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Abstract

Episodic memory systems for artificially intelligent agents
must cope with an ever-growing episodic memory store. This
paper presents an approach for minimizing the size of the
store by using specialized hash functions to convert each
memory into a relatively short binary code. A set of desider-
ata for such hash functions are presented including locale sen-
sitivity and reversibility. The paper then introduces multiple
approaches for such functions and compares their effective-
ness.

Introduction

Episodic memory is a commonly identified type of human
long-term memory (Tulving 1983). It is distinguished from
other types of memory in that episodic memories record spe-
cific events in the past such as where you parked your car or
the last time you rode on a ferris wheel. A human with a
damaged episodic memory, an amnesiac, has impaired cog-
nitive ability. This implies that episodic memories improve
a human’s ability to reason and learn and, thus, such a mem-
ory can be valuable to an artificially intelligent agent as well
(Nuxoll and Laird 2012).

A healthy human brain has the capacity to store a lifetime
of memories of events as they occur. Therefore, it is reason-
able to presume that creating an artificial episodic memory
for an intelligent agent will require the ability to record and
recall a large sequence of events without prior knowledge of
their content or their relevance to future tasks.

Logically, the ability to record a sequence of episodic
memories (episodes) in a relatively small, finite mem-
ory store requires that the episodic memory system make
choices about what elements are retained and what ele-
ments are forgotten. Forgetting might take many forms (dis-
cussed in Related Work below) including: not recording
some events, decay of memory elements, combining or
merging similar memories, or a gradual reduction of mem-
ory fidelity.

Wallace et al. (2013) explored the idea of minimizing the
size of the episodic store by using it for recognition only
rather than recall. Specifically, a hash function was used to
generate a unique id for each episode. The id was stored
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but the episode was then discarded entirely. Thus, the agent
could recognize an episode if seen again by comparing its
hash value to those previously seen.

In effect, this approach compresses the content of each
episode to a single integer. It can be thought of as being
at one extreme on the continuum between greater fidelity
of individual episodes versus greater capacity for recording
episodes given a fixed-size episodic store. Whereas, most
forgetting mechanisms are at or near the opposite end.

Wallace et al. (2013) demonstrated that a recognition-only
episodic memory system can still be quite effective for some
tasks. However, their work does not explore the choice of
the hash function itself. Rather, their choice of hash func-
tion was essentially arbitrary. In this research, we investigate
hash functions that provide particularly useful capabilities:
namely the ability to recognize similar episodes and also to
perform a limited degree of episode retrieval.

We begin with a set of desired properties of an episodic
memory hash function and then describe a general approach
for such functions called a hash formula. We then describe
and compare several general approaches to creating and
maintaining a hash formula over time as the agent perceives
subsequent episodes. We conclude with a comparison of
these approaches within the context of the original desider-
ata. These results show that our best approach is comparably
effective to a hash formula that has prior knowledge of the
episodic memory content.

Episode Hash Function Desiderata

Typically, a hash function has the following requirements:

Efficient A hash function should execute in O(n) time or
better where n is the size of the input.

Deterministic A hash function should generate the same
hash code given the same input.

Uniform given a set of inputs, the function should produce
a small number of collisions.

We propose that a hash function used to encode episodic
memories has the following additional desired properties:

Reversible Given a hash code and the definition of a hash
function, it is possible to partially reconstruct the episode
from the code. Presumably, a full reconstruction is im-
possible given the large difference in information stored
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in the episode as compared to the code. However, a par-
tial reconstruction may be sufficient to enhance an agent’s
decision making. The goal is to retain as much informa-
tion as possible within the hash code.

Locality Sensitive In short, similar episodes encode to sim-
ilar hash codes. This allows the agent to gauge the relative
familiarity of an episode even if it is unique. A measure of
the familiarity of an episode can be used to guide learn-
ing, particularly if it is used to extract a past episode that
is most similar to its current state.

Related Work

The simplest and most obvious approach to maintain a
fixed size memory store is to simply discard episodes from
the store to make room for new ones. Researchers have
discovered several heuristics for selecting which episode
to discard in this situation (Ram and Santamara 1997;
Kennedy and De Jong 2003; Dodd and Gutierrez 2005;
Brom and Lukavsk 2009; Nuxoll et al. 2010). In contrast,
our approach is to show how episodes can be substan-
tially compressed using hashcodes while still preserving an
agent’s ability to recognize situations and partially recon-
struct the past.

