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Abstract

We will explore the use of disjunctive causal rules for rep-
resenting indeterminate causation. We provide first a logical
formalization of such rules in the form of a disjunctive in-
ference relation, and describe its logical semantics. Then we
consider a nonmonotonic semantics for such rules, described
in (Turner 1999). It will be shown, however, that, under this
semantics, disjunctive causal rules admit a stronger logic in
which these rules are reducible to ordinary, singular causal
rules. This semantics also tends to give an exclusive interpre-
tation of disjunctive causal effects, and so excludes some rea-
sonable models in particular cases. To overcome these short-
comings, we will introduce an alternative nonmonotonic se-
mantics for disjunctive causal rules, called a covering seman-
tics, that permits an inclusive interpretation of indeterminate
causal information. Still, it will be shown that even in this
case there exists a systematic procedure, that we will call a
normalization, that allows us to capture precisely the cover-
ing semantics using only singular causal rules. This normal-
ization procedure can be viewed as a kind of nonmonotonic
completion, and it generalizes established ways of represent-
ing indeterminate effects in current theories of action.

Introduction
The ability to represent actions with indeterminate effects
constitutes an important objective of any general theory of
action and change in AI. And indeed, most of these theo-
ries provide specific tools and methodologies for represent-
ing such actions in their formalisms.

The basic difficulty in representing indeterminate actions
boils down to the fact that a plain classical logical descrip-
tion of the overall ‘disjunctive’ effect of such an action is
patently insufficient for describing (and predicting) the ac-
tual effects of this action in particular action domains; what
remains to be specified is what are the particular fluents that
can (or cannot) be affected by the action.

This difficulty is quite general, so it transcends the bound-
aries of specific action theories. Accordingly, most action
theories have adopted a two-part approach to representing
indeterminate actions which stipulates both the disjunctive
effect of an action, and the particular fluents that can be in-
fluenced by (or depend on) this action (see, e.g., (Lang, Lin,
and Marquis 2003; Castilho, Herzig, and Varzinczak 2002)).
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A prominent approach to reasoning about actions con-
sists in using causal representations (see, e.g., (Lin 1995;
McCain and Turner 1997; Thielscher 1997; Giunchiglia et
al. 2004). In particular, the causal calculus of (McCain and
Turner 1997) makes use of causal rules A⇒B that express
causal relations among propositions. The nonmonotonic se-
mantics of such theories is determined by causally explained
interpretations in which every fact is explained by some
causal rule.

It has been shown in (McCain and Turner 1997) (see also
(Giunchiglia et al. 2004)) that such causal rules are also ca-
pable of describing indeterminate causal effects, but also in
this case, the corresponding causal description involved two
kinds of rules, a rule (constraint) that describes the disjunc-
tive effect of an action, and a number of ‘explanatory’ rules
of the form A ∧ F ⇒F saying that a literal F is causally
explainable if it holds after action A.

As early as in (Lin 1996), Fangzhen Lin has suggested
an alternative approach, according to which an action with
indeterminate effects could be fully described using a single
disjunctive causal rule of the form:

A⇒B1, . . . , Bn

saying, roughly, that, whenever A holds, one of Bi is caused.
This idea has been taken up in (Bochman 2003b), where
the formalism of the causal calculus has been generalized
to such disjunctive causal rules.

Taking as independent concept, a disjunctive causal rule
can be naturally viewed as a qualitative counterpart of prob-
abilistic causation, the only difference being that the lat-
ter also assigns probabilities to each particular effect. Ac-
cordingly, such rules have much in common with proba-
bilistic causal rules of CP-logic (Vennekens, Denecker, and
Bruynooghe 2009) (see also (Bogaerts et al. 2014)).

The appropriateness of rules of this kind for representing
indeterminate causation can be justified as follows. Sup-
pose that we have two ordinary causal rules A ∧ C⇒B
and A ∧ ¬C⇒¬B1. The rules can be interpreted as say-
ing that A causes either B or ¬B, depending on whether the
additional condition C holds. Suppose now that C is ab-
sent from our vocabulary (it is a ‘hidden parameter’). Still,

1Say, A is ‘The switch is flipped’, B is ‘The switch is down’
and C is ‘The switch is initially up’.
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the above description conveys a nontrivial information about
the situation in question, namely that when A holds, either
B is caused or ¬B is caused, that is, A⇒B,¬B. Note that
this information is completely lost in a singular causal rule
A⇒B∨¬B, which always holds for causal relations.

A further interesting aspect of the above example is that
the use of disjunctive causal rules is still not essential for the
above situation: due to the fact that B and ¬B are logically
incompatible, the disjunctive rule A⇒B,¬B turns out to
be logically equivalent to a pair of ordinary causal rules A∧
B⇒B and A ∧ ¬B⇒¬B. Nevertheless, such a reduction
is impossible for general disjunctive rules.

From a purely technical point of view, disjunctive causal
rules form a natural, though largely unused, fragment of
Turner’s logic of universal causation (UCL) (Turner 1999),
and there are deep reasons for this lack of use. Namely, it
has been shown in (Bochman 2003b), that the nonmonotonic
semantics of UCL sanctions a straightforward reduction of
such rules to ordinary singular causal rules. Furthermore, it
has a shortcoming in that it tends to give an exclusive inter-
pretation to disjunctive heads of causal rules. That is why in
this study we introduce a new, covering semantics for such
causal theories that will provide an inclusive interpretation
of disjunctive causal information.

It will be shown, however, that in many regular cases a
disjunctive causal theory can be ‘normalized’, that is, trans-
formed into a non-disjunctive causal theory in such a way
that the standard nonmonotonic semantics of the latter will
coincide with the covering semantics of the source disjunc-
tive theory. Furthermore, this transformation will be shown
to be closely related to canonical ways of representing in-
determinism in causal theories, employed in (McCain and
Turner 1997; Giunchiglia et al. 2004). Accordingly, disjunc-
tive causal theories coupled with the new semantics suggest
themselves as a systematic framework for representing inde-
terminate causal information.

