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Abstract

Domain-independent planning requires only to specify
planning problems in a standard language (e.g. PDDL)
in order to utilise planning in some application. Despite
a huge advancement in domain-independent planning,
some relatively-easy problems are still challenging for
existing planning engines. Such an issue can be miti-
gated by specifying Domain Control Knowledge (DCK)
that can provide better guidance for planning engines.
In this paper, we introduce transition-based DCK, in-
spired by Finite State Automata, that is efficient as
demonstrated empirically, planner-independent (can be
encoded within planning problems) and easy to specify.

Introduction

Despite a huge advancement of domain-independent plan-
ning engines, they might still struggle with problems that
are easy to solve for a domain-dependent approach because
“raw” specification of these problem might not be very in-
formative for domain-independent planning engines. This
issue can be (to some extent) addressed by specifying Do-
main Control Knowledge (DCK) that can guide the search
that planning engines perform. DCK can be specified, for
instance, in form of Control rules (Minton and Carbonell
1987), Hierarchical Task Networks (HTNs) (Georgievski
and Aiello 2015), and Macro-operators (Korf 1985). DCK
can be exploited by specifically tailored planning engines
such as TALPlanner (Kvarnström and Doherty 2000) for
Control Rules, and SHOP2 (Nau et al. 2003)) for HTNs.
Some kinds of DCK such as macro-operators can also be
(automatically) encoded into planning problems and thus
any standard planning engine can exploit such DCK.

In this paper, we introduce transition-based Domain Con-
trol Knowledge that is inspired by Finite State Automata.
Roughly speaking, transition-based DCK represents knowl-
edge about dependencies between planning operators that is
used to restrict the number of their instances that can be ap-
plied in each step of the planning process. We will show that
transition-based DCK can be directly encoded into planning
problems, so standard planning engines can reason with it.
Like Finite State Automata, transition-based DCK can be
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specified in a schematical way, which we believe is easy to
use for domain engineers. To demonstrate the efficiency of
transition-based DCK we use six benchmark domains and
six state-of-the-art domain-independent planning engines.

Classical Planning

Classical Planning deals with finding a partially or totally
ordered sequence of actions transforming the static and fully
observable environment from an initial state to a desired goal
state (Ghallab, Nau, and Traverso 2004).

In the classical representation, the environment is
described by predicates that are constructed in form
pred name(x1, . . . , xk) such that pred name is a
unique predicate name and x1, . . . xk are predicate
arguments, where each argument is either a vari-
able symbol or a constant. Planning states are de-
fined as sets of grounded predicates. We say that o =
(name(o), pre+(o), pre−(o), eff−(o), eff+(o), cost(o)) is a
planning operator, where name(o) = op name(x1, . . . , xk)
(op name is a unique operator name and x1, . . . xk are
variable symbols, arguments, appearing in the operator) and
pre+(o), pre−(o), eff−(o) and eff+(o) are sets of predicates
with variables taken only from x1, . . . xk representing o’s
positive and negative preconditions, and negative and pos-
itive effects, and cost(o) is a numerical value representing
o’s cost1. Actions are instances of planning operators. An
action a is applicable in a planning state s if and only if
pre+(a) ⊆ s ∧ pre−(a) ∩ s = ∅. Application of a in s (if
possible) results in a planning state (s \ eff−(a)) ∪ eff+(a).

A planning domain model is specified by a set of con-
stants (domain-specific objects), a set of predicates and a set
of planning operators accommodating these constants and
predicates. A planning problem is specified via a (planning)
domain model, a set of constants (problem-specific objects),
an initial planning state, and a set of goal predicates. A goal
predicate is an open goal if it has not yet been achieved in
the current planning state. A solution plan of the planning
problem is a sequence of actions such that their consecutive
application starting from the initial planning state results in
a planning state containing all the goal predicates.

1Implicitly, cost(o) = 1.
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Figure 1: Transition-based DCK for our simple logistic do-
main.