Thus, the research we present in this paper can be viewed
as either an alternative or a complement to the forgetting
mechanisms listed above.

Bloom filters (Bloom 1970) are an effective way to rec-
ognize previously seen inputs. Rather than using one hash
function to generate a bit string for each input, a Bloom fil-
ter uses one very large bit string and many independent hash
functions. The bit string begins at all zeroes and each hash
function sets one bit in the string. Thus, if there are n hash
functions, n bits are set each time you hash a new input. To
recognize a previously seen input, the program can simply
check all bits that would be set by hashing it.

However, to use Bloom filters for recall as well as recog-
nition would require that the hash functions be reversible.
Furthermore, a Bloom Filter requires at least a limited fore-
knowledge of the scope of data it is recording since the size
of the bit string typically cannot be easily changed once it is
created (Almeida et al. 2007).

Locality-sensitive hash (LSH) functions were initially in-
troduced in (Indyk and Motwani 1998). LSH functions rely
upon transforming the input into N different projections. In-
puts are then hashed into N sub-hashcodes (often used to
index separate tables) that are each 1/N the size of the ac-
tual desired hash code length. The resulting sub-hashcodes
are concatenated to form the final code. In this way similar
inputs will have at least one subcode that is identical.

LSH functions can also be used in combination with
Bloom filters to create a data store that recognizes similar
inputs (Hua et al. 2012).

In order to create effective projections of each input, a
LSH presumes some foreknowledge of the general format
and content of the inputs in order to define the projections.
Particularly, the number of dimensions of the input must be
known in advance. For many LSH hash functions, the do-
main of each dimension must also be known.

These requirements are infeasible for a strictly general
purpose episodic memory for which the scope and content of
the episodes is not known in advance. Also, as with Bloom
filters, to provide recall the LSH functions used would need
to be reversible.

The idea of a reversible hash function is essentially lossy
data compression. Existing lossy data compression tech-
niques are primarily focused on audio or image data and also
rely upon some foreknowledge of the content and format of
the data to be compressed (Cover and Thomas 2006). It is
not clear how such techniques could be applied to arbitrary
episodic memories.

Hash Formulae

To create an effective hash function with the desired prop-
erties we use a simple approach we refer to as a hash for-
mula. A hash formula is a mapping of atomic elements of an
episode to individual bits in a hash code. If a given element
is present in an episode, then the corresponding bit is set.

For example, consider a case where each episode is a
phrase consisting of one or more English words. The text
below depicts a hash formula that maps English words to
bits. To keep this example simple, the hash code has only 5
bits.

0: down
1: never
2: desert
3: let
4: run

For a given input episode, say ”never gonna let you
down,” the hash formula can be used to produce a hash code
by setting the bits corresponding to matching words in the
input. In this example, the resulting hash code would be
11010. A subsequent episode, say ”never gonna run around,”
would hash as 01001. It’s notable that this example approach
could be viewed as a lossy version of the bag of words model
(Harris 1954).

Baseline Hash Function

To provide some insight into the effectiveness of a hash
function, it’s useful to have a ”good” hash function to com-
pare it to. We use a genetic algorithm (Mitchell 1996) to se-
lect an effective set of elements from all episodes in a given
test database.

A hash formula generated in this way is not useful for an
episodic memory system since it requires access to the entire
database a priori. Nonetheless, it does provide a valuable ba-
sis for comparison for other hashing algorithms as intended.
We use the baseline for this purpose.

Online Hash Formula Definition

A key consideration when constructing a hash formula is
selecting the correct elements to use.

We hypothesize that the most useful elements for a hash
formula are those that are neither particularly rare nor par-
ticularly ubiquitous. This hypothesis is based on informa-
tion theory and the fact that the information content of a
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boolean random variable, such as we consider here, is max-
imized when the variable is equally likely to take either of
its possible values. There are two important corollaries of
this property: first, selecting elements with high information
content also means that we preserve bits in the hashcode for
elements whose presence (or absence) cannot easily be pre-
dicted; and second, this method should also help ensure the
uniformity requirement discussed above.

This hypothesis is also consistent with the term
frequency-inverse document frequency (tf-idf) statistic used
in information retrieval (Jones 1972).

