
Approximations and Refinements
of Certain Answers via Many-Valued Logics

Marco Console
Sapienza Università di Roma

Paolo Guagliardo, Leonid Libkin
University of Edinburgh

Abstract

Computing certain answers is the preferred way of an-
swering queries in scenarios involving incomplete data.
This, however, is computationally expensive, so practi-
cal systems use efficient techniques based on a partic-
ular three-valued logic, even though this often leads to
incorrect results. Our goal is to provide a general many-
valued framework for correctly approximating certain
answers. We do so by defining the semantics of many-
valued answers and queries, following the principle that
additional knowledge about the input must translate into
additional knowledge about the output. This framework
lets us compare query outputs and evaluation proce-
dures in terms of their informativeness. For each many-
valued logic with a knowledge ordering on its truth val-
ues, one can build a syntactic evaluation procedure for
all first-order queries, that correctly approximates cer-
tain answers; additional truth values are used to refine
information about certain answers. For concrete exam-
ples, we show that a recently proposed approach fixing
some of the inconsistencies of SQL query evaluation is
an immediate consequence of our framework, and we
further refine it by adding a fourth truth value. We show
that no evaluation procedure based on Boolean logic de-
livers correctness guarantees. Finally, we study the rela-
tive power of evaluation procedures based on the infor-
mativeness of the answers they produce.

1 Introduction

In a variety of data processing tasks, especially those where
knowledge representation techniques play an important role,
query answering is often reduced to finding those answers
that hold with certainty over an incompletely described data
set. Such examples include data integration (Lenzerini 2002;
Halevy, Rajaraman, and Ordille 2006), data exchange (Are-
nas et al. 2014), inconsistent databases (Bertossi 2011), and
ontology-based query answering (Calvanese et al. 2007;
Kontchakov et al. 2011). In many cases, one builds a data-
base, typically incomplete, and then answers queries over it.
The latter of course is often done using traditional database
query evaluation methods.

When it comes to evaluation of queries over incomplete
databases, we have a well established theory, as well as prac-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tice of relational query answering; both date back more than
30 years, and somehow they are totally out of sync with each
other, as extensively discussed by Libkin (2014). The stan-
dard theoretical approach to answering queries on incom-
plete databases is to compute certain answers, i.e., those an-
swers one can be sure about for every substitution of missing
values. The main drawback of this approach is its high com-
putational complexity outside restricted classes of queries
(Abiteboul, Kanellakis, and Grahne 1991).

In practice, of course, high complexity cannot be toler-
ated, so systems such as relational DBMSs devise efficient
algorithms that are based on a three-valued logic (3VL) for
handling incomplete data (Date and Darwen 1996). In ad-
dition to the usual true (t) and false (f), 3VL operates with
the value unknown (u) to account for operations with incom-
plete information.

While one might expect that the approaches accepted in
practice have something to do with theory, it is not so: stan-
dard relational query evaluation based on 3VL and certain
answers can be completely unrelated. This was observed re-
cently by Libkin (2016b), who also showed that a modified
query evaluation procedure can provide certainty guarantees
at least for all first-order (FO) queries, i.e., the backbone of
relational query languages. The key idea was to refine the
notion of certain answers, and classify possible answers not
into “certainly true” and the rest, but rather into “certainly
true”, “certainly false”, and the rest. Computing these an-
swers precisely is an intractable task, but one can obtain an
efficient evaluation procedure that gives an approximation.

To give a very simple example, consider the following in-
complete database and query:

R = {1, 2} S = {⊥, 2} ϕ(x) = R(x)∧¬S(x) . (1)

Here ⊥ indicates a missing (currently unknown) value, and
ϕ computes the difference of R and S. The evaluation pro-
cedure of Libkin (2016b) will annotate 1 with u, since it may
or may not be in the query answer depending on the interpre-
tation of ⊥, and 2 will be annotated with f. The classical def-
inition of certain answers (Abiteboul, Hull, and Vianu 1995;
Imielinski and Lipski 1984) which accounts only for “cer-
tainly true” information will only tell us that there are no an-
swers (missing the useful bit of information that 2 is never in
the answer), but the evaluation by a relational DBMS (more
precisely, of the SQL query SELECT * FROM R EXCEPT

Proceedings, Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016)

349

SELECT * FROM S) will return value 1, which is an incor-
rect – false positive – result.