Running Example

We consider a simple logistic domain, where packages have
to be delivered from their initial locations to their goal loca-
tions by trucks that can carry at most one package each. No
other constraints are defined, i.e., all locations are connected
and a package can be carried by any of the trucks. We define
three predicates: (at ?x ?l) – an object ?x (either truck or
package) is at location ?l; (in ?p ?t) – a package ?p is in the
truck ?t; (free ?t) – a truck ?t is empty (no package is in it).
Then, we define three planning operators: Drive(?t ?from
?to) – a truck ?t moves from the location ?from to a loca-
tion ?to; Load(?t ?p ?l) – a package ?p is loaded into the
truck ?t at the location ?l; and Unload(?t ?p ?l) – a package
?p is unloaded from the truck ?t at the location ?l.

Transition-based Domain Control Knowledge

Generally speaking, Domain Control Knowledge (DCK)
provides a guidance to planning engines and thus makes the
planning process more efficient. Inspired by Finite State Au-
tomata, we designed a transition-based DCK that is easy
to specify and can be encoded into planning domain mod-
els and problems (described later in the text). In principle,
our transition-based DCK consists of a set of DCK states
and transitions that refer to actions that can be applied under
specified conditions in a given planning state. The formal
definition of transition-based DCK follows.

Definition 1. Transition-based DCK is a quadruple K =
(S,O, T, s0), where S is a set of DCK states, s0 ∈ S is the
initial DCK state, O is a set of planning operators, and T is
a set of transitions in the form (s, o, C, s′), where s, s′ ∈ S,
o ∈ O and C is a set of constraints, where each constraint
is in the form:

• p,¬p — a predicate p must or must not be present in the
current planning state

• g:p — a predicate p is an open goal in the current plan-
ning state

In our running example, we assume that the packages are
at their initial locations and the trucks are empty. We may
observe that i) an empty truck has to be moved only to lo-
cations where some package is waiting for being delivered,
and ii) if a package is loaded to the truck (in its initial loca-
tion), then the truck has to move to package’s goal location,
where the package is then unloaded. Such an observation can
be encoded as a transition-based DCK with s0 as an initial
DCK state as depicted in Figure 1.

A (classical) planning problem can be solved by a generic
algorithm that starting in the initial planning state, iterates
by non-deterministically selecting an action (an instance of
a planning operator defined in the domain model of the prob-
lem) that is applicable in the current planning state and by

(:action Drive-empty
:parameters (?t - truck ?from ?to ?dest - location ?p - package)
:precondition (and (at ?t ?from)(at ?p ?to)(DCK-state s0)

(open-goal-at ?p ?dest)(not (= ?to ?dest)))
:effect (and (not (at ?t ?from))(at ?t ?to))
)
(:action Drive-full
:parameters (?t - truck ?from ?to - location ?p - package)
:precondition (and (at ?t ?from)(DCK-state s1)

(in ?p ?t)(open-goal-at ?p ?to))
:effect (and (not (at ?t ?from))(at ?t ?to)

(not (DCK-state s1))(DCK-state s2))
)
(:action Load
:parameters (?t - truck ?p - package ?l ?dest - location)
:precondition (and (at ?t ?l)(at ?p ?l)(free ?t)(DCK-state s0)

(open-goal-at ?p ?dest)(not (= ?to ?dest)))
:effect (and (not (at ?p ?l))(not (free ?t))(in ?p ?t)

(not (DCK-state s0))(DCK-state s1))
)
(:action Unload
:parameters (?t - truck ?p - package ?l - location)
:precondition (and (at ?t ?l)(in ?p ?t)(DCK-state s2)

(open-goal-at ?p ?l))
:effect (and (not (in ?p ?t))(free ?t)(at ?p ?l)

(not (open-goal-at ?p ?l))
(not (DCK-state s2))(DCK-state s0))

)

Figure 2: Modified planning operators (in PDDL) of our
simple logistics domain with respect to the transition-based
DCK as in Figure 1. Additional arguments and predicates
introduced by the DCK are in italics.

