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Abstract 
An important problem in malware forensics is generating a 
partial ordering of a collection of variants of a malware pro-
gram, reflecting a history of the malware’s evolution as it is 
adapted by the original or new authors.  We present new 
work extending our results on the malware lineage problem 
originally presented at FLAIRS 2013.  We provide a new 
algorithm for reconstructing malware lineages with and 
without branch and merge events.  This algorithm incorpo-
rates two innovations – the evaluation of candidate evolu-
tionary traces based on candidate sets of feature accretion 
events and a machine-learning inspired approach to reduc-
ing overexplanation in the final lineage.  The evolutionary 
trace algorithm is evaluated on several small families of 
malware whose ground truth lineage is known. 

 Introduction   
An important problem in malware forensics is generating a 
partial ordering of a collection of variants of a malware 
program. Such an ordering provides a “family tree” track-
ing the malware’s evolution (henceforth called a lineage), 
helping the analyst understand malware trends, speculate 
about the origins of malware, and ultimately, attribute the 
malware to a specific actor.  Malware binaries recovered in 
the wild lack explicit temporal clues, making temporal 
ordering a challenging problem. Timestamps produced 
during compilation are easy to falsify or remove, and most 
malware authors do so.  About the only piece of temporal 
evidence available is the date of sample collection, which 
is an unreliable guide to whether one variant was derived 
from another. 
 A malware lineage is a partial ordering of malware 
samples, and can be represented as a graph where each 
vertex represents a sample, and a directed edge connects a 
sample to another sample immediately derived from it.  
Ideally, malware sample A is ordered before malware 
sample B just in the case where A was actually compiled 
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before sample B.  The malware lineage reconstruction 
problem is to construct such a partial ordering from an in-
put collection of samples based on “features” extracted 
from the malware binaries.     
 The collection of samples provided as input is assumed 
to be sufficiently closely related so that the notion that one 
sample is derived from another makes sense; thus, the line-
age graph derived from the input samples is connected.  
Such a notion can be made precise by defining a minimum 
percentage of shared code between any pair of samples in 
the input; in our research, we assumed that the input binary 
samples shared at least 70% of their original source code. 
 The quality of any solution to the malware lineage prob-
lem depends on the “features” extracted from the malware 
binaries.  All our binaries were x86 Windows PE executa-
bles.  We extracted two kinds of features from binaries.  
First, all external function calls are features (calls both to 
the Windows operating system and to any external librar-
ies).  If two binaries both make an external call, they share 
that feature.  Second, using standard static program analy-
sis techniques, we identified all subroutines internal to a 
binary.  Each subroutine is a feature.  If two samples share 
a variant of a subroutine, they both share that feature.  De-
tecting whether two subroutines are variants is itself a chal-
lenging research problem; the outlines of our technique can 
be found in (Jilcott, 2015).  
 In a FLAIRS 2013 paper (Darmetko, Jilcott, and Everett 
1997), Darmetko et al presented a probabilistic truth 
maintenance system approach for producing a malware 
lineage.  The algorithms for assessing evidence, however, 
could only produce lineages which were a total ordering of 
the samples – a straight-line lineage.  The technique pro-
duced good results only when the ground truth lineage for 
the input samples had no branch or merge events.  As a 
continuation of this research, we present a new algorithm, 
the evolutionary trace algorithm, which produces high-
quality lineages with branching and merging events.   
 The approach in Darmetko et al used, as part of its evi-
dence, a feature accretion model – the notion that software 
generally increases in complexity over time, so that sam-
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ples containing a feature are more likely to be later than 
samples that do not contain it.  The evolutionary trace al-
gorithm relies wholly on this model, but incorporates two 
innovations.  First, rather than a coarse summarization of 
all the feature evidence into evidence for a single parent-
child relationship, the algorithm assesses feature evidence 
more finely.  The algorithm constructs candidate evolu-
tionary traces for many different feature subsets and then 
compares the quality of these traces for inclusion in the 
lineage graph.  This collection of traces allows us to recon-
struct branch and merge events.  Second, inspired by a 
technique for learning the structure of Bayesian Network 
models, the algorithm minimizes overexplanation by prun-
ing excess parent-child relationships.  This pruning helps 
ensure that remaining branch and merge events are more 
likely to match the ground truth. 
 We present the results of using the evolutionary trace 
algorithm to generate lineages for a collection of nine 
malware families.  These families, and their precise ground 
truth lineage, were provided to us by another organization 
for use in the DARPA Cyber Genome program. 