Preliminaries: The Causal Calculus
Based on the ideas from (Geffner 1992), the causal calculus
was introduced in (McCain and Turner 1997) as a nonmono-
tonic formalism purported to serve as a logical basis for
reasoning about action and change in AI. A generalization
of the causal calculus to the first-order classical language
was described in (Lifschitz 1997). This line of research has
led to the action description language C+, which is based
on this calculus and serves for describing dynamic domains
(Giunchiglia et al. 2004). A logical basis of the causal cal-
culus was described in (Bochman 2003a), while (Bochman
2004; 2007) studied its possible uses as a general-purpose
nonmonotonic formalism.

We will assume that our language is an ordinary proposi-
tional language with the classical connectives and constants
{∧,∨,¬,→, t, f}. � will stand for the classical entailment,
while Th will denote the classical provability operator. In
what follows we will identify a propositional interpretation
(‘world’) with the set of propositional formulas that hold in
it.

A causal rule is an expression of the form A⇒B (“A
causes B”), where A and B are propositional formulas. A

causal theory is a set of causal rules.
A nonmonotonic semantics of a causal theory can be de-

fined as follows.
For a causal theory Δ and a set u of propositions, let Δ(u)

denote the set of propositions that are caused by u in Δ:
Δ(u) = {B | A⇒B ∈ Δ, for some A ∈ u}

Definition 1. A world α is an exact model of a causal theory
Δ if it is the unique model of Δ(α). The set of exact models
forms a nonmonotonic semantics of Δ.

The above nonmonotonic semantics of causal theories is
equivalent to the semantics described in (McCain and Turner
1997). It can be verified that exact models of a causal theory
are precisely the worlds that satisfy the condition

α = Th(Δ(α)).

Informally speaking, an exact model is a world that is
closed with respect to the causal rules and also has the prop-
erty that any proposition that holds in it is caused (deter-
mined) ultimately by other propositions.

The causal calculus can be viewed as a two-layered con-
struction. The nonmonotonic semantics defined above forms
its top level. Its bottom level is the monotonic logic of causal
rules introduced in (Bochman 2003a; 2004); it constitutes
the causal logic of the causal calculus.

A causal inference relation is a relation ⇒ on the set of
propositions satisfying the following conditions:
(Strengthening) If A � B and B⇒C, then A⇒C;
(Weakening) If A⇒B and B � C, then A⇒C;
(And) If A⇒B and A⇒C, then A⇒B ∧ C;
(Or) If A⇒C and B⇒C, then A ∨B⇒C;
(Cut) If A⇒B and A ∧B⇒C, then A⇒C;
(Truth) t⇒ t;
(Falsity) f ⇒ f .

Causal inference relations satisfy almost all the usual pos-
tulates of classical inference, except Reflexivity A⇒A. The
absence of the latter has turned out to be essential for an ad-
equate representation of causal reasoning.

A possible worlds semantics. A logical semantics of
causal inference relations has been given in (Bochman 2004)
in terms of possible worlds (Kripke) models.
Definition 2. A causal rule A⇒B is said to be valid in a
Kripke model (W,R, V ) if, for any worlds α, β such that
Rαβ, if A holds in α, then B holds in β.

It has been shown that causal inference relations are com-
plete for quasi-reflexive Kripke models, that is, for Kripke
models in which the accessibility relation R satisfies the
condition that if Rαβ, for some β, then Rαα.

The above semantics sanctions a simple modal represen-
tation of causal rules. Namely, the validity of A⇒B in a
possible worlds model is equivalent to validity of the for-
mula A→�B, where � is the standard modal operator. In
fact, this modal representation has been used in many other
approaches to formalizing causation in action theories (see,
e.g., (Geffner 1990; Turner 1999; Giordano, Martelli, and
Schwind 2000; Zhang and Foo 2001)).
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Strong equivalence. It has been shown in (Bochman
2003a) that if ⇒Δ is the least causal inference relation that
includes a causal theory Δ, then ⇒Δ has the same non-
monotonic semantics as Δ. This has shown that the rules
of causal inference are adequate for reasoning with respect
to the nonmonotonic semantics. Moreover, as a conse-
quence of a corresponding strong equivalence theorem, it
was shown that the above causal inference relations consti-
tute a maximal such logic.
Definition 3. Causal theories Γ and Δ are called
• objectively equivalent if they have the same nonmono-

tonic semantics;
• strongly equivalent if, for any set Φ of causal rules, Δ∪Φ

is objectively equivalent to Γ ∪ Φ;
• causally equivalent if ⇒Δ = ⇒Γ.

Two causal theories are causally equivalent if each theory
can be obtained from the other using the inference postu-
lates of causal relations. Then the following result has been
proved in (Bochman 2004):
Proposition 1 (Strong equivalence). Causal theories are
strongly equivalent iff they are causally equivalent.

Disjunctive Causal Relations

Now we are going to generalize the causal calculus to inde-
terminate causal rules that involve multiple heads.

In what follows a, b, . . . will denote finite sets of propo-
sitions, while u, v, . . . will denote arbitrary such sets. For a
finite set of propositions a, we will denote by

∧
a the con-

junction of all propositions from a; as a special case,
∧ ∅

will denote t. For any set u of propositions, we will denote
by u the complement of u in the set of all propositions, and
by ¬u the set {¬A | A ∈ u}.