The goal of this paper is to provide a many-valued frame-
work for obtaining efficient procedures that compute cor-
rect approximations of certain answers. They do so by re-
fining the rather coarse information carried by certain an-
swers themselves, in a way that is guided by the underlying
many-valued logic. The procedure of Libkin (2016b) men-
tioned earlier will be just one application of such a frame-
work, when the underlying logic is 3VL, used in commercial
DBMSs. To achieve this, we need to answer the following
questions:

• How do we define many-valued query answers? What is
their semantics, and how can we compare them in terms
of the information they contain?

• When can an evaluation scheme be viewed as an approx-
imation for a given semantics of query answers?

• How can we obtain such evaluation schemes if we are
given a many-valued logic and a semantics of query an-
swers for it?

To understand the importance of the first question, note that
queries Q on incomplete databases must satisfy the infor-
mation preservation principle (Libkin 2014; 2016a): if a da-
tabase D′ has at least as much information as a database
D, then the answer Q(D′) has at least as much information
as the answer Q(D). Indeed, if we are given a more infor-
mative D′, then at the very least we can run Q on the less
informative D; thus Q(D′) adds information to Q(D).

Since the notion of being more informative is given by the
semantics of databases, and query answers are (possibly in-
complete) databases themselves, we need to understand their
semantics, which no one has properly defined in the context
of many-valued query evaluation, as practiced by commer-
cial DBMSs. Understanding and defining such semantics,
and the notion of informativeness that comes with it, is the
first contribution of this paper.

To define the semantics of many-valued answers we ap-
peal to a well known observation (Belnap 1977) that truth
values can be ordered by both their degree of truth, and their
degree of knowledge, or informativeness. The key property
of the latter is that propositional connectives, such as ∧, ∨
and ¬, preserve it, i.e., they return more informative results
when more informative inputs are given (Arieli and Avron
1996; 1998; Ginsberg 1988). Based on this, we define many-
valued semantics and informativeness ordering for query an-
swers, with which we can proceed to answer the remaining
questions.

Evaluation procedures assign truth values to tuples in such
a way that the resulting answer is no more informative than
the actual query answer (which may be too costly to com-
pute). Among different evaluation procedures, we identify a
particularly nice class that comes with rather strong correct-
ness guarantees. Our next results give a technique for gener-
ating procedures in this class. This requires only very mild
conditions on the many-valued logic and the query seman-
tics. The evaluation procedures generated by this technique
have low computational complexity, either the same as for

FO query evaluation (AC0), or slightly higher in terms of
parallel complexity (NC1).

We then look at concrete applications of such a tech-
nique. We show that the 3VL evaluation procedure of
Libkin (2016b) that corrected SQL’s shortcomings is a nat-
ural example of the general technique for 3VL. We also
look at a 4-valued logic 4VL that further refines 3VL.
While 4-valued logics have been considered in relational
databases to handle different types of incompleteness (e.g.,
Gessert 1990), our idea is to provide finer information on
possible answers. Consider again the example given in (1).
While for possible answer 1, SQL evaluation returned the
incorrect value t, the 3VL evaluation with correctness guar-
antees produced value u, or unknown. However, we do know
something about 1, namely that depending on the interpre-
tation of the null ⊥, it may, or may not be in the answer.
Hence, it cannot be true with certainty, nor can it be false
with certainty. This is extra information compared to u, and
it can be captured by an additional truth value in 4VL. We
provide an efficient evaluation procedure for this logic, and
show that it properly refines the 3VL evaluation procedure.

Finally, we look at the usual two-valued Boolean logic,
and show that no evaluation procedure that respects the rules
for ∧,∨,¬ can guarantee correctness. This justifies the deci-
sion by relational DBMS designers to use 3VL, rather than
Boolean logic, for handling nulls (although they did not get
it quite right). We also use the information ordering to show
that among all 3VL procedures that are built inductively on
the structure of the query, the one our approach generates is
the most informative.