Related Work 
A number of researchers have studied collections of both 
goodware and malware variants to derive models of soft-
ware evolution (Godfrey and Tu 2000, Karim, Walenstein, 
and Lakhotia 2005, Khoo and Lio 2011, Lindorfer et al 
2012, Xie, Chen, and Neamtiu 2012).  Such models can 
inform approaches to the lineage reconstruction problem; 
our work is an algorithm for actually computing a recon-
struction. 
 (Gupta et al, 2009) used metadata (such as time of col-
lection and analyst notations) compiled by McAfee in a 
knowledge-based approach to lineage reconstruction.  
(Dumitras and Neamtiu, 2011) proposed tracking individu-
al ‘traits’ (e.g., small code subsets) across samples, and 
training a classifier to properly identify lineage relation-
ships. 
 The work most directly related to ours is (Jang, Woo, 
and Brumley, 2013), by colleagues on the DARPA Cyber 
Genome Program.  Jang et al makes a couple of significant 
contributions.  First, Jang et al describe a collection of dif-
ferent metrics which can be computed on a lineage graph 
to measure its overall quality versus the ground truth.  Sec-
ond, Jang et al provide the first algorithm that constructs 
lineage graphs (containing branch and merge events).  Jang 
et al present separate algorithms for constructing straight-
line and directed acyclic graph lineages; our algorithm can 
reconstruct either kind of lineage depending on the best 
approximation to the ground truth.  Furthermore, Jang et al 
leverage only the symmetric distance between feature sets, 
relying on other heuristics to introduce directionality in the 

lineage.  Our approach uses traces constructed from finer-
grained assessment of the presence of individual features in 
samples.  This approach can better solve the problem of 
root sample identification, and can compensate for some 
reversion or refactoring events that might otherwise reduce 
overall code complexity. 

The Evolutionary Trace Algorithm 
Algorithm Overview 
The Evolutionary Trace Algorithm (ETA) builds a partial 
parent-child ordering – a lineage graph – from evidence for 
ancestor-descendant orderings.   Pseudocode for the main 
body of the algorithm is shown in Figure 1. 

Figure 1.   Pseudocode for createLineage(), the ETA algorithm. 

 The algorithm progresses by iteratively refining the line-
age graph from a single node labeled with all samples, to a 
final graph where each node is labeled uniquely by one 
sample, and the edges reflect parent-child relationships. 
 ETA reframes the ancestor-descendant ordering problem 
as a binary classification problem.  If you consider each 
program in a lineage to be defined by a vector of features 
that are either present or absent in that binary, then a single 
feature will partition the set of programs into two:  the pro-
grams that possess that feature, and the programs which do 
not. If the assumption of feature accretion holds, then the 
programs with the feature must descend in some way from 
the programs that lack it.  A single feature can be used to 
split a node into two nodes; one containing all the sup-
posed ancestor samples, and one containing all the sup-
posed descendant samples. 
 It follows that it is possible to build a candidate partial 
ordering of ancestors and descendants by selecting a series 

createLineage(): 
1) Initialize directed graph G with a single node con-

taining all samples. 
2) For each node n in G containing more than one 

sample: 
a. Build the set of all possible traces T out 

of the features contained in the programs 
of n. 

b. Find t in T with the highest result for 
scoreTrace(t, n). 

c. If scoreTrace(t, n) > threshold: 
i. Let r be the root node of G. 

ii. Execute applyDivisions(f, r, G) 
for every feature f in t. 

3) If at least one trace was applied in step 2, and there 
is at least one node in G containing more than one 
program, repeat step 2. 

