
Neighbourhood SAC for Constraint
Satisfaction Problems with Non-Binary Constraints

Richard J. Wallace
Insight Centre for Data Analytics

Department of Computer Science, University College Cork, Cork, Ireland
richard.wallace@insight-centre.org

Abstract

Neighbourhood singleton arc consistency (NSAC) is a type
of singleton arc consistency (SAC) in which the subproblem
formed by variables adjacent to a variable with a singleton do-
main is made arc consistent. In this paper we consider how to
apply this form of consistency reasoning to problems with n-
ary constraints including global constraints. The chief prob-
lem encountered is that of neighbouring variables contained
in a constraint that also includes non-neighbouring variables.
In this case, a strict extension of NSAC involves projection
of such constraints onto the neighbourhood variables, but for
many global constraints this may be difficult to do in practice.
Here, we consider a simple variant called restricted neigh-
bourhood SAC, that avoids this problem. We compare the
two approaches on random and structured problems and show
that in all cases the restricted form of k-NSAC is nearly as ef-
fective as the unrestricted form.

Introduction

Arc consistency (AC) is the best-known form of local con-
sistency processing within the field of constraint solving.
This is because it manages the tradeoff between processing
effort and search space reduction in a very effective fashion.
Singleton arc consistency (SAC) is a more powerful form of
consistency, although it is still based on AC. As such it is
often more effective than AC, either in removing values or
proving unsatisfiability; however, it is much more expensive.

Neighbourhood SAC is a form of singleton arc consis-
tency in which consistency with respect to single domain
values is established only with respect to the neighbour-
hood of the variable with a singleton domain (the “focal
variable”), i.e. the subgraph that includes the latter plus
its neighbours in the original constraint graph. Although
weaker than SAC, it is still a stronger form of consistency
than AC (Wallace 2015). As would be expected, this form
of consistency can be established much more efficiently than
full singleton arc consistency; at the same time, it often
deletes many more values than simple AC, sometimes al-
most as many as SAC (Wallace 2015). As a result, it has
considerable potential as a specialized form of SAC-based
consistency. Recently, this approach has been extended to
k-neighbourhoods, i.e. to subgraphs that include the focal

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

variable and all variables within a distance k of it (Wallace
2016).

In this work we consider how to extend these ideas to
problems with n-ary constraints. This involves the ques-
tion of how to deal with neighbourhood variables that are
partly constrained with respect to the neighbourhood sub-
graph. This work continues some of the work in (Wallace
2016) and provides a better resolution of a key issue.

Background

A constraint satisfaction problem (CSP) is defined in the
usual way, as a tuple, (X,D,C) where X are variables, D
are domains such that Di is associated with Xi, and C are
constraints. A solution to a CSP is an assignment or map-
ping from variables to values that includes all variables and
does not violate any constraint in C.

In problems with non-binary constraints, generalized arc
consistency (GAC) refers to the property that for every value
a in the domain of variable Xi and for every constraint Cj

with Xi in its scope, there is a valid tuple that includes a.
Singleton arc consistency, or SAC, is a form of AC in which
the just-mentioned value a, for example, is considered the
sole representative of the domain of Xi. If AC can be es-
tablished for the problem under this condition, then it may
be possible to find a solution containing this value. On the
other hand, if AC cannot be established then there can be
no such solution, and a can be discarded. Neighbourhood
SAC establishes SAC with respect to the neighbourhood of
the variable whose domain is a singleton.
Definition 1. A problem P is neighbourhood singleton arc
consistent with respect to value v in the domain of Xi, if
when Di (the domain of Xi) is restricted to v, the problem
PN = (XN ∪ {Xi}, CN) is arc consistent, where XN is the
neighbourhood of Xi and CN is the set of all constraints
whose scope is a subset of XN ∪ {Xi}.

For k-neighbourhood SAC, one extends the subgraph to
include all variables connected by a path of length k or less
to the focal variable. (Note that in this framework NSAC
becomes 1-NSAC.) As shown elsewhere, for any value of k,
k+1-NSAC dominates k-NSAC (Wallace 2016).

In this work we use NSAC algorithms based on the SACQ
style of search. Earlier work has shown that NSAC algo-
rithms based on the SACQ strategy outperform those based
on SAC-1 as well as more advanced SAC algorithms such

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

162

as SAC-SDS (Bessière and Debruyne 2005) and SAC-3
(Lecoutre and Cardon 2005). (N)SACQ uses an AC-3 style
procedure at the top-level instead of the AC-1 style that is
often used with SAC algorithms. This means that there is a
list (a queue) of variables, whose domains are considered in
turn. In addition, if there is a (N)SAC-based deletion of a
value from the domain of Xi, then all relevant variables not
currently on the queue are put back on. Unlike other (N)SAC
algorithms, there is no “AC phase” following a SAC-based
value removal. Pseudocode for the basic (1-)NSAC algo-
rithm is shown in Fig. 1.

