
based coverage control consider single-integrator dynamics
for the agents. However, in practice a wide range of mo-
bile agents such as unmanned vehicles have more complex
dynamics, which can invalidate the performance of the al-
gorithms developed for trivial dynamics. Second, we de-
velop an adaptive controller using actor-critic NN approx-
imation that asymptotically drives agents in optimal config-
uration such that the coverage is maximized regardless of
the complexity of the time-varying density throughout the
workspace. Like that, the agents employ minimum actuator
energy to place themselves in optimal configurations. The
rest of this paper is organized as follows. First, Voronoi-
based area coverage problem is introduced and formulated.
Agent deployment using a time-varying density model is in-
troduced which is a function of position of some unknown
targets in the environment. The second order control law is
then introduced and the nonlinear error coverage function is
formulated. The proposed multi-agent area coverage control
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(MAACC) law in cooperation with reinforcement learning
techniques is then illustrated. Following that, the key steps
of the proposed algorithm are summarized. The paper con-
cludes with some numerical simulations followed by con-
clusion and future research avenues.

System Model and Problem Formulation
We consider a group of n homogeneous agents, where the
dynamics of ith, i = 1, . . . , n, agent is modeled by

p̈i = ui, (1)

where agent’s position pi = [xi, yi]
T , and its correspond-

ing acceleration vector is denoted by ui ∈ R
2. Agents are

deployed in a 2D area Ω ⊂ R
2.

Each agent partitions the workspace (or area to be cov-
ered) according to Voronoi tessellation technique presented
in (Miah et al. 2015), such that Ω = V1 ∪ V2 ∪ . . . ,∪Vn,
where the area (ith Voronoi cell) Vi ⊂ Ω belongs to agent
i, i = 1, . . . , n. The Voronoi region Vi of the ith agent
is the locus of all points that are closer to it than to any
other agents, i.e., Vi = {q ∈ Ω| ‖ q− pi ‖≤‖ q− pj ‖
, i �= j, i ∈ 1, 2, ..., n}. The risk associated with the agents’
workspace is modeled by the time-varying risk density func-
tion defined as

φ(q, t) = φ0 + e

{
− 1

2

(
(qx−q̄x(t))2

β2
x

+
(qy−q̄y(t))2

β2
y

)}
, (2)

where φ0 > 0 is constant and q̄(t) = [q̄x(t), q̄y(t)]
T is the

position of a moving target that characterizes risk through-
out the workspace Ω. Clearly, the mass and centroid of
the ith Voronoi cell are given by mVi =

∫
Vi

φ(q)dq and
cVi

= 1
mVi

∫
Vi

qφ(q)dq. Intuitively, for optimal coverage
by a team of agents, more (less) agents should be deployed
where higher (lower) values of the measure risk density. Fur-
thermore, we assume that the sensing performance function
f(ri) of the ith agent is Lebesgue measurable and that it
is strictly decreasing with respect to the Euclidean distance
ri = ‖q− pi‖. Hence, the sensing performance function of
the ith, i ∈ I, agent is defined as f(ri) = a exp(−br2i ). Mo-
tivated by the typical locational optimization problem (Ok-
abe et al. 2000), we define the non-autonomous total cover-
age metric as

H(p,V, t) =
n∑

i=1

∫
Vi

f(ri)φ(q, t)dq, (3)

The model (3) encodes how rich the coverage in Ω is. In
other words, the higher H implies that the corresponding
distribution of agents achieves better coverage of the area Ω.
Hence, the problem can be stated as follows: Given the time-
varying density function governed by a moving target (see
model (2), we seek to spatially distribute agents such that
the coverage H is maximized regardless of the complexity
of the risk density φ, i.e.,

sup
p

H(p,V, t), subject to (1) as t→∞, (4)

where p ≡ [pT
1 ,p

T
2 , . . . ,p

T
n ]

T . In the following section,
we illustrate multi-agent area coverage control algorithm for
solving the problem (4).