applying the action (updating the current planning state) un-
til the goal is reached (all the goal predicates are present
in the current planning state). Transition-based DCK can
be embedded into the generic algorithm as follows. Let sΠ
be the current planning state and sK be the current DCK
state (we start in the initial planning state and in the initial
DCK state). An action a can be selected for being applied
if and only if a is applicable in sΠ and there is a transition
(sK, o, C, s′K) such that a is an instance of o and for each
element in C which is in form p,¬p, or g:p it is the case
that a corresponding instance of p is in sΠ, not in sΠ, or
is an open goal respectively. After a is applied the current
planning state is updated accordingly and s′K becomes the
current DCK state. The goal predicate is considered to be an
open goal only before it is achieved for the first time. Re-
opening open goals requires more complex encoding and,
moreover, we believe that it is not very useful to direct the
search toward goals that need to be achieved more than once.

We can easily observe that the augmented generic plan-
ning algorithm is sound, i.e., a plan that is returned by the
algorithm is a solution plan of the problem given on the in-
put. This is because exploiting transition-based DCK only
puts further restrictions on action selection. A well-defined
transition-based DCK does not prune all solution plans of
the problem, so it remains solvable. The DCK from our run-
ning example is well defined for problems where none of the
packages that has to be delivered is initially loaded in any of
the trucks and at least one truck is initially empty.

Encoding Transition-based DCK into Planning

Problems

In the case of our transition-based DCK, we have to en-
code DCK states, transitions, and constraints under which
the transitions can be performed. The encoding will be de-
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scribed in the following paragraphs.
DCK states can be encoded by adding a supplementary

predicate with one argument, e.g., (DCK-state ?s), into a
planning domain model. Concrete DCK states are encoded
as domain-specific objects (e.g. s0, s1, s2). The initial
DCK state is encoded into the initial planning state by a
corresponding instance of the supplementary predicate. In
our running example, the initial DCK state is s0, therefore,
(DCK-state s0) will be added to the initial planing state of
each planning problem in our simple logistics domain.

Open goals can be encoded by adding supplementary
“twin” predicates that have the same arguments as the goal
predicates. Instances of these supplementary predicates that
correspond to the goal predicates are added into the ini-
tial planning state. In our running example, if we have
a problem with two goal predicates, (at pkg1 loc1) and
(at pkg2 loc2), then the supplementary predicates, (open-
goal-at pkg1 loc1) and (open-goal-at pkg2 loc2) are
added into the initial planning state. Also, planning opera-
tors that achieve goal predicates (have them in the positive
effects) are extended by adding the corresponding supple-
mentary predicates into their negative effects. In our running
example, the Unload operator achieves goal predicates, i.e.,
(at ?p ?l), so (open-goal-at ?p ?l) is added to its negative
effects. Clearly, if no transition in the DCK considers open
goals, there is no need to encode them.

Transitions in our transition-based DCK incorporate in-
formation about what planning operators and under which
constraints they can be applied in given DCK states and how
DCK states change. Such information can be encoded within
the planning operators defined in the corresponding domain
model. For each planning operator o we identify how many
transitions (from T ) refer to it, i.e., t(o) = |{t | t ∈ T, t =
(s, o, C, s′)}|. If for an operator o, t(o) = 0, then o can never
be applied and thus will be removed from the domain model.
If for an operator o, t(o) > 1, then we create t(o) “clones”
of o, i.e., we create t(o) operators that are identical to o but
having a unique operator name. In our running example, we
have two transitions referring to the Drive operator. So, we
create two operators, for instance, Drive-empty and Drive-
full that have the identical structure to the original Drive op-
erator (arguments, preconditions, and effects).