Function NSACQ
1 Q ← X
2 OK ← AC(P)
3 While OK and not empty-Q
4 Select and remove Xi from Q
5 Changed ← false
6 Foreach vj ∈ dom(Xi)
7 dom′(Xi) ← {vj}
8 If AC(Xi+neighbours(Xi)) → wipeout
9 Changed ← true
10 dom(Xi) ← dom(Xi)/vj
11 If dom(Xi) == ∅
12 OK ← false
13 If Changed == true
14 Update Q with all neighbours of Xi

15 Return OK

Figure 1: Pseudocode for NSACQ.

Extension to Non-Binary Constraints

Neighbourhood SAC can be extended to n-ary constraints in
a way that, in some cases at least, is straightforward to deal
with in practice. As far as the author is aware, this is not
as easily done with other forms of higher-order consistency
such as maxRPC (Balafoutis et al. 2011).

However, there are some difficulties in defining NSAC
under these conditions that results in a form commensurate
with the binary case. This suggests that an extension like
this can be done in various ways. Here, I define one method
that can be considered as standard, then I define a modi-
fied method that avoids some implementation difficulties en-
tailed by the former.

To maintain the idea of a k-neighbourhood in the form
already defined, domain reduction via constraints must be
restricted to the domains of neighbouring variables. This im-
plies that there can be non-binary constraints which contain
non-neighbouring variables whose domains should not be
reduced during a bout of neighbourhood consistency check-
ing. To cover such cases, we can revise Definition 1 slightly
because XN ∪Xi no longer includes all the variables in the
union of the scopes of CN .
Definition 1′. For problems with non-binary constraints, a
problem P is neighbourhood singleton arc consistent with
respect to value v in the domain of Xi, if when Di (the do-

main of Xi) is restricted to v, the problem PN = (XN ∪
{Xi}, CN) is arc consistent, where XN is the neighbour-
hood of Xi and CN is the set of all constraints whose scope
includes at least two members of the set XN ∪ {Xi}.

Note that any non-binary constraint that includes the focal
variable Xi will also include all other variables in the con-
straint. Only when non-binary constraints include two or
more neighbours of Xi without including Xi itself is there a
difference from the binary case. This is shown in Fig. 2.

From this figure it should be clear that the present defi-
nition of the neighbourhood subgraph is a reasonable exten-
sion of the binary case. In both cases only domains of neigh-
bouring variables are affected when NSAC is established.
The difference is that in the binary case we can ignore con-
straints involving non-neighbour variables altogether. But
in the non-binary case even if there are non-neighbourhood
variables whose domains should not be reduced, there still
may be neighbourhood variables that constrain each other.
One way to deal with this is to project the constraint onto
the set of neighbourhood variables.
Proposition 1. The NSACQ algorithm in its strict form,
with extensions to handle projections of neighbourhood
variables onto non-binary constraints, achieves neighbour-
hood singleton arc consistency as defined in Definition 1′.
Proof Sketch. NSACQ is carried out as shown in Fig. 1.
For non-binary constraints with some variables outside the
neighbourhood, the proper level of consistency is achieved
if, for every value a in the domain of a neighbourhood vari-
able that is in the scope of this constraint, there is a con-
straint tuple whose projection onto the neighbourhood vari-
ables that belong to this constraint includes a. As in the bi-
nary case, any value in any variable outside the neighbour-
hood will not have become neighbourhood inconsistent by
virtue of removal of a singleton value, since the neighbour-
hood of that variable is unchanged. �

This adjustment to ordinary arc consistency, which I will
refer to as the strict form of (k−) NSAC, is fairly straight-
forward to implement for simple table constraints. In the
code used here, which employs an STR procedure (Ullmann
2007), this is accomplished with an additional check that a
given domain is in the k-neighbourhood subgraph. How-
ever, it may not be straightforward to add this to solvers
that handle global constraints using specialized filtering al-
gorithms. So we need to consider other possible forms of
NSAC for non-binary constraints that do not have this prob-
lem.

One strategy is to include any constraint involving two
or more neighbourhood variables. However, this approach
presents conceptual difficulties, since variables that are not
in the k-neighbourhood will sometimes be treated as if they
were. Even if this results in a valid kind of consistency, this
is not really a form of neighbourhood SAC. So this option is
not considered here.