Multi-Agent Area Coverage Control Law
A standard setup for solving the problem (4) follows the
Lloyd algorithm and is illustrated in (Cortes et al. 2004),
where the feedback control law for the ith agent (1) is given
by:

ui(t) = −2KpmVi
(pi(t)− cVi

(t))−Kdṗi(t), (5)

where all agents asymptotically converge to their centroids
for Kp, Kd > 0, given the fact that the density φ is time-
invariant. Since we considered time-varying density func-
tion φ(q, t), using (5), and defining ei(t) = cVi(t)− pi(t),
we define the error dynamical model as

ėi = η(ei,ui) =
2KpmVi

Kd

(
∂cVi

∂pi
− I2

)
ei+

1

Kd

(
I2 − ∂cVi

∂pi

)
ui +

∂cVi

∂t
. (6)

Model (6) represents the continuous time nonlinear error dy-
namics for agent i, where the vector-valued vector function
η:R2×R

2 → R
2 evolves the error e as time t→∞. Hence,

the corresponding linear model which defines the systems
dynamic behaviour about the optimal equilibrium operating
point (0,0) is given by

ėi = Aei +Bui, (7)
where the matrices A and B are defined as

A =
2KpmVi

Kd

(
∂cVi

∂pi
− I2

)
, B =

1

Kd

(
I2 − ∂cVi

∂pi

)
.

Since the control law will be implemented in a digital com-
puter, let t = kT, k = 0, 1, . . . , and T is the sampling time.
The discrete time model of (7) can be written as

ei(k + 1) = Adei(k) +Bdui(k) (8)

where Ad = exp(AT ) and Bd =
∫ T

0
exp(AT )dτB.

Model (8) can be represented in the following form:

ei(k + 1) = f(ei(k)) + g(ei(k))ui(k), (9)

The 2D position and velocity of the ith agent at time instant
k can be described by the discrete time dynamical model :

[
pi(k + 1)
vi(k + 1)

]
=

⎡
⎢⎣
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥⎦
[
pi(k)
vi(k)

]
+

⎡
⎢⎣
(1/2)T 2 0

0 (1/2)T 2

T 0
0 T

⎤
⎥⎦ui(k) (10)

where pi(k) = [xi(k), yi(k)]
T is the ith agent’s posi-

tion, vi(k) = [vxi (k), v
y
i (k)]

T is its velocity, and ui(k) =

[ux
i (k), u

y
i (k)]

T is its 2D acceleration inputs at time instant
k.

Using (LaSalle 1960) invariance principle it can be proved
that the control input (5) converges to a centroidal Voronoi
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configuration and provides a locally optimal coverage over
the region (Cortes et al. 2004). According to (Lloyd 2006),
the control strategy in which agent moves towards the cen-
troid of its Voronoi cell locally solves the area coverage con-
trol problem. We propose an actor-critic NN approximation
method used to approximate the control law (5) that can be
applied to more general coverage control problems, where
the density function is not explicitly known a priori. In ad-
dition, actor-critic NN approximation of the control law (5)
incorporates minimum actuating energy applied to agents’
actuators.

Actor-Critic Reinforcement Learning
We consider the linear system (9) where ei ∈ R

2,f(ei) ∈
R

2, g(ei) ∈ R
2×2 with control input ui ∈ R

2. There exist a
control input ui(k) that minimizes the Value function given
as

V (ei(k)) =

∞∑
κ=k

(
eTi (κ)Qei(κ) + uT

i (κ)Rui(κ)
)

(11)

where Q ∈ R
2×2 and R ∈ R

2×2 are positive definite matri-
ces i.e. eTi (k)Qei(k) > 0, ∀ei �= 0 and eTi (k)Qei(k) = 0
when ei = 0. Note the second term of the value function
(11). It takes into account the asymptotic energy consump-
tion of the agents.

Equation (11) can be rewritten in the form

V (ei(k)) = eTi (k)Qei(k) + uT
i (k)Rui(k)

+
∞∑

κ=k+1

(
eTi (κ)Qei(κ) + uT

i (κ)Rui(κ)
)⇒

V (ei(k)) = eTi (k)Qei(k) + uT
i (k)Rui(k)+

V (ei(k + 1)). (12)

Hence, we find the control inputs ui such that the value func-
tion (11) is minimized, i.e.,

V ∗(ei(k)) = min
ui(k)[

ei(k)
T
Qei(k) + ui(k)

T
Qui(k) + V ∗(ei(k + 1))

]
(13)

Model (13) is the discrete-time Hamilton-Jaccobi-Bellman
equation. The optimal control, u∗i can be obtained by finding
the gradient of the right hand side of (13) and setting it to
zero i.e.