4) Execute pruneEdges(G). 
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of features where each feature is present in at least one 
more program than the previous feature.  Each adjacent 
pair of features fixes the location of at least one program 
within the ordering; those programs contain at least one 
feature that their ancestors lack, but lack at least one fea-
ture that their descendants possess.  Each series of features 
thus induces one candidate evolutionary trace; each pre-
sents evidence for one ancestor-descendant path through 
the set of programs.   We enumerate these traces in step 2a.  
Some series of features produce evolutionary traces that 
are better than others, in the sense that the trace best satis-
fies the feature accretion trend over all features, not just 
those in the series (step 2b, illustrated in Figure 2). 
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Figure 2.  The series of features F1,F2,F3 induces a different 

evolutionary trace than F4,F5,F6.  The left trace is superior be-
cause it does not contradict other feature evidence. 

 Scoring a trace is accomplished by evaluating the trace 
on two metrics: 

� How well does the trace fit the overall data for the 
unpartitioned programs? 

� How well does the trace partition those programs? 

To score a trace, ETA examines the features in each adja-
cent pair of programs in the partial ordering defined by the 
trace.  The score of each “split” is computed as 

 
where Fp is the set of features in the parent, Fc is the set of 
features in the child, and sig() is the signum function.  This 
function was designed to reward splits where the features 
in the child are close to a proper superset of the features in 
the parent.  The total score for the trace is computed as the 
sum of the individual split scores, thus rewarding more 
higher-quality splits. 
 By considering only the best single series of features, we 
can characterize lineages that do not branch or merge func-
tionality; in such lineages, some set of features induces an 
ancestor-descendant ordering that is the same as the parent-
child ordering.  In order to expand the algorithm to handle 
more complex partial orderings – in particular, directed-

acyclic graphs – it is necessary to look at features outside 
the best series.  These features fall into three categories: 
Type A.  A feature is present in exactly the same set of 
samples as some feature already included in the trace, so it 
is superfluous when describing the trace. 
Type B.  A feature contradicts the ordering defined by the 
candidate trace because the feature does not obey the fea-
ture accretion model.  If one were to examine the ground 
truth, it would be present in a malware sample, but absent 
in something defined as a descendant.  Type B features 
introduce “noise” into our lineage reconstruction algo-
rithm. 
Type C.  A feature contradicts the ordering defined by the 
candidate trace because a branch or merge event has oc-
curred and the feature fits an ordering defined by a parallel 
branch of development.  Type C features are considered in 
step 2c.  If there is such a parallel branch of development, 
then we attempt to find a second evolutionary trace that 
characterizes it and add that path to the lineage graph. 
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Figure 3.  If one series of features does not recover a total order-

ing, ETA finds a second series of features that best orders the 
remaining samples, thus refining the lineage graph. 

Figure 3 shows an example.  B and C cannot be totally 
ordered because there is some feature  that doesn’t ap-
pear in C and a feature  that doesn’t appear in B.  How-
ever,  appears in alternative feature series that induces a 
trace that orders samples C, D, and E. 
 ETA constructs a lineage graph by recovering and dis-
tinguishing the principal evolutionary traces from the fea-
ture data, ideally recovering those representing all true 
paths of development while ignoring (as much as possible) 
traces induced by Type B “noise” features. 
 Finally, for reasons that will become clear when describ-
ing applyDivisions(), splitting off new traces in this way 
introduces too many parent-child relationships. This ap-
proach ends up including all the parent-child relations pos-
sible given the ancestor-descendant data, but this overex-
plains the origins of a descendant.  ETA borrows the no-
tion of “graph thinning” from another partial-ordering re-
construction algorithm, the Bayes Network construction 
algorithm from (Cheng, Bell, and Liu 1997), to identify 
which relations are true parent-child relations, and which 
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are ancestor-descendant links already explained by parallel 
multi-edge paths. 
Building and Merging Traces 
 ETA builds the set of evolutionary traces greedily.  It 
starts with a single, unordered set of programs, and at-
tempts to find the single trace that best characterizes the 
feature data.  If the lineage is a straight-line lineage, then 
this series of features should completely partition that ini-
tial set of samples into a total ordering.  If it does not, then 
one of two cases must hold:  there were fewer features than 
there were samples (this is unlikely when using subroutines 
as features, but possible for extremely small programs), or 
there must exist Type B or C features that weren’t used in 
the original trace.   
 In order to find unused Type C features and build a new 
trace from them, the algorithm repeatedly consideres each 
unpartitioned set of samples and attempts to find the best 
alternative candidate trace that characterizes that set.  If all 
the unused features are Type A, then it won’t find any trac-
es that characterize the unpartitioned set more than it al-
ready has been.  If a trace that partitions the set is found, 
the algorithm must differentiate the Type B features from 
the Type C features.  This is accomplished by comparing 
the score of the best-fit trace to a threshold.  If the best-
scoring trace is good enough, then at least one of the fea-
tures in it is a Type C feature, and we should partition the 
set by adding the trace to the lineage graph.  If the best-
scoring trace does not characterize the overall feature data 
for the programs, then all the unused features are Type B.  
We then conclude that this part of the data set is not well-
described by a feature accretion model.  We iterate until all 
nodes are partitioned, or no traces pass the threshold test. 
 Once the best-fit trace has been found for a particular 
unpartitioned node, the next step is to refine the graph by 
splitting nodes to introduce the new ancestor-descendant 
relationships (Figure 4). 