Another strategy is to omit these problematical cases
when checking for neighbourhood SAC. Since consistency
maintenance is restricted to the same set of neighbouring
variables in any instance, this certainly qualifies as a form
of (k−) NSAC. In fact, this variant conforms to the original
Definition 1. Since some forms of constrainedness are being

163

Figure 2: Neighbourhood subgraph with binary and non-
binary constraints. Focal variable is circle with the thick
outline, neighbouring variables are filled circles, non-
neighbours outline circles. Lines between circles are binary
constraints, large outline shapes non-binary. Dashed lines
are constraints outside the neighbourhood subgraph.

ignored in this version of NSAC, it will be referred to it as
restricted NSAC, or rNSAC for short.

It can be shown that the restricted form of NSACQ
achieves NSAC as defined in the original Definition 1. In ad-
dition, the same dominance relations hold for the restricted
versions of NSAC, i.e. any value removed by restricted
k-NSAC will be removed by k+1-NSAC, but the converse
does not necessarily hold.

Experimental tests

Tests were made with GAC-based versions of the SACQ
and k-NSACQ algorithms, using homogeneous random and
structured benchmark problems.

Random problems Random CSPs were generated by a
program written by the author in which arities, their propor-
tions, and their satisfiabilities could be specified indepen-
dently, along with the mean degree of a variable. Only one
experiment is presented here. Problems had constraints of
arities 2, 3, 4 and 5 in the following proportions: 0.5, 0.3,
0.15 and 0.05. The number of variables was 100; the do-
main size was always eight; the mean degree was 3. For
each problem, the same tightness value was used across all
arities. Tightness was varied across problem sets to produce
a series. Specific tightness values were 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.725, 0.75, 0.775, 0.8 and 0.9. For each tightness
value 50 problems were tested. Problems with the tightest
constraints had no solutions; for tightnesses < 0.7 all prob-
lems had solutions.

k-neighbourhood sizes were calculated for a sample of ten
problems of each type. For each problem, all neighbourhood
sizes were calculated. For k=1, mean size per problem was
6; for k=2 it was 27; for k=3 it was 68 (so all were less than
n).

Fig. 3 shows preprocessing times for algorithms that es-
tablish different levels of neighbourhood SAC consistency,
as well as full SAC. With each increase in neighbourhood
size, there is a definite increase in runtime. (Of course, all
these algorithms are much slower than AC, which always
gave a mean ≤ 0.83 sec.) In addition, each restricted form
of neighbourhood SAC is a little faster than its unrestricted
counterpart. The pronounced asymmetry in the curves is an

0

5

10

15

20

25

30

35

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
tightness

SAC
3-NSAC
3-rNSAC
2-NSAC
2-rNSAC
NSAC
rNSAC

Figure 3: Runtimes (s) for full SACQ and k-NSACQ algo-
rithms on random problems.

exaggeration of the asymmetry observed with binary prob-
lems and is due to the fact that here GAC is called repeatedly
rather than AC. In addition, the looseness of the constraints
means that STR is less efficient. 1

Table 1 shows the number of problems proved unsatis-
fiable when each level of consistency was established. For
these problems, there were cases where establishing a higher
level of consistency proved more problems unsatisfiable up
through 3-NSAC. In fact, for these problems 3-NSAC was
sufficient to prove all unsatisfiable problems unsatisfiable.
In addition, for each value of k, restricted NSAC was nearly
as effective as the corresponding full NSAC algorithm.

At higher tightness levels, values deleted for problems
with solutions also showed marked differences related to the
level of consistency established. For example, for tightness
0.775, mean values deleted per problem for the 13 prob-
lems with solutions was 237 for AC, 251 for rNSAC, 253
for NSAC, 284 for 2-rNSAC, 330 for 2-NSAC, 358 for 3-
rNSAC, 364 for 3-NSAC, and 369 for SAC. Individual prob-
lems showed marked differences across algorithms, ranging
from little change between AC and SAC to almost doubling
the number of deletions.

Structured problems The problems tested here were con-
figuration problems used in previous work (Wallace 2016).
Problems had 20 or 40 variables with constraints of arity 2-
5. In addition to the original problem, esvs-config (n=20),

1These results differ in some ways from tests reported in (Wal-
lace 2016) for the non-restricted forms, although the qualitative
ordering is the same. In the present tests, in addition to performing
all runs together in a block, care was taken to carry out only one
run at a time, without using any other programs. The latter may be
responsible for the differences found.

164

two variations were constructed by adding constraints and
tightening some constraints (esvs-cfghard.1 and .2; n=20)
and doubling the problem whilst varying one binary con-
straint, which reduced the number of solutions drastically
(esvs-cfgdouble; n=40). For these problems, which have
table constraints, the STR algorithm was used for filtering.
Search was done with MAC-3 using the minimum domain
variable ordering heuristic.