We will consider disjunctive causal rules as rules hold-
ing primarily between finite sets of propositions: a⇒ b will
be taken to mean that if all the propositions in a hold, then
one of the propositions in b is caused. We will use also an
ordinary notation for premise and conclusion sets in causal
rules. Thus, a, b⇒ c will stand for a ∪ b⇒ c, and a,A⇒
will mean a ∪ {A}⇒∅, etc.
Definition 4. A disjunctive causal relation is a binary rela-
tion ⇒ on finite sets of classical propositions satisfying the
following conditions:
(Left Monotonicity) If a⇒ b, then A, a⇒ b;
(Right Monotonicity) If a⇒ b, then a⇒ b, A;
(Cut) If a⇒ b, A and A, a⇒ b, then a⇒ b;
(Strengthening) If A � B and a,B⇒ b, then a,A⇒ b;
(Weakening) If A � B and a⇒ b, A, then a⇒ b, B;
(Left And) If a,A ∧B⇒ b, then a,A,B⇒ b;
(And) If a⇒ b, A and a⇒ b, B, then a⇒ b, A ∧B;
(Or) If A, a⇒ b and B, a⇒ b, then A ∨B, a⇒ b;
(Falsity) f ⇒;
(Truth) ⇒ t.

Similarly to ordinary consequence relations, a disjunctive
causal relation can be extended to arbitrary sets of proposi-
tions by requiring compactness:

(Comp) u⇒ v iff a⇒ b, for some finite a ⊆ u, b ⊆ v.
As can be seen, a disjunctive causal relation forms a sub-

system of the classical sequent calculus. However, the for-
mer is only an applied logical formalism that is not pur-
ported to give meaning to the logical connectives. In fact,
the classical meaning of these connectives is secured by the
use of the classical entailment in the above postulates. Note,
in particular, that Strengthening and Weakening imply that
classically equivalent propositions are interchangeable both
in bodies and heads of the causal rules. Some further ‘classi-
cal’ properties are determined by the other postulates. Thus,
it is straightforward to show that the postulates imply the
following two general rules:
(Logical Strengthening) If c � A and A, a⇒ b, then

c, a⇒ b.
(Logical Weakening) If c � A and a⇒ b, C, for every C ∈
c, then a⇒ b, A.
The first rule implies that a finite set of premises in a

causal rule can be replaced by their conjunction:

a⇒ b iff
∧

a⇒ b

However, the heads of disjunctive causal rules cannot be
replaced with their classical disjunctions; we have only that
a⇒ b always implies a⇒∨

b, though not vice versa. Also,
only the following structural rule for negation holds for dis-
junctive causal relations:
(Reduction) If a⇒ b, A, then a,¬A⇒ b.

As before, an arbitrary set of causal rules will be called
a causal theory. Any causal theory Δ determines a unique
least disjunctive causal relation that includes Δ; it will be
denoted by ⇒Δ.

Bitheories

Bitheories, introduced below, will play the same role as or-
dinary theories for consequence relations.
Definition 5. • A bitheory is a pair (α, u), where u is a de-

ductively closed set and α a world (maximal consistent
set) such that u ⊆ α.

• A bitheory of a disjunctive causal relation ⇒ is any bithe-
ory (α, u) such that α�u.

• Bitheories of ⇒Δ will also be called bitheories of a causal
theory Δ.
Bitheories of a causal relation can be seen as bitheories

that are closed with respect to all its causal rules; this under-
standing is justified by the following simple result:
Lemma 2. A bitheory (α, u) is a bitheory of a causal rela-
tion ⇒ if and only if b ∩ u �= ∅, for any causal rule a⇒ b
from ⇒ such that a ⊆ α.

Similarly, bitheories of a causal theory Δ are precisely
bitheories that are closed with respect to the rules from Δ.

As follows directly from the definition, if (α, u) is a bithe-
ory of ⇒, and v an arbitrary deductively closed set such that
u ⊆ v ⊆ α, then (α, v) will also be a bitheory of ⇒. This in-
dicates that the set of bitheories is determined, in effect, by
its inclusion minimal elements; we will call them minimal
bitheories in what follows.
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Logical semantics of disjunctive causal inference

We will describe now a logical (monotonic) semantics of
disjunctive causal relations.

An ‘official’ semantic interpretation of disjunctive causal
relations could be given in terms of possible worlds mod-
els of the form (i,W ), where i is a propositional interpre-
tation, while W is a set of propositional interpretations that
contains i (see (Turner 1999)). However, any pair (i,W )
determines a unique bitheory (α, u), where α is the world
corresponding to the interpretation i, while u is a theory con-
taining the propositions that hold in all interpretations from
W . Accordingly, by a causal semantics we will mean a set
of bitheories. The validity of disjunctive causal rules with
respect to this semantics is defined as follows.

Definition 6. A causal rule a⇒ b will be said to be valid
in a causal semantics B if, for any bitheory (α, u) from B,
a ⊆ α implies b ∩ u �= ∅.

We will denote by ⇒B the set of all causal rules that are
valid in a causal semantics B. It can be easily verified that
this set is closed with respect to the postulates for disjunctive
causal relations, and hence ⇒B forms a disjunctive causal
relation. In order to prove completeness, for any disjunc-
tive causal relation ⇒, we can consider its canonical causal
semantics defined as the set of all minimal bitheories of ⇒.
Then it can be shown that this semantics is strongly complete
for the source disjunctive causal relation. As a result, we ob-
tain the following theorem (stated in (Bochman 2003b)):

Theorem 3. A relation on sets of propositions is a disjunc-
tive causal relation if and only if it is determined by a causal
semantics.

Due to the direct correspondence between the causal se-
mantics and the possible worlds semantics from (Turner
1999), disjunctive causal relations correspond to a subsys-
tem of Turner’s universal causal logic (UCL). Namely, a
causal rule a⇒B1, . . . , Bn corresponds to the modal UCL
formula

∧
a → CB1 ∨ · · · ∨CBn. Thus, disjunctive causal

relations cover Turner’s causal theories that involve modal
formulas with only positive occurrences of the causal oper-
ator C (see also (Lin 1996)).

Singular Causal Inference

Disjunctive causal rules having a single proposition in their
heads will be called singular in what follows. Such causal
rules have the same meaning as the causal rules of the causal
calculus. In this section we will give a precise characteri-
zation of disjunctive causal relations that are generated by
singular causal rules.