(
∂V ∗(ei(k))

∂ui
= 0

)
, we obtain

2uiR+ gT (ei(k))
∂V ∗(ei(k + 1))

∂ei(k + 1)
= 0 (14)

u∗i (ei(k)) = −
1

2
R−1gT (ei(k))

∂V ∗(ei(k + 1))

∂ei(k + 1)
(15)

V ∗(ei(k)) represents the value function consistent with the
optimal control policy u∗i (ei(k)). Since the HJB equation is
a nonlinear equation, it is generally difficult or impossible
to obtain its solution. Therefore we propose an actor critic

NN approximation RL algorithm that approximates both the
value function and the control policy.

Select a value function approximation and control action
approximation structure as

V̂j(ei(k)) = wT
c,jρ(ei(k)) (16)

ûj(ei(k)) = WT
a,jσ(ei(k)) (17)

respectively, where V̂ and û are estimates of the value func-
tion and control action respectively, wc,j ∈ R

Nc is the
weight vector of critic NN, Wa,j ∈ R

Na×2 is the weight
matrix of actor NN, Nc and Na are the number of neurons
in the critic and actor NN respectively, j is the iteration step
for both actor and critic NN, ρ(ei(k)) and σ(ei(k)) are the
activation functions of the critic and actor NN respectively.
The target value function and control function can be defined
as

Vj+1(ei(k)) = ei(k)
T
Qei(k) + ui(k)

T
Rui(k)+

Vj(ei(k + 1) = ei(k)
T
Qei(k) + ui(k)

T
Ruk+

wT
c,jρ(ei(k + 1)) (18)

uj+1(ei(k)) =

− 1

2
R−1gT (ei(k))∇ρT (ei(k + 1))wc,j (19)

where Vj+1 and uj+1 can be defined as the target value func-
tion and control action respectively.

The generalized temporal difference error equation for the
critic NN can be derived as:

δc,j(k) = wT
c,j+1ρ(ei(k))− Vj+1(ei(k)). (20)

We define the critic NN least squares error E2
c,j to be mini-

mized as

E2
c,j =

Nt∑
l=1

1

2

(
δlc,j(k)

)2

=

Nt∑
l=1

1

2
[wT

c,j+1ρ
l(ei(k))− V l

j+1(ei(k))]
2

(21)

where (l = 1, . . . , Nt) and Nt=Number of training steps.
Differentiating E2

c,j with respect to wc, we get

∂E2
c,j

∂wc,j+1
=

(
∂E2

c,j

∂δc,j

)(
∂δc,j

∂wc,j+1

)

=
1

2

Nt∑
l=1

[2
(
wT

c,j+1ρ
l(ei(k))− V l

j+1(ei(k))
)
]ρl(ei(k)).

(22)
Equating (22) to zero and rearranging the equation, we ob-
tain the critic weight update least square solution of the
form:

ŵc,j+1 =

(
Nt∑
l=1

ρl(ei(k))(ρ
l(ei(k)))

T

)−1

(
Nt∑
l=1

ρl(ei(k))V
l
j+1(ei(k))

)
(23)
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Likewise, we define the actor NN training error as

δa,j(k) = WT
a,j+1σ(ei(k))− uj+1(ei(k)) (24)

where δa,j is the actor training error, we define the actor
NN LS error E2

a,j to be minimized as

E2
a,j =

Nt∑
l=1

1

2

(
δla,j(k)

)2

=
1

2

Nt∑
l=1

[WT
a,j+1σ

l(ei(k))− ul
j+1(ei(k))]

2
(25)

Differentiating E2
a,j in terms of Wa, we obtain

∂E2
a,j

∂Wa,j+1
=

(
∂E2

a,j

∂δa,j

)(
∂δa,j

∂Wa,j+1

)
=

1

2

Nt∑
l=1(

2[WT
a,j+1σ

l(ei(k))− ul
j+1(ei(k))]