Organization Basic notions and definitions are given in
Section 2. Section 3 presents the main ideas of the many-
valued framework, and Section 4 shows how to achieve cor-
rectness guarantees in this framework. Section 5 presents a
case study for first-order logic queries based on 3VL and
4VL semantics, and also shows that the usual Boolean two-
valued logic cannot provide correctness guarantees. Sec-
tion 6 shows how to compare evaluation procedures and dis-
cusses their optimality. Conclusions are in Section 7.

2 Preliminaries

As was explained in the introduction, we are motivated by
applications that rely on the standard database technology,
and thus we follow a typical database approach to incom-
pleteness, which we outline now. Of course there are many
other representations of incompleteness that occur in AI, for
instance in logic programming (Gelfond and Lifschitz 1991)
or rough sets settings (Doherty et al. 2006).

Incomplete Databases We consider databases with miss-
ing values represented by marked, also called naı̈ve or la-
beled, nulls (Abiteboul, Hull, and Vianu 1995; Imielinski
and Lipski 1984). These are typical in applications such as
data integration and exchange (Arenas et al. 2014; Lenz-
erini 2002), common in database applications (Grahne 1991;
van der Meyden 1998), and furthermore they subsume null
values that occur in relational DBMSs (Date and Darwen

350

1996); hence we use this model. Incomplete databases are
populated by two types of elements: constants and nulls,
that come from countably infinite sets denoted by Const and
Null, respectively. We use the symbol ⊥ to denote nulls.

A relational schema (vocabulary) is a set of relation
names with associated arities. To each k-ary relation sym-
bol S from the vocabulary, an incomplete relational instance
(database) D assigns a k-ary relation SD over Const∪Null,
that is, a finite subset of (Const∪Null)k. When the instance
is clear from the context we shall write S, rather than SD,
for the relation itself as well. The sets of constants and nulls
that occur in D are denoted by Const(D) and Null(D), re-
spectively. If Null(D) is empty, we refer to D as complete;
that is, complete databases are those without nulls. The ac-
tive domain of D is adom(D) = Const(D) ∪ Null(D).

A valuation v : Null(D) → Const is a map that assigns a
constant value to each null in a database. The notion natu-
rally extends to databases, by replacing each ⊥ with v(⊥) in
every place where ⊥ occurs. We denote the resulting data-
base by v(D), and use valuations to define the semantics of
incomplete databases:

�D� = {v(D) | v is a valuation } . (2)

Intuitively, �D� is the set of possible complete databases that
D can represent.

Note that (2) defines a semantics where databases are not
open to adding new facts. By analogy with the closed-world
assumption (Reiter 1977), it is called the CWA semantics
in database literature (Imielinski and Lipski 1984). It dif-
fers from the open-world (OWA) semantics; here we just re-
store the missing information already present in the data-
base (whence “closedness”). In the study of incompleteness
in databases, the closed-world semantics is more common
(Abiteboul, Hull, and Vianu 1995; Abiteboul, Kanellakis,
and Grahne 1991; Imielinski and Lipski 1984); it is better
behaved, as query answering under the open-world seman-
tics is undecidable for relational calculus queries even in
data complexity. Various applications mix OWA and CWA se-
mantics; for instance, both occur in integration and exchange
applications, and while ontology-based data access tends to
use OWA, recent studies showed the important role of CWA
in that setting (Lutz, Seylan, and Wolter 2015). In this pa-
per we look at input databases interpreted under CWA; see
Section 7 for additional discussion on OWA.

Valuations are a special case of homomorphisms. For two
databases D and D′ of the same schema, a homomorphism
from D to D′ is a map h : adom(D) → adom(D′) such that
h(c) = c for every c ∈ Const(D), and for every relation
symbol S, if a tuple ū is in the relation S in D, the tuple
h(ū) is in the relation S in D′. By h(D) we denote the image
of D, that is, the database such that S

(
h(ū)

)
is in h(D) iff

S(ū) is in D. A valuation is simply a homomorphism such
that h(x) is a constant for every x ∈ adom(D).