To begin with, the following fact can be easily verified:

Lemma 4. The set of singular rules belonging to a disjunc-
tive causal relation forms a causal inference relation.

In what follows, the above causal inference relation will
be called the normal subrelation of a disjunctive causal re-
lation (by analogy with normal logic programs). Actually,
there is a quite simple and modular recipe how such a sub-
relation could be obtained from a given set of disjunctive
causal rules.

For any set of disjunctive causal rules Δ, let us consider
the following set of singular rules:

N(Δ) = {a,¬b⇒
∨

c | a⇒ b, c ∈ Δ}
Let ⇒n

N(Δ) denote the least causal inference relation that
includes N(Δ). Then the following result shows that the set
N(Δ) captures the ‘singular content’ of Δ.
Theorem 5. ⇒n

N(Δ) is the normal subrelation of ⇒Δ.

Let as say that a disjunctive causal relation is singular if
it is a least disjunctive causal relation containing some set
of singular causal rules. In what follows, we are going to
give more instructive descriptions of such disjunctive causal
relations.

A causal semantics B will be called functional, if for
any world α there is no more than one theory u such that
(α, u) ∈ B. Then we have
Theorem 6. A disjunctive causal relation is singular if and
only if its canonical causal semantics is functional.

The next result states that, for singular causal relations,
worlds produce only determinate effects.
Lemma 7. A disjunctive causal relation is singular iff, for
any world α, α⇒ b, c only if either α⇒ b or α⇒ c.

Finally, the following theorem shows that, for singular
causal relations, disjunctive effects are always ‘separable’
by adding some further assumptions to the premises.
Theorem 8. A disjunctive causal relation is singular if and
only if it satisfies the following condition:

If a⇒ b, c, then a,A⇒ b and a,¬A⇒ c, for some
proposition A.

The above theorem amounts to saying that indeterminate
effects arise in singular disjunctive causal relations only due
to ‘forgetting’ of some relevant parameters. This character-
istic property is even more vivid in the following corollary:
Corollary 9. A disjunctive causal relation is singular if and
only if it satisfies the following condition:

a⇒B1, . . . , Bn iff there are pairwise incompatible
propositions A1, . . . , An such that their disjunction is
a tautology, and a,Ai ⇒Bi, for any i ≤ n.

As a last result in this section, we will show that any dis-
junctive causal relation can be viewed as a language restric-
tion of some singular causal relation. We provide a construc-
tive proof of this claim by transforming any set Δ of causal
rules in a language L into a set of singular rules Δs in some
extended language as follows.

For any causal rule r = a⇒B1, . . . , Bn from Δ, we will
introduce n new propositional atoms r1, . . . , rn, and con-
sider the following set of singular rules:

a,¬r1, . . . ,¬rn ⇒ f

a, ri ⇒Bi, for all i ≤ n

Δs will denote the set of all singular rules obtained in this
way from Δ. Then it can be shown that the generated causal
relation ⇒Δ is exactly the restriction of ⇒Δs

to L. As a
result, we obtain
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Theorem 10. For any disjunctive causal relation ⇒ in a
language L, there exists a singular causal relation ⇒s in an
extended language Ls ⊇ L such that ⇒ coincides with the
restriction of ⇒s to the language L.

The above theorem shows that any disjunctive causal re-
lation could be seen as a singular causal relation in which
some of the relevant factors are ‘hidden’.

It is important to note also that a number of further causal
rules involving the new propositional atoms can be added to
the translation without affecting the proofs. For example,
we may require further that that the new atoms are mutually
incompatible by adding the following causal constraints

ri, rj ⇒ f

for any i �= j. Moreover, each new atom could be made
exogenous by adding the rules:

ri ⇒ ri ¬ri ⇒¬ri
Remark. The above result lends, in effect, a formal logical
support to the claim that deterministic causation (and de-
terminism in general) provides a comprehensive basis for a
general theory of causation - see, e.g., (Pearl 2000).

The Stable Nonmonotonic Semantics

Now we will turn to the main subject of interest in causal
theories, namely their nonmonotonic semantics.

The nonmonotonic semantics of causal theories arises
from a general requirement that adequate models of such
theories should satisfy two conditions. First, they should be
closed with respect to the causal rules. Second, they should
be causally explainable: propositions that hold in such mod-
els should have justifications in the sense of being produced
(caused) by the causal rules that are ‘active’ in the model.

A nonmonotonic semantics that satisfies the above re-
quirement has been suggested in (McCain and Turner 1997)
for singular causal theories, and it has been generalized to
arbitrary theories of universal causal logic (UCL) in (Turner
1999). Since disjunctive causal relations form a subsystem
of UCL, this semantics can be immediately translated into
our framework.
Definition 7. A world α will be said to be exact with re-
spect to a disjunctive causal relation ⇒ if (α, α) is a mini-
mal bitheory of ⇒. The set of all exact worlds will be said
to form a stable nonmonotonic semantics of ⇒.

The above definition is equivalent to the definition of
causally explained interpretations, given in (Turner 1999).

The above stable semantics appears as a natural, and even
almost inevitable, extension of the nonmonotonic semantics
for singular causal theories to the disjunctive case. This im-
pression can also be supported by the fact, established in
(Turner 1999), that in the general correspondence between
UCL and disjunctive default logic, causally explained in-
terpretations correspond to extensions of disjunctive default
theories. Moreover, by the same correspondence, simple
disjunctive theories can be translated into disjunctive logic
programs, and then causally explained interpretations will
exactly correspond to answer sets of such programs. Sum-
ming up, there is a tight correspondence between the above

semantics and respectable semantics of nonmonotonic for-
malisms and disjunctive logic programming.