However, by definition, the systems we are interested in
exploring are not privy to the content of all the episodes to be
hashed. Instead, they are only aware of the current episode
and, possibly, limited information about previous episodes.
As a result of these limitations, there is no guarantee that a
hash-formula-based approach yields a useful hash function
if that hash formula is defined a priori. In the extreme case,
if none of the words in the hash formula appear in any of the
input episodes, then all the hash codes will be identical.

To address this problem, we explore the impact of hash
formulae that are defined, and modified, online. As new
episodes arrive, the current hash formula is adjusted to re-
flect the episodic elements the agent has seen so far. When
the hash formula is modified there is a danger that a previ-
ous episode might generate a different hash code if it were
to be rehashed after the modification. Clearly, this approach
exposes a tradeoff between the desire for uniformity (under
the constraint of limited a priori knowledge) and the desire
for determinism (as defined above). Our experiments pro-
vide an initial attempt to explore this tradeoff in the context
of episodic memory retrieval.

We have identified three general approaches to imple-
menting online hash formula definition: folding, sampling
and frequency-based selection. These are each described be-
low.

Folding

In traditional hash functions, the need for online hash func-
tion definition is solved by multiplying or combining all the
elements in some manner. For example, hashing a string is
often accomplished by multiplying each character together
(usually with other factors) before truncating to appropriate
hashcode length using a modulus or shift.

When using a hash formula (as defined in the previous
section) a similar result can be achieved by associating mul-
tiple atomic elements of an episode with the same bit in the
hash code. We call this approach a folding hash formula.
Unlike other methods, this approach preserves (partially) the
reversible nature of the hash formula.

A simple example is illustrated below along with some
samples of how different episodes would be hashed.
Folding Hash Formula:

0: never, let, desert
1: gonna, down
2: give, run
3: you, around
4: up, or

Example Hashes:

never gonna give you up 11111
never gonna let you down 11010
never gonna run around 11110
or desert you 10011

In the above example, new episode features (i.e., individ-
ual words in the phrases) are simply added to the hash for-
mula in order and rolled over to index 0 when the end is
reached.

A folding hash formula also allows the episodic mem-
ory system to adapt to changing inputs. In effect, as new
episodes arrive with novel elements, those novel elements
can be added to the formula for future use without altering
the hash codes that would result from previous inputs. Thus,
the hash function retains the property of being online but
also remains deterministic.

Hash formula folding introduces a new issue: the size of
the hash formula definition grows without bound since new
elements can be constantly added to it. In our experiments,
we determined that we could keep the formula at a given
fixed, maximum size by discarding elements that appeared
the most rarely (breaking ties with those that occurred least
recently). Doing this had a negligible impact on overall per-
formance in our tests (in some cases it was even an improve-
ment) but at the cost of reducing our hash functions’ deter-
minism.

Sampling

Another way to define a hash formula online is to attempt to
select a representative sample of all episode elements seen
to date. Specifically, each element has an equal chance of
being selected for the formula.

To create a sample, we used a a simple reservoir sampling
algorithm (Vitter 1985). The hash function must track the to-
tal number, N , of elements seen to date in all episodes. Each
time a new element is encountered, there is a 1/N chance
that the element will replace one already selected for in the
hash formula.

This approach has the advantage of requiring virtually no
meta-data to be stored for use by the hash function. How-
ever, it results in a non-deterministic hash function. We dis-
cuss this issue further below.

Frequency-Based Selection

Another way to define a hash formula online is to select the
elements for the formula based upon their frequency of ap-
pearance in the episodes seen to date. As discussed above,
we hypothesize that a good hash formula will use elements
that are neither ubiquitous nor rare.

For this research, we chose to model the elements from
episodes as independent Bernoulli random variables. This
convenient simplification is commonplace to Naive Bayes
models and is known to yield useful results in many real-
world situations, even when the independence assumption is
clearly violated (Maron and Kuhns 1960).

In our baseline experiment, we observed that the genetic
algorithm selected episodic elements in a fashion that was
consistent with our hypothesis about useful elements and
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with our independence assumption. Figure 1 shows the fre-
quency with which various elements were used by each for-
mula in the final population created by the genetic algorithm.