A transition (s, o, C, s′) is encoded into o (or its corre-
sponding “clone”) as follows. Ensuring that instances of o
can be applied only if s is the current DCK state is done
by adding the corresponding supplementary predicate rep-
resenting the DCK state (i.e., (DCK-state s)) into pre+(o).
If s′ = s, then the DCK state does not change, so effects
of o remain intact. Otherwise, (DCK-state s) is added into
eff−(o) and (DCK-state s’) into eff+(o), so after applying
an instance of o, the current DCK state changes to s′. The
Load operator from our running example is modified by
adding (DCK-state s0) into the positive preconditions as
well as into the negative effects, and by adding (DCK-state
s1) into the positive effects.

Each constraint c ∈ C is encoded into o as follows de-
pending on its form:

• p — add p into pre+(o)

• ¬p — add p into pre−(o)

• g:p — add the “open goal twin” predicate of p into
pre+(o)

If some of the predicates that are added into the o’s precon-
dition contain arguments that are not defined in o, the list of
o’s arguments is updated accordingly.

The transition-based DCK as defined in Figure 1 is en-
coded within the planning operators of our simple logistic
domain as depicted in Figure 2. Recall that Drive-empty
and Drive-full are “clones” of the original Drive operator.

Solution plans of the DCK enhanced problems may not
entirely correspond with solution plans of the original prob-
lems because of using different operator names for “cloned
operators”, and using extra arguments for accommodating
additional preconditions. Hence, to get a valid solution plan
for the original problem we have to rename all “clones” to
the name of the corresponding original operators and remove
all the extra arguments. For example, if the solution plan of
the DCK enhanced simple logistic problem contains an ac-
tion Drive-full(truck1 loc1 loc2 pkg1), then it has to be
renamed to Drive and the extra argument pkg1 has to be
removed, so we obtain Drive(truck1 loc1 loc2) which is a
valid action for the corresponding original problem.

Experimental Evaluation

Our experiments aim to demonstrate how transition-based
DCK influences the planning process in terms of planners’
runtimes and quality of solution plans. We encoded the
DCK into the domain models and problems of six domains
– Barman, CaveDiving, ChildSnack, CityCar, Hiking, and
Nomystery. For descriptions of these domains and related
transition-based DCKs we specified, the reader is referred
to our workshop paper (Chrpa and Barták 2015). The prob-
lem sets for these domains were taken from the agile track of
the 8th International Planning Competition (IPC-8), except
Nomystery, where the problem set was taken from the satis-
ficing track of the IPC-7. All the problem sets consist of 20
problems. For comparing how the DCK influences the plan-
ning process, we have used six state-of-the-art planners that
accommodate various planning techniques: LAMA (Richter
and Westphal 2010), the winner of the IPC-7, and MpC,
Probe, Mercury, Yahsp3, and Bfs-f that performed well in
the IPC-8 (Vallati, Chrpa, and McCluskey 2014).

For analysis of planners’ performance and quality of solu-
tion plans, we use IPC score as defined in the IPC-8 (Vallati
et al. 2015). With regards to runtime, the score is calculated
as follows. For an encoding e of a problem p, IPCt(p, e) is 0
if p is unsolved in e, and 1/(1+log10(Tp,e/T

∗
p )), where Tp,e

is the CPU-time needed to solve p in e and T ∗p is the small-
est CPU-time needed to solve p in any considered encoding,
otherwise. With regard to quality of solution plans (i.e., the
sum of costs of all their actions), the score is calculated as
follows. For an encoding e of a problem p, IPCq(p, e) is 0 if
p is unsolved in e, and (Q∗p/Qp,e)), where Qp,e is the cost
of the solution plan of p in e and Q∗p is the smallest cost of
the solution plan of p in any considered encoding, otherwise.
Notice that the maximum IPC score for a particular p and e
is 1. As in the agile track of IPC-8, we set the time limit to 5
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Barman CaveDiving ChildSnack CityCar Hiking Nomystery
Planner Coverage Δ IPC Coverage Δ IPC Coverage Δ IPC Coverage Δ IPC Coverage Δ IPC Coverage Δ IPC