Despite the above impressive support, it has been noticed
in the literature that semantics of this kind are problematic in
their treatment of indeterminate information. Namely, due
to minimization that is involved in their definitions, these
semantics tend to give an exclusive interpretation to disjunc-
tions. It turns out that the same shortcoming is preserved by
the above stable semantics for disjunctive causal theories.
The following example has been suggested by Ray Reiter:
Example 1. Suppose that we drop a pin on a board painted
black and white. As a result, the pin lands on the board
in such a way that it touches either black or white area, or
both. Moreover, if the pin is large (or black and white areas
are small), then a most probable effect is that the pin touches
both black and white areas.

A natural representation of this situation could be given
using the main disjunctive rule

Drop⇒Black,White

and a couple of auxiliary causal assertions that need not
bother us for now. Unfortunately, the stable semantics of the
resulting causal theory does not explain the world in which
the pin touches both black and white areas, though it readily
justifies worlds in which the pin touches only one of them.

Furthermore, it has been shown in (Bochman 2003b) that,
under the stable semantics, disjunctive causal rules can be
considered as an inessential ‘syntactic sugar’ that does not
change our representation capabilities. More precisely, the
following result has been shown:

Theorem 11. The stable semantics of a disjunctive causal
relation coincides with the nonmonotonic semantics of its
normal subrelation.

In accordance with the above theorem, in order to com-
pute a stable semantics of a disjunctive causal theory Δ, we
can transform Δ into a set of singular causal rules N(Δ), as
described earlier, and then compute the nonmonotonic se-
mantics for the latter singular causal theory. In this sense,
any disjunctive causal rule a⇒ b can be directly replaced by
a set of singular causal rules.
Example 2. Returning to Reiter’s example, the rule
Drop⇒Black,White implies the following three singular
rules:

Drop,¬Black⇒White Drop,¬White⇒Black

Drop⇒Black ∨White

Since the last rule is not determinate, only the first two
rules determine the nonmonotonic semantics. Note that
these two rules cannot be applied simultaneously, due to the
constraint Drop∧¬Black∧¬White⇒ f that is implied by
each of them. As a result, such rules cannot give an expla-
nation for the possible fact Black ∧White.

Extending these results, we are going to show now that
they are actually a by-product of a deeper, logical reduction
of disjunctive causal rules in an appropriate causal logic that
is sanctioned by the stable nonmonotonic semantics.
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Stable disjunctive causal relations

It turns out that, unlike the causal calculus, disjunctive
causal relations do not form a maximal causal logic that is
adequate for the stable semantics. Instead, the latter corre-
sponds to a rather peculiar stronger logic described in the
next definition.
Definition 8. A disjunctive causal relation will be called sta-
ble if it satisfies the following postulate:

(Saturation) A,B⇒A,A→B

A logical semantics of stable disjunctive causal relations
can be obtained by restricting bitheories to saturated ones,
described in the following definition.
Definition 9. A bitheory (α, u) will be be called saturated
if u = α ∩ β, for some world β. A causal semantics will be
called saturated, if it contains only saturated bitheories.

A bitheory (α, u) is saturated if u either coincides with
α, or is a maximal sub-theory of α. The following result
shows that stable causal relations are sound and complete
for saturated causal semantics.
Theorem 12. A disjunctive causal relation is stable if and
only if it is generated by a saturated causal semantics.

The following lemma gives a number of equivalent con-
ditions of Saturation.
Lemma 13. A disjunctive causal relation is stable if and
only if it satisfies one of the following conditions:

1. A⇒B ∨A,¬B ∨A;
2. If a,¬b1 ⇒

∨
b2, for any partition (b1, b2) of b, then

a⇒ b.
The second condition above is especially interesting,

since it shows, in effect, that any disjunctive rule is equiv-
alent to the set of its singular consequences with respect to
a stable causal relation. Indeed, we have seen earlier that
the set of singular causal rules derived from a given disjunc-
tive causal rule a⇒ b amounts to {a,¬b1 ⇒

∨
b2}, while

the condition (2) says that the latter are sufficient for deriv-
ing a⇒ b in stable causal relations. As a result, we obtain
Corollary 14. For stable causal relations, any disjunctive
causal theory Δ is logically equivalent to its singular reduc-
tion N(Δ).

The above result shows that stable disjunctive causal rela-
tions are essentially equivalent to singular causal production
relations. More exactly, for stable disjunctive causal rela-
tions, any disjunctive rule a⇒ b can be seen as a shortcut
for the set of singular rules {a,¬b1 ⇒

∨
b2}.

Finally, we are going to show that stable causal relations
constitute a strongest causal logic that is adequate for the
stable semantics. To this end, we need to define first the
corresponding notions of equivalence.

In the definition below, ⇒st
Δ denotes the least stable dis-

junctive causal relation that includes a causal theory Δ.
Definition 10. Causal theories Δ and Γ will be called
• stably equivalent if ⇒st

Δ coincides with ⇒st
Γ ;

• nonmonotonically equivalent if they determine the same
stable semantics;

• strongly equivalent if, for any set Φ of causal rules, Δ∪Φ
is nonmonotonically equivalent to Γ ∪ Φ.
Now, as a consequence of the preceding result, we obtain

Corollary 15. Causal theories Δ and Γ are stably equiva-
lent if and only if N(Δ) is causally equivalent to N(Γ).

Second, we have
Lemma 16. Δ is strongly equivalent to N(Δ).

These results immediately imply the following
Theorem 17. Two disjunctive causal theories are strongly
equivalent if and only if they are stably equivalent.