Figure 4.  Pseudocode for introducing a new trace into the graph. 

 
Figure 5. The results of applying two evolutionary traces to a set 

of programs. 

 Figure 5 shows the different possible results of applying 
two traces to a single node in the graph.  Figure 5A shows 
the results of applying a single trace; one node is separated 
into one set of ancestors and one set of descendants.  Fig-
ures 5B, 5C, and 5D show the possible results when a sec-
ond trace is added.  In 5B and 5C, only one of the two 
nodes was divided by the presence of a second feature; in 
5B, only the ancestor set was partitioned, while in 5C only 
the descendant set was partitioned.  Whenever one intro-
duces a new path by applying a new trace in this way, it 
isn’t possible to determine conclusively whether the three 
nodes form two parallel branches or a single linear path of 
evolution.  It is conceivable that the two paths represent 
coincidental, convergent development paths.  A similar 
pattern holds in figure 5D when both the ancestor and de-
scendant sets are separated.  As such, when a node is parti-
tioned, all possible parent-child relations are preserved.  
This method introduces the potential for overexplaining the 
origins of a child sample. 

Figure 6.  Pseudocode for pruning overexplaining parent-child 
edges from the final lineage graph. 

Reducing Overexplanation 
 Once the algorithm completes this process of applying 
traces, the remaining step is to prune the potential parent-

applyDivisions(f, n, G): 
1) Separate n into two nodes a and d, where a con-

tains all of the programs that do not contain f, and 
d contains all of the programs that do. 

2) If neither a nor d is empty, replace n with d, and 
add an edge from a to d. 

3) For every child  c of n in G: 
a. Compute (a’, d’) = applyDivisions(f, c, G) 
b. If a, d, a’ and d’ are all non-empty, add 

edges from a to a’ and d to d’. 
c. Otherwise, fully connect the remaining non-

empty nodes. 
4) Return (a, d). 

pruneEdges(G): 
 For each node n: 

For each node a child of n: 
a) If rateSubset(Fn, Fa) < threshold, remove (n, a) 

from G. 
b) Otherwise, consider every node b that is also a 

child of n in G. 
i) If there is no path from a to b in G, or if 

rateSubset(Fa, Fb) < threshold, continue. 
ii) Otherwise, let test = b, next = a, P = 

path(a, b), F = Ftest 
iii) Let F = F\Fnext. 
iv) If rateSubset(Fn, F) < threshold, remove 

(n, b) from G. 
v) Otherwise, let next = child of next on P.  If 

next is not null, go to step iii. 
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child relationships down to the set of probable ones.  As 
stated above, this algorithm borrows directly from the third 
phase of the algorithm from (Cheng, Bell, and Liu 1997).  
The intuition behind (Cheng, Bell, and Liu 1997) is that an 
edge is only valid if it carries information that isn’t already 
carried by a parallel path.  The ETA applies this intuition 
to each node in the graph iteratively using the process in 
Figure 6. 
 The function rateSubset determines the relative strength 
of a subset relationship between two sets of features, with a 
negative score indicating that the relationship is actually a 
superset relationship.  An edge from a node n to one of its 
children is invalidated given one of two conditions (Figure 
7): 

� The relation from n to its child isn’t a subset rela-
tionship – it actually violates the feature accretion 
model. 