O E T Q O E T Q O E T Q O E T Q O E T Q O E T Q
Lama 16 20 +8.2 +6.9 6 7 +4.1 +1.0 0 19 +19.0 +19.0 5 20 +15.4 +13.9 5 19 +15.9 +13.9 14 14 +0.3 0.0
Mercury 7 20 +13.4 +15.3 2 3 +1.8 +1.0 5 20 +17.5 +15.0 2 20 +17.9 +18.8 8 17 +11.5 +7.0 13 15 +2.1 +2.0
MpC 0 20 +20.0 +20.0 4 4 +1.4 0.0 7 20 +11.4 +10.9 9 20 +12.8 +15.8 7 3 -3.0 -3.9 6 5 -1.2 -1.0
Probe 18 20 -2.7 +2.8 1 7 +6.4 +6.0 0 15 +15.0 +15.0 8 20 +12.8 +17.3 13 19 +10.9 +5.8 5 11 +7.0 +5.9
Yahsp 0 20 +20.0 +20.0 N/A N/A N/A N/A 0 N/A N/A N/A N/A N/A N/A N/A 13 10 +0.6 +4.6 8 12 +7.2 +4.1
Bfs-f 20 20 +3.8 -1.5 7 7 +2.0 0.0 8 8 -0.8 -0.2 5 20 +17.5 +16.7 2 14 +13.4 +11.6 14 15 +4.7 +1.3

Table 1: Comparison between original (O) and enhanced (E) domain models. Δ IPC stands for a difference of the time (T)
and quality (Q) IPC score of the original and the corresponding enhanced problem encodings (positive numbers refer to better
performance/quality of the enhanced problems).

minutes per problem. All the experiments were run on Intel
Xeon 2.53 Ghz with 2GB of RAM, CentOS 6.5.

Table 1 presents the results of comparison of planners’
performance and quality of solution plans of the origi-
nal problem encodings and the encodings enhanced by our
transition-based DCK. Notice that Yahsp3 could not solve
some problem sets (denoted as “N/A” in the table), since it
does not fully support negative preconditions. Remarkable
results have been achieved in Barman and CityCar domains,
where using DCK allowed every planner (except Yashp3 in
CityCar) to solve all the problems within the 5 minute limit.
The reason is that in these domains the problems can be
solved by using the “reach goals one-by-one” strategy that
can be easily captured by transition-based DCK. Good re-
sults were achieved in the Childsnack domain, where our
transition-based DCK can prevent “trapping” in dead-ends.
In CaveDiving and Nomystery the results were modest. The
reason is that transition-based DCK does not address the
“combinatorial” part of these domains. In Hiking, the results
of applying transition-based DCK were mixed, i.e., achiev-
ing good improvement for Lama, Mercury, Probe, and Bfs-f,
while having rather detrimental effect on MpC and Yahsp3.
MpC uses a structure, similar to Planning Graph (Blum and
Furst 1997), that allows applying more actions in one step.
This strategy is useful in Hiking. Transition-based DCK,
however, interferes with such a strategy. In terms of qual-
ity of solution plans, there are no (or very marginal) dif-
ferences in the Cave Diving and Nomystery domains (the
quality score differs because the number of solved problems
differs). This is because there is usually no other way how
to solve these problems, so solution plans are very similar
(some actions might be in a different order). In the other do-
mains, the quality results are mixed (sometimes DCK en-
hanced problems lead to better solution plans, sometimes
worse). Notice that in Hiking, Yahsp3 was able to provide
considerably better plans (often more than 10x) when DCK
was considered.

Conclusions

In this paper, we introduced transition-based DCK, inspired
by Finite State Automata, that is planner-independent (can
be encoded within planning problems), efficient and easy to
specify due to its “schematical” representation.

In future, we plan to (semi)automatise the process of ex-
tracting transition-based DCK. We believe that taking in-
spiration from macro-operator generating techniques and/or

tools for plan analysis will be a useful step towards such
an achievement. Also, we plan to extend the concept of
transition-based DCK to non-classical planning (e.g. tem-
poral or continuous planning).
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