The Covering Semantics

As we already mentioned, Reiter’s example presents dif-
ficulties not only for causal reasoning, but also for dis-
junctive logic programming, default logic and PMA theory
of updates. Briefly put, since the intended models of all
these formalisms are required to be minimal, they usually
enforce an exclusive interpretation of disjunctive informa-
tion. However, in the history of nonmonotonic reasoning
there have been a number of attempts to define nonmono-
tonic semantics that would preserve the usual inclusive un-
derstanding of logical disjunctions, most prominent sugges-
tions being Minker’s Weak GCWA (see (Lobo, Minker, and
Rajasekar 1992)) and Sakama’s possible model semantics
(Sakama 1989) in logic programming, an alternative seman-
tics for circumscription, suggested in (Eiter, Gottlob, and
Gurevich 1993), and a theory of disjunctive updates sug-
gested in (Zhang and Foo 1996). The covering semantics,
described below, will belong to the same class.

Basically, our desiderata will be the same as those
described above for the stable nonmonotonic semantics.
Namely, we want to single out models that are closed with
respect to the causal rules, and such that any fact that holds
in the model is explainable, ultimately, by the causal rules
that hold in the model. Our point of departure, however, will
be that the notion of explainability determined by disjunctive
rules could be given a different interpretation.

A disjunctive rule p⇒ q, r says that p causes either q or
r. In the deterministic setting this normally means that there
are additional facts, say q0 and r0, such that p∧ q0 causes q,
p∧r0 causes r, and, in addition, either q0, or r0 holds in any
situation in which p holds. This gives us a way of explain-
ing why q or r occurs, provided we know that p holds. Note,
however, that there are no a priori constraints on the com-
patibility of q0 and r0, so they could hold simultaneously, in
which case both q and r are caused (and hence explainable).

Our qualification about normality above indicates, how-
ever, that the above interpretation may sometimes lead us
astray. Thus, it may well be that the disjunctive rule p⇒ q, r
is simply a logical consequence of a valid singular causal
rule p⇒ q, in which case it should not give us an explana-
tion for an occurrence of r. This means that the disjunctive
rule should at least be irreducible in order to serve as an ex-
planation for its indeterminate conclusions.

Unfortunately, even this qualification is not sufficient. A
more complex, but equally plausible situation might be that,
though p⇒ q, r is an irreducible rule, q is actually caused
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by another rule, say q0 ⇒ q, in which case the presence of p
cannot serve as a proper explanation for r.

The above considerations suggest that indeterminate
causal rules can provide explanations for their conclusions
only in situations when they are not superseded by other ac-
tive causal rules that bring about more determinate effects.
Only in such cases the explanation provided by the indeter-
minate rules will be the only explanation possible. The defi-
nition of causally covered models, given below, is an attempt
to make this idea precise.

If (α, u) is a minimal bitheory of a disjunctive causal re-
lation ⇒, we will say that u is a causal projection of α with
respect to ⇒. A world is causally consistent if it has a causal
projection in this sense, but it may have a number of causal
projections. Still, there are worlds that are uniquely deter-
mined by their causal projections. Such worlds will consti-
tute the alternative nonmonotonic semantics of disjunctive
causal theories.
Definition 11. A world α will be said to be causally cov-
ered with respect to a disjunctive causal relation ⇒ if it is
the unique world that includes all its causal projections. The
set of all causally covered worlds will constitute a nonmono-
tonic covering semantics of ⇒.

Yet another description of causally covered worlds is
given in the next lemma.
Lemma 18. A world α is causally covered if and only if

α = Th(
⋃

{u | u is a causal projection of α})
The above lemma gives a precise meaning to the require-

ment that facts holding in intended interpretations of a causal
theory should be explained by the causal rules of the the-
ory. Namely, any proposition belonging to a causally cov-
ered world should be a logical consequence of the facts that
have a causal explanation in this world.

The following results describe the relationship between
the covering and stable semantics. Thus, the next lemma
shows that the stable semantics is stronger than the covering
semantics.
Lemma 19. Any exact world is also causally covered.

The next result shows that both semantics coincide for
singular causal relations.
Theorem 20. If ⇒ is a singular causal relation, then its
stable semantics coincides with its covering semantics.

Thus, the difference between the two semantics can show
itself only for genuinely disjunctive causal relations.
Example 3. Let us consider the following disjunctive causal
theory:

p⇒ q, r; p⇒ p; ¬p⇒¬p; ¬q⇒¬q; ¬r⇒¬r.
The world α that is determined by the literals {p, q, r}

is not exact, so it is not included in the stable semantics.
However, it has two causal projections, namely Th(p, q) and
Th(p, r). Consequently, it is causally covered with respect
to this theory. As a result, the stable semantics for this exam-
ple validates an intuitively implausible conclusion ¬(q ∧ r),
though it is not valid in the covering semantics.

As a last result in this section, we will show that disjunc-
tive causal relations constitute a maximal logic that is ade-
quate for the covering semantics.

Definition 12. Disjunctive causal theories Γ and Δ will be
called

• causally equivalent, if they determine the same disjunc-
tive causal relation;

• c-equivalent, if they determine the same covering seman-
tics.

• strongly c-equivalent, if, for any set Φ of causal rules, Γ∪
Φ is c-equivalent to Δ ∪ Φ.

Disjunctive theories are causally equivalent if each can be
obtained from the other using the postulates for disjunctive
causal relations, while strongly c-equivalent theories are in-
terchangeable in any larger causal theory without changing
the covering semantics. In other words, strong c-equivalence
can be seen as a maximal logical (monotonic) equivalence
that preserves the covering semantics.

Theorem 21. Disjunctive causal theories are strongly c-
equivalent if and only if they are causally equivalent.

The above theorem says, in effect, that, unlike the case
of the stable semantics, any logical distinction between dis-
junctive causal theories, allowed by the formalism of dis-
junctive causal relations, is relevant for determining the cov-
ering semantics either for these theories themselves, or for
their extensions.

Normalization

In this final section we are going to show that in regular cir-
cumstances, a disjunctive causal relation can be systemati-
cally extended to a singular causal inference relation in such
a way that that the covering semantics of the former will
coincide the nonmonotonic semantics of the latter.