� The relation from n to a particular child b is ex-
plained by the relation from n to another of its 
children a, which is also an ancestor of b. 

If neither of these conditions hold, then there must be some 
features contributed from n to its child that cannot be ex-
plained by other relationships. 
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Figure 7.  Two sources of overexplanation that the ETA algo-

rithm can eliminate. 

Results 
We applied the ETA algorithm to nine malware families 
for which we had ground-truth lineage graphs provided by 
the cyber genome program.  The ground truth lineages 
were a mix of straight-line and directed acyclic graph line-
ages. 
 For each of these lineages, we computed precision (1 – 
false positive rate) and recall (1 – false negative rate) for 
parent/child and ancestor/descendant relationships.  Our 
precision metric for ancestor/descendant relationships is 
equivalent to the accuracy metric found in (Jang, Woo, and 
Brumley, 2013). 
 

Label Name # Samples
S1 Cleanroom.B 10

S1.C2 Cleanroom.C 10
S2.1 BlasterWorm.A 8
S2.2 BlasterWorm.B 17
S3 KnightBot 11

S5.1 MiniPanzer.A 15
S5.2 MiniPanzer.B 15
S6 Cleanroom.A 7
S10 Kbot 10  

Table 1. Malware lineages to which we applied ETA.  The labels 
are used in results Table 2. 

ETA is effective across-the-board at correctly finding an-
cestor-descendant relationships for both straight-line and 
complex lineages.  ETA still has trouble with overexplana-
tion, causing a drop in precision for parent-child edges on 
complex lineages. 
 For example, consider the lineage S3, a complex graph 
lineage shown in Figure 8. 
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Figure 8.  Comparison of Knightbot (S3) ground truth with our 

reconstructed lineage. 

Encouragingly, the overall structure of the lineage matches 
up fairly well, as would be expected given the relatively 
high precision of ancestor-descendant relationship recov-
ery.  There are several edges predicted by the feature accre-
tion model that do not fit the ground truth.  In these cases 
we were able to verify that a refactoring or code deletion 
event occurred that foiled feature accretion assumptions. 
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S1 S1
.C

2

S2
.1

S2
.2

S3 S5
.1

S5
.2

S6 S1
0

m
ea

n

parent/child relationships(precision) 67% 100% 67% 73% 47% 100% 100% 100% 100% 84%
parent/child relationships(recall) 67% 100% 57% 69% 70% 93% 93% 67% 87% 78%
ancestor/descendant relationships(precision) 100% 100% 100% 100% 92% 100% 100% 100% 100% 99%
ancestor/descendant relationships(recall) 85% 100% 88% 91% 97% 100% 100% 87% 99% 94%  

Table 2.  Results of the evolutionary trace algorithm on several malware lineages

 The drop in parent-child precision is due to overexplain-
ing relationships that the graph thinning phase of ETA was 
unable to invalidate.  We have found that in most lineages 
we examine, these extraneous relationships tend to crop up 
in the later part of the lineage, whereas we obtain high ac-
curacy earlier in the lineage.  There are several hypotheses 
about why this occurs that we are still investigating: 

� Longer evolutionary traces might capture lineage 
relationships with higher confidence, so features 
with a longer history of attestation give us more 
accuracy in the early lineage 

� Samples later in a lineage represent more mature 
software; minor software changes introduce Type 
C features that might be more difficult to discrim-
inate from Type B features 

� Software is more likely to be refactored late in the 
lineage to accommodate new functionality, intro-
ducing more Type B features relative to Type C 
features 

To improve the evolutionary trace algorithm, we will need 
to understand better the causes of late-lineage overexplana-
tion and devise compensating mechanisms. 
 The evolutionary trace algorithm represents a promising 
approach to the malware lineage reconstruction problem 
that performs well on both straight-line and complex line-
ages, when the assumption of feature accretion holds for 
the input samples.  Our scoring of evolutionary traces pro-
vides a good estimate for how strongly feature accretion 
appears to hold overall, and provides a good indicator for 
when an alternative model of software evolution might 
need to be substituted. 
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