For these problems all neighbourhood subgraph sizes
were well below n, the number of variables. For example,
for the original configuration problem, means were 4.3, 5.9
and 7.5 for 1-, 2- and 3-neighbourhood subgraphs, respec-
tively, and for the cfg-double problems the corresponding
means were 5.2, 11.1 and 18.6.

Table 1. Random n-ary Problems Proved
Unsatisfiable by Preprocessing Algorithms

problem tightness
algorithm 0.75 0.775 0.80
SAC 3 37 48
3-NSAC 3 37 48
3-rNSAC 3 37 48
2-NSAC 3 33 47
2-rNSAC 3 32 46
NSAC 1 28 41
rNSAC 1 28 39
AC 1 26 37
total unsat 3 37 48

The results of these tests are shown in Table 2 2. For
harder problems there were differences in the effectiveness
of preprocessing (i.e. number of values deleted) that also
had clear-cut effects on search effort. For (1-)NSAC, the un-
restricted form deleted more values than the restricted form,
with some reduction in search effort, although overall the
differences were not marked. 2-NSAC deleted a few more
values than NSAC with little difference in time, and in this
case the restricted form performed as effectively as the un-
restricted form. Preprocessing to this level of consistency
also eliminated nearly all branching during search even for
the harder problems. Higher levels of consistency gave no
further benefit.

Conclusions

This work complements earlier work (Wallace 2016) in
showing how neighbourhood SAC can be extended to n-ary
constraints in a fairly straightforward fashion. This greatly
extends the scope of application of algorithms for establish-
ing this form of consistency. The results and arguments sug-
gest that SAC-based forms of consistency may be particu-
larly useful with n-ary constraints in that they are able to
detect inconsistencies and even problem unsatisfiability in
cases where this is not possible with GAC.

Moreover, given that we now have an entire series of lo-
cal consistencies with an obvious dominance ordering with
respect to values deleted, we can choose among different

2AC deletions differ from corresponding results for non-
restricted NSAC in (Wallace 2016). The present values are correct.

levels of consistency using the same basic strategy (and al-
gorithms) to balance the conflicting goals of effectiveness
and efficiency.

Table 2. AC and k- NSAC
for Configuration Problems

prob
t del sn t del sn

AC rNSAC
cfg .00 0 20 .03 0 20
hd1 .00 24 362 .05 46 278
hd2 .01 24 1158 .03 46 806
db .01 74 41 .07 109 41

NSAC 2-rNSAC
cfg .04 0 20 .05 0 20
hd1 .05 60 254 .07 72 21
hd2 .04 55 326 .07 72 20
db .08 126 41 .15 144 40
t=time (s) del=vals deleted sn=nodes.

We also show how to resolve the difficulty that arises in
connection with subsets of neighbouring variables that fall
within the scope of a constraint that also contains variables
outside the neighbourhood. In this case the user has a choice
of projecting the constraint onto the neighbourhood subset
or ignoring the constraint altogether. This means that for
certain global constraints and specialized implementations
where it would be difficult to perform the necessary projec-
tions, neighbourhood SAC can still be added in its restricted
form.

From the limited experiments we have done so far, it ap-
pears that in some cases the restricted form of NSAC per-
forms as well as the unrestricted form, while in other cases
there are differences that serve to impact subsequent search.
Such differences seem to be more pronounced with more
limited forms of NSAC, so if one carries out NSAC on k-
neighbourhoods with k > 1, then the decision to restrict
NSAC in this way is less likely to affect performance.

References

Balafoutis, T.; Paparrizou, A.; Stergiou, K.; and Walsh, T.
2011. New algorithms for max restricted path consistency.
Constraints 16:372–406.
Bessière, C., and Debruyne, R. 2005. Optimal and sub-
optimal singleton arc consistency algorithms. In Proc. 19th
Internat. Joint Conf. on Artif. Intell. – IJCAI’05, 54–59.
Lecoutre, C., and Cardon, S. 2005. A greedy approach to
establish singleton arc consistency. In Proc. 19th Internat.
Joint Conf. on Artif. Intell. – IJCAI’05, 199–204. Profes-
sional Book Center.
Ullmann, J. R. 2007. Partition search for non-binary con-
straint satisfaction. Information Sciences 177:3639–3678.
Wallace, R. J. 2015. SAC and neighbourhood SAC. AI
Communications 28(2):345–364.
Wallace, R. J. 2016. Neighbourhood SAC: Extensions and
new algorithms. AI Communications 29:(to appear).

165