We tracked the frequency with which each episodic ele-
ment appeared across all episodes. For the environment un-
der investigation, this resulted in eleven frequency bins. In
the figure, each bin is represented by the x-coordinate of a
point on the graph. Within each bin, we averaged the num-
ber of times the episode element in that bin appeared in the
final hash formula produced by the genetic algorithm. This
value is represented as the y-value for each point in the fig-
ure. Since many elements are unique or nearly unique, most
of the points in the graph lie near x = 0. Finally, we plotted
the Entropy curve (red dashed line) for a Bernoulli random
variable scaled (here by a factor of 5) to appropriately fit
the scatter plot. The line appears to predict our observations
reasonably well.

The depicted results are drawn from the Eaters environ-
ment (described below). The same experiment yielded simi-
lar results in our other environments. None of these environ-
ments strictly adhere to the simplifying assumptions.

Figure 1: Frequency of Element Usage by Baseline

It is clear from the figure that elements that occur only
once are disfavored. We further observed that ubiquitous el-
ements were also disfavored but this is not clear from the
figure since very few elements were this frequent and a rel-
atively large number of elements were used to generate the
graph.

As with folding, frequency-based selection requires the
hash function to maintain meta-data: the list of elements and
their occurrences. This list could grow unbounded. How-
ever, as with folding, we observed that we could keep this
meta-data at a fixed size by discarding infrequent, not-
recently-used elements.

Combining Techniques for Formula Definition

Using a sample-based or frequency-based element selection
approach results in a hash function that is non-deterministic.
A sampling-based approach deliberately replaces elements
in the hash formula over time, albeit with decreasing fre-
quency. For a frequency-based approach, an element that

appears about 50% of the time after 10 episodes may only
occur about 5% of the time after 100 episodes. Thus, a
frequency-based approach might select a particular element
for the hash formula at one point but reject it at some point
in the future.

One way to address this concern is to ignore it. In many
environments, we observed that new elements occur with de-
creasing frequency over time.

Another way to address the non-determinism implied by
sample-based or frequency-based element selection is to
combine the approach with folding. Since folding allows for
an unlimited number of elements to be used in the formula
definition, a sample-based or frequency-based solution can
opt to never evict a particular element from its formula. Pre-
vious episodes will continue to hash identically using the up-
dated formula since they lack the missing element while sub-
sequent episodes can have hash codes that reflect the pres-
ence of this element.

Combining the two approaches also greatly reduces the
growth rate of the hash formula compared to normal folding
approach since only a fraction of the elements are selected.

Test Environments

To evaluate our hash functions, we used four different test
environments in order to mitigate results that might be spe-
cific to any single environment. These environments are de-
scribed briefly as follows:

Eaters Eaters is a Pac-Man-like game that is provided with
the Soar cognitive architecture (Laird 2012). The agent
operates in a two-dimensional grid world maze where
each cell is initially occupied by a wall or food. The agent
can perceive nearby cells and its only actions are move-
ments in the cardinal directions.
An episode in the Eaters environment consists of a snap-
shot of the entirety of the agent’s working memory which
includes its sensors and effectors.

Tanksoar Tanksoar is another grid world based game that
is provided with Soar. This environment is considerably
more complex than Eaters with multiple sensors and ac-
tions. The agent must also balance resources and interact
with competing agents.
An episode in the Tanksoar environment is also a snapshot
of the agent’s working memory. Due to the complexity of
this environment, the size of the episodes was consider-
ably more variable than for Eaters.

English Corpus In this environment, each episode con-
sisted of subsequent sequences of ten words drawn in or-
der from a public domain text. Individual words in the text
were treated as atomic elements. This resulted in many
more episodes than Eaters and Tanksoar but episodes
were much smaller.
This environment had several interesting differences com-
pared to the others. First, each successive episode was
completely different from its predecessor whereas other
environments tended to have great similarity between sub-
sequent episodes. This environment was also most likely
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to introduce new episode elements (i.e., novel words) at
each step.

Video In this environment, each episode consists of one
frame from a short video. Each episode was presented
as a textual representation of each color component (red,
green, blue) of each pixel in the frame. As a result, these
episodes were much larger than for other environments.

Hash Function Evaluation

In our research, we tested several different hash functions
and variations. For brevity, we present here a small sam-
ple of those that we feel are representative. Specifically, we
present results for each of the hash formula definition tech-
niques described above: folding, sampling and frequency-
based. We also show the results from a hash function that
uses a combination of frequency-based selection and fold-
ing as this proved to be one of the most effective in our tests.
Additionally, the results are compared to our baseline agent
which used genetic algorithm to preselect the best features.