To begin with, that there are many cases when disjunctive
causal rules are logically reducible to singular rules even in
the general logic of disjunctive causal inference. For exam-
ple, the rule A⇒B,¬B is equivalent to a pair of singular
causal rules A,B⇒B and A,¬B⇒¬B. This is a conse-
quence of the following general fact:

Lemma 22. A rule a⇒B1, . . . , Bn is reducible to the set of
singular rules {a,Bi ⇒Bi | i = 1, . . . , n} and a constraint
a,¬B1, . . . ,¬Bn ⇒ f if and only if a,Bi, Bj ⇒Bi, for any
i �= j.

Note that the above characteristic condition for reduction
holds, in particular, when all Bi are incompatible, given a,
that is, when a,Bi, Bj ⇒ f . For example (cf. (Lin 1996)), a
disjunctive rule a⇒B ∧C,B ∧¬C,¬B ∧C is reducible to
the following set of singular rules:

a,B⇒B a,¬B⇒¬B a,C⇒C

a,¬C⇒¬C a,¬B,¬C⇒ f

The above result shows, in effect, that irreducibly disjunc-
tive rules arise only in cases when their heads contain mu-
tually compatible propositions. For such rules, we need a
different strategy.
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Let B be a causal semantics. For a world α, we will denote
by uα the least theory containing all the causal projections
of α in B, that is

uα = Th(
⋃

{u | u is a causal projection of α})

Now, let n(B) denote the set of all bitheories of the form
(α, uα). Clearly, n(B) is a functional causal semantics, so
it will produce a singular causal relation. We will call n(B)
the normalization of B.

Using the above notions, the basic idea behind the con-
structions below can be described quite simply. Suppose that
B is the canonical semantics of some disjunctive causal re-
lation ⇒. Then it is easy to verify that a world α is causally
covered in B if and only if it is an exact world in its nor-
malization n(B) (cf. Lemma 18). Consequently, if n(B) is
a canonical semantics of some singular causal relation ⇒n,
then the stable semantics of ⇒n will coincide with the cov-
ering semantics of ⇒.

Unfortunately, the above construction works only under
severe finiteness constraints. Accordingly, in order to sim-
plify our discussion at this stage, we will occasionally re-
strict our attention to finite causal theories and causal rela-
tions in some finite propositional language.

We will begin with the following notions:

Definition 13. Let B be the canonical semantics of a dis-
junctive causal relation ⇒, and n(B) its normalization. The
(singular) causal inference relation generated by n(B) will
be called the normalization of ⇒, and it will be denoted by
⇒n.

Then the following result can be shown to hold:

Theorem 23. If ⇒ is a disjunctive causal relation in a finite
language, then its covering semantics coincides with the sta-
ble semantics of its normalization.

Thus, for a broad class of disjunctive causal relations, the
covering semantics coincides with the stable semantics of
their normalizations. It should be kept in mind, however,
that this normalization involves, in effect, an extension of
the source disjunctive causal relation with new singular rules
that are not derivable logically from it.

Normalization as a nonmonotonic completion. The nor-
malization can be viewed as a (presumably unusual) kind of
nonmonotonic completion of the source disjunctive causal
relation, which is obtained by restricting its logical seman-
tics to functional bitheories. As such, it is similar to other
non-standard forms of completion that exist in the AI litera-
ture, such as the Markov assumption (see (Bochman 2013)).
Thus, as for the latter, this semantic restriction does not lead
to a change of the underlying logic of disjunctive causal in-
ference; this follows immediately from the fact that any dis-
junctive causal relation is a language restriction of some sin-
gular causal relation - see Theorem 10. Still, the restriction
of the set of models means that more causal inferences be-
come valid, so more information is obtained in particular
cases.

Causal covers

We still need to provide a more constructive description of
normalization. To this end, we introduce the following
Definition 14. A proposition C is a causal cover of a set of
propositions b in a disjunctive causal relation, if C⇒ b and
D ∧ ¬C⇒, for any D such that D⇒ b.

The causal cover of a set of propositions is a weakest
causally sufficient condition for this set. Notice, in partic-
ular, that falsity f is a cover of the empty set ∅.

An alternative characterization of covers is given in the
next lemma.
Lemma 24. C is a causal cover of b iff, for any causally
consistent world α, α⇒ b if and only if C ∈ α.

Based on this lemma, it can be easily verified that in the
finite case any set of propositions has a causal cover.

The following consequence of the lemma connects causal
covers with normalization:
Corollary 25. If C is a causal cover of b, and a⇒ b, A, then
a,¬C⇒n A.

The notion of a causal cover allows us to provide a rela-
tively simple description of normalization.

Given a finite disjunctive causal theory Δ, we define Δs

as the set of all singular causal rules of the form:

a,¬Cb ⇒A

such that a⇒ b, A ∈ Δ, and Cb is a causal cover of b. Us-
ing this set, we will construct the following singular causal
theory:

Δn = Δs ∪ {a⇒ f | a⇒∅ ∈ Δ}.
The next result shows that the above singular causal the-

ory generates precisely the normalization of Δ.
Theorem 26. If Δ is finite, then ⇒n

Δ coincides with ⇒Δn .
In accordance with the above result, the covering seman-

tics of Δ will coincide with the standard nonmonotonic se-
mantics of a singular causal theory Δn. However, this de-
scription of normalization is still not fully constructive, since
it depends on determining causal covers.

Construction of covers. As a final step in our descrip-
tion, we describe algorithms of constructing covers for finite
causal theories. We consider first a simplest case of causal
rules that do not involve logical connectives, and then gen-
eralize the method to arbitrary causal theories.

A causal rule a⇒ b will be called flat if a and b are sets of
literals. A causal theory will be called flat if it contains only
flat causal rules. Finally, a disjunctive causal relation will be
called flat if it is generated by a flat causal theory. It should
be noted that most examples of indeterminate causation ap-
pearing in the literature are representable by causal theories
of this kind.