)
σl(ei(k)). (26)

Equating (26) to zero and rearranging the equation, we ob-
tain actor NN training target function as follows:

uj+1(ei(k)) = ŴT
a,jσ(ei(k))

= −1

2
R−1gT (ei(k))∇ρT (ei(k + 1))ŵc,j (27)

while the actor weights least square solution is of the form:

Ŵa,j+1 =

(
Nt∑
l=1

σl(ei(k))(σ
l(ei(k)))

T

)−1

(
Nt∑
l=1

σl(ei(k))u
l
j+1(ei(k))

)
(28)

The least square solution weights ŵc,j and Ŵa,j guarantee
system stability as well as convergence to the optimal value
and control (Vamvoudakis and Lewis 2009). The actor-critic
NN weights are synchronized as follows:

Ŵa,j+1(k) = −[α
(
Ŵa,j+1(k)− ŵc,j+1(k)

)
+ (1− α)ŵc,j+1(k)] (29)

where α is the learning rate for the actor-critic NN.
Note that for the inverse of matrix of the critic(
ρ(ei(k))ρ

T (ei(k))
)−1

and actor
(
σ(ei(k))σ

T (ei(k))
)−1

to exist, one needs the basis functions ρT (ei(k)) and
σT (ei(k)) to be linearly independent and the number of ran-
dom states to be greater than or equal to the number of neu-
rons, Nc and Na for the critic and actor respectively (i.e. the
matrix determinants must not be zero).
The output of the critic is used in the training process of the
actor so that the least square control policy can be computed
recursively. In the proposed least square framework, the
learning process employs a weight-in-line actor and critic
NNs implemented using an recursive least square algorithm
to approximate both the actor and critic weights which are
tuned synchronously using (28). At each iteration step, the

Start

Measure risk density and compute Voronoi region

Update feedback law using optimal weights
u∗

i
= W∗

a
σ(ek

i
)

Move agents using according to second order dynamics

pi = ci?
k = k + 1

End

Yes

No

Initialization: pi(0)
k = 1

(1)

(2)

(3)

(4)

(5)

Figure 1: High level steps (flowchart) of the proposed
MAACC algorithm.

least square solver collects the data needed to calculate states
(ei(k)), and control update uj+1(ei(k)) and then finds the
weight vectors Wa,j and wc,j satisfying (23) and (28) re-
spectively, both of which are transferred to the correspond-
ing actor and critic NNs to update their weights. The actor
NN generates the control input ûj+1(ei(k)) while the critic
NN generates the value function output V̂j+1(ei(k)).
The actor least square solver generates the optimal action
weights (Ŵa,j+1), when ‖V̂j+1(ei(k)) − V̂j(ei(k))‖ ≤
ε, ‖ûj+1(ei(k)) − ûj(ei(k))‖ ≤ ε and ‖Ŵa,j+1(k) −
Ŵa,j(k)‖ ≤ ε which is then used in generating the optimal
control policy.

MAACC algorithm
The flowchart of the proposed MAACC RL algorithm that
converges the agents to their respective centroidal Voronoi
configuration is described and shown below:

Step 1: Initialize all parameters such as the initial time
and agent’s initial position and define the bounds for the
workspace.
Step 2: Measure the Risk density φ and compute the Voronoi
region Vi obtaining the mVi

, cVi
, ∂cVi

∂pi
, ∂cVi

∂t and ∂mVi

∂t .
Step 3: Update the feedback law using optimal weights ob-
tained from actor-critic NN approximation according to (17)
Step 4: The ith agent’s new position and velocity are com-
puted using (10)
Step 5: If agent pi converges to its centroid ci and φ is con-
stant, stop procedure, else go to Step 2

Computer Simulations
To demonstrate the effectiveness of the proposed MAACC
algorithm, a MATLAB simulation is conducted on a group
of five agents using different scenarios. In all simulations,
agents are placed on a 2D convex workspace Ω ⊂ R