As described above, we have defined six desiderata for an
episodic memory hash function: efficient, deterministic, uni-
form, reversible, locality sensitive and online. In this section
we evaluate how effective the hash functions we tested are
at meeting these.

Efficient Since all of the hash functions we tested used a
hash formula, generating a hash code consisted of a fixed
amount of processing for each element in the episode to
be hashed. Therefore, all our functions are efficient by the
given definition presented earlier.

Deterministic Unlike a traditional hash function, a hash
function used for encoding episodic memories has some
room for being not perfectly deterministic. This is because
an agent making an episodic memory is often looking for
a best match rather than a perfect match.

To measure the degree of impairment from lack of de-
terminism, we tested each hash function’s ability to gener-
ate identical hash codes over time. Specifically, we hashed
a sequence of unique episodes but regularly re-inserted
episodes into the sequence that the agent had already seen.
We then measured the degree of similarity (number of bits
in common) between the hash code returned presently and
the hash code returned previously.

Figure 2 shows the relative performance of each hash
function on this task for a variety of hash code sizes. The
baseline and folding hash functions are not shown as they
are perfectly deterministic. The x-axis measures each of
the hash code sizes we tested (10 to 200 bits in increments
of 10). The y-axis measures the average degree of similar-
ity between the new and previous hash codes for the same
episode.
These results, drawn from our tests with the Eaters en-
vironment, show that the combination of folding and
frequence-based selection has near-perfect performance
by this metric compared to other approaches. Results from
the other environments were comparable.

Uniform A hash function that is uniform tends to reduce
the number of collisions. To measure this quantitatively

Figure 2: Determinism Comparison

we exposed the hash function to the same sequence of
episodes as was used for our measurements of determin-
ism and measured the number of collisions that occurred.

Figure 3 shows the relative performance of each hash
function (as well as the baseline function for comparison)
for a variety of hash code sizes. As before, the x-axis mea-
sures each of the hash code sizes we tested. The y-axis
measures the fraction of times that the hash function gen-
erated a unique hash code (rather than a collision).

Figure 3: Uniformity Comparison

These results, drawn from the Eaters environment, show
that the combination of folding and frequence-based se-
lection performs best when hash code sizes are not too
generous. Results from the other environments were com-
parable.

Reversible The use of a hash formula allows the resulting
hash function to be reversible. In particular, the episode
can be partially reconstructed by comparing the bits in
the hash code to the hash formula used to extract the set
of elements that was originally used to generate the code.
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Figure 4 compares how effectively an episode could
be rebuilt from its hash code for each of the hash func-
tions. In cases where a bit was associated with multiple
elements (a folding hash formula) the recovered element
was selected at random. The x-axis indicates the number
of episodes that had been processed and the y-axis shows
the average number of elements a rebuilt episode had in
common with the original.

Figure 4: Reversibility Comparison

Again, these results show that folding and frequency-
based solution maintains more fidelity than other meth-
ods. They were gathered using a hash code size of 100 bits
and the TankSoar environment. We saw similar results in
other environments and with other hash codes sizes pro-
vided that the number of bits in the hash code was signif-
icantly less than the number of elements in the episodes.

Locality Sensitive The use of a hash formula met our re-
quirement for a hash function that is locality sensitive
as described above. In particular, episodes that contain a
similar set of elements are more likely to result in a code
that has similar bits set.

Online All of the hash functions we tested were specifically
designed to be online algorithms and have been success-
fully implemented as such.

Discussion and Future Work

In this paper, we present techniques for creating episodic
memory hash functions that provide recognition, similar-
ity detection and partial recall for an arbitrary sequence
of episodes using limited storage. Our results indicate that
a hash-formula-based approach works best when using a
combination of two techniques that we call folding and
frequency-based selection. We hypothesize that this is the
most effective because a combination of both approaches
produces hash codes with the highest information density.

For future work, it may be possible to improve the fidelity
of retrieved episodes using these techniques by storing a fi-
nite number of ”frame” episodes that fill in ubiquitous de-
tails in the retrieved episode.

Additionally, these approaches have yet to be tested holis-
tically. Comparing the performance of an episodic memory

agent using hash-code based storage instead of a simpler for-
getting mechanism may be informative.
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