By a reduction of a causal rule a⇒ b we will mean any
rule a,¬b0 ⇒ b1 such that b = b0 ∪ b1 and b0 ∩ b1 = ∅. Δ¬
will denote the set of all reductions of the rules from Δ.

Note that all the rules from Δ¬ are derivable from Δ (by
Reduction). It should be clear also that if Δ is a flat theory,
then Δ¬ will also be flat.
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Now, given a finite flat causal theory Δ, we can define a
causal cover for a finite set of literals b as follows:

Cb = ∨{∧a | a⇒ d ∈ Δ¬ & d ⊆ b}
Lemma 27. If Δ is flat, then Cb is a causal cover of b in
⇒Δ.

Recall that for a finite causal theory Δ, the normal-
ization can be constructed using the set of singular rules
a,¬Cb ⇒A, for every disjunctive rule a⇒ b, A. Now, the
above construction can be used for determining all causal
covers required for defining the normalization of a flat causal
theory. Note also that if Δ is a flat causal theory, then its
normalization will be a determinate causal theory, that is it
will contain only causal rules of the form a⇒ l, where l is
a literal. As has been shown already in (McCain and Turner
1997), the nonmonotonic semantics of such theories coin-
cides with the set of models of their classical completion.

The following examples show that normalization of
flat disjunctive causal theories corresponds to established
ways of describing non-determinate information by singu-
lar causal rules.
Example 4. Let us return to the disjunctive causal theory:

p⇒ q, r; p⇒ p; ¬p⇒¬p; ¬q⇒¬q; ¬r⇒¬r.
In order to construct the normalization, the rule p⇒ q, r

should be replaced by two singular rules p,¬C{q} ⇒ r and
p,¬C{r} ⇒ q. The relevant causal covers can be calcu-
lated by the above formula for Cb, and we immediately
obtain C{q} = p ∧ ¬r and C{r} = p ∧ ¬q. As a re-
sult, the above singular rules are reduced, respectively, to
p ∧ r⇒ r and p ∧ q⇒ q. As can be seen, the latter rules
correspond exactly to the way of representing indetermi-
nate information suggested in (McCain and Turner 1997;
Giunchiglia et al. 2004).
Example 5. Suppose that we add a rule s⇒ q to the causal
theory in the preceding example. Then the causal cover C{q}
for {q} changes to (p∧¬r)∨s. As a result, the first singular
rule of the normalization will now be p∧r∧¬s⇒ r. In other
words, the explainability of r will depend now not only on
p, but also on the absence of s; this is because s causes q and
thereby supersedes the indeterminate rule p⇒ q, r.

The next example shows that the normalization procedure
gives us a reasonable solution also in more complex situa-
tions than what can be handled intuitively.
Example 6. Consider the following theory:

p⇒ q, r; p⇒ s,¬r.
The relevant causal covers are: C{q} = p ∧ ¬r, C{r} =

p ∧ ¬q, C{s} = p ∧ r, C{¬r} = p ∧ ¬s. As a result, the
normalization of the above causal theory is

p ∧ q⇒ q; p ∧ r⇒ r; p ∧ s⇒ s; p ∧ ¬r⇒¬r.
Finally, we will briefly describe a construction of causal

covers for arbitrary finite causal theories.
To begin with, we will introduce a special notation for

dealing with ‘disjunctive’ sets of propositions. For two sets
of propositions a, b, we will denote by a&b the set {Ai∧Bj |

Ai ∈ a,Bj ∈ b}. In addition, we will use a ‘disjunctive’
entailment relation �∨ on sets of propositions, defined as
follows: a �∨ b holds iff, for any A ∈ a there exists B ∈ b
such that A � B.

By a join of two causal rules a1 ⇒ b1 and a2 ⇒ b2 we will
mean a rule a1, a2 ⇒ b1&b2. Δ& will denote the set of all fi-
nite joins of the rules from Δ, while Δ⊕ will denote (Δ&)¬,
that is, the set of all reductions of the rules from Δ&.

A causal cover Cb of a set of propositions b can now be
described as follows:

Cb = ∨{∧a | a⇒ d ∈ Δ⊕ & d �∨ b}
Theorem 28. Cb is a causal cover of b in ⇒Δ.

As a by-product of the above construction, we immedi-
ately obtain a constructive proof of the fact that any finite
disjunctive causal theory is normalizable.

Summary and Conclusions

The main results of this study are two-fold. On the one
hand, confirming the initial idea of (Lin 1996), it has been
shown that disjunctive causal rules provide a highly expres-
sive and versatile tool for representing indeterminate cau-
sation. Moreover, viewed under a more appropriate, cov-
ering nonmonotonic semantics, such rules are not reducible
logically to ordinary, singular causal rules, so they contain
more information. On the other hand, however, it has been
shown that even in the latter case this additional informa-
tion can be expressed using ordinary causal rules by way of
systematic completion of the source causal theory with new
singular causal rules that provide the required information
about causes (or excuses) for particular causal effects. As we
have seen in the examples, in simple cases such additional
rules correspond to existing ways of describing indetermi-
nate actions, given in the literature. However, the described
normalization procedure is fully general, so it allows us to
automate an important and non-trivial part of representing
nondeterminate actions.

Speaking generally, the above results suggest a certain
primacy of ordinary, singular rules for representing causa-
tion2. More precisely, they show that the restriction to ordi-
nary, ‘deterministic’ causal rules can be sustained as a con-
venient and useful representation decision, or representa-
tion assumption. Nevertheless, this general assumption does
not deprave truly disjunctive causal rules of their potentially
useful role in representing indeterminate causation. Thus, it
has been shown that the corresponding ‘translation’ to sin-
gular causal rules is in general far from being trivial. It re-
mains to be seen whether disjunctive causal rules can fulfill
this representation role in describing complex causal or ac-
tion domains that go beyond toy examples.
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2In this sense, the situation is quite similar to the use of normal
program rules in logic programming.
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