2

with its boundary vertices at (1.0,0.05), (2.2,0.05), (3.0,0.5),
(3.0,2.4), (2.5,3.0), (1.2,3.0), (0.05,2.40), and (0.05,0.4)
m. Agents’ initial positions are at (0.20,2.20), (0.80,1.78),
(0.70,1.35), (0.50,0.93), and (0.30,0.50) m. The sampling
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Figure 2: Configurations of five agents at time t=160 s.

time is chosen to be 1 s and the simulation is conducted for
360 s. A moving target inside the workspace characterizes
the time-varying risk density with βx = 0.4 and βy = 0.5.
The critic NN and actor NN activation functions are de-
fined as ρ(ei(k)) = [e1, e2, e

2
1, 2e1e2, e

2
2] and σ(ei(k)) =

[e1, e2, e
2
1, 2e1e2, e

2
2], respectively with Na = Nc = 5 and

the convergence tolerance ε = 0.00001. The actor-critic
learning rate α = 0.0009, the actor and critic weights are
initialized as a zero vector and matrix respectively. The con-
trol gains are defined as Kp = 0.003 and Kd = 0.3, while
the sensing performance parameters, a = 1.0 and b = 0.5.

Figure 2 shows the agents configuration at time t = 160 s,
where agents spatially distribute themselves in an optimal
fashion to provide maximum coverage of the area and neu-
tralize the effect of two targets entering into the workspace
from two different positions (2.2, 3.0) and (2.2, 0.05). The
distance between the agents and their corresponding cen-
troids are shown in Figure 3(a) with their control efforts
(speeds) shown in Figure 3(b). These results also show how
fast the agents move to their centroids using minimum con-
trol inputs (speeds) while providing maximum coverage of
the area. The results obtained using the proposed MAACC
algorithm are compared to those obtained using the second
order control law proposed in (Cortes et al. 2004) which we
refer to as CORTES in this experiment. Figure 4(a) shows
that proposed algorithm gives a better coverage curve when
compared to CORTES, the total coverage cost calculated
numerically using (3) is obtained as 2.16 × 106 for the
MAACC algorithm which is slightly higher than 2.15× 106

using CORTES, however, the value function which en-
codes the control inputs and the error between agents and
their centroids obtained by (11) is compared as shown in
Figure 4(b), the MAACC algorithm converges faster than
CORTES showing minimum energy used.

Summary and Conclusion
We proposed an area coverage control law in cooperation
with reinforcement learning techniques, where multiple au-
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Figure 3: Performance of the proposed coverage control
algorithm(a) Error (Euclidean distance between each agent
and its corresponding centroid and (b) agents’ control in-
puts.

0 2 4 6 8 10 12 14

x 10
5

0

0.2

0.4

0.6

0.8

1

Time [sec]

n
o
rm

a
liz

e
d
 c

o
v
e
ra

g
e

Coverage Cost comparison

 

 

MAACC

CORTES

(a)

0 50 100 150 200 250 300 350 400
0

5

10

15

20

V
a
lu

e
 f
u
n
c
ti
o
n

Time[sec]

Value function comparison

 

 

MAACC

CORTES

(b)
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tonomous agents are able to asymptotically converge them-
selves in optimal configurations while providing maximum
coverage of their 2D workspace. The workspace is parti-
tioned using the well-known Voronoi tessellation technique.
Even though a pre-defined time-varying density is consid-
ered but the proposed area coverage algorithm is able to
solve coverage control problem regardless of the complex-
ity of workspace risk density. An actor-critic NN approx-
imation method is developed as a reinforcement learning
technique. In addition, it was shown by simulation that this
novel method is able to drive all agents in optimal configu-
rations while minimizing actuator energy required by each
agent. The advantage of RL in control theory is that it ad-
just to changes in environment and it continuously retrain
to improve its performance all the time. Additionally, sim-
ulations validating the proposed algorithms indeed exhibit
the desired behaviours in the virtual environment as well as
in theory. A potential future research avenue of the current
work is to develop coverage control methods coupled with
state estimation of each agents. Like that, agents will be able
to deploy themselves in the presence of stochastically inter-
mittent communication network, which is not considered in
this manuscript.
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