First-Order Logic (FO) As our basic query language we
consider FO (often referred to as relational calculus in the
database context), whose formulae include relational atoms
R(x̄), equality atoms x = y and are closed under conjunc-
tion ∧, disjunction ∨, negation ¬, existential quantifiers ∃

and universal quantifiers ∀. We write ϕ(x̄) to indicate that
x̄ is the list of free variables of formula ϕ, and we write
|x̄| for the length of x̄. For complete databases, the notion
of D |= ϕ(ā), where ā is a tuple of elements of adom(D)
interpreting x̄, is defined in the standard way. The result of
the query is then the set of all tuples ā over adom(D) such
that D |= ϕ(ā). If |x̄| = k, we speak of a k-ary query.
Over incomplete databases, there are many alternative ways
of defining semantics that will be discussed in Section 3.

Certain Answers Traditionally, certain answers to a query
Q on an incomplete database D are defined as �(Q,D) =⋂{Q(D′) | D′ ∈ �D�}. This definition is restrictive in a va-
riety of ways (Libkin 2016a); in particular it does not allow
for tuples with nulls. The concrete semantics of query an-
swering considered here will use a slight modification (Lip-
ski 1984) that overcomes this deficiency. Note that �(Q,D)
consists of tuples ū over Const such that, for every valuation
v, the tuple v(ū) is in Q

(
v(D)

)
. The notion of certain an-

swers with nulls (borrowing the name from Libkin 2016b)
simply drops the requirement that tuples be constant. For a
k-ary query Q, they are defined as

�⊥(Q,D) =
{
ū ∈ adom(D)k | v(ū) ∈ Q

(
v(D)

)
for every valuation v

}
.

In particular, �(Q,D) is the set of constant tuples in �⊥(Q,
D). To see why this notion is better to use, consider a data-
base D with a relation {(1, 2), (3,⊥)} and a query Q return-
ing that relation. Then, �(Q,D) only keeps the tuple (1, 2),
losing information about a tuple with the first component 3,
which is in the answer with certainty. On the other hand,
�⊥(Q,D) returns both tuples (1, 2) and (3,⊥).

It is well known (Abiteboul, Kanellakis, and Grahne
1991) that the data complexity of certain answers (with
nulls) is CONP-complete, and thus completely out of reach,
given typical sizes of databases. This explains the need for
efficient approximation procedures.

Many-Valued Logics A many-valued logic L is given
by its set of truth values T = {τ0, . . . , τn}, a set Ω of
propositional connectives (e.g., ∧,∨,¬) with their arities,
and an interpretation of each k-ary connective ω as a map
ωL : Tk → T. We usually omit L when it is clear from the
context. We shall use the convention here that τ and σ range
over truth values of many-valued logics.

Logics come equipped with a knowledge ordering � on
their values, indicating when a truth value carries more in-
formation (Belnap 1977; Ginsberg 1988). We shall assume
that the value τ0 is the least among those in T, indicating ‘no
information whatsoever’, that is, τ0 � τi for every i ≤ n.

For the 3VL used by relational DBMS (also known as the
Kleene logic), its truth tables and knowledge ordering are:

¬
t f
f t
u u

∧ t f u

t t f u
f f f f
u u f u

∨ t f u

t t t t
f t f u
u t u u

t f

u

351

In terms of knowledge, rather than truth, t and f are incom-
parable, but u gives us less knowledge than both t and f. The
crucial property of the knowledge ordering � is that the con-
nectives of the logic are monotone with respect to it: indeed,
the more knowledge we have about the input, the more we
know about the output. It is easy to check that ∧,∨,¬ above
are monotone with respect to �.

Information Orderings A key concept in defining the no-
tion of certainty, and in providing the correct semantics of
queries and their answers, is the notion of information or-
dering on databases (Libkin 2016a). This, given a semantics
of incomplete databases, allows us to compare them in terms
of their information content. The idea is that the larger the
semantics of an incomplete database, the less informative it
is. Indeed, the more an incomplete database can potentially
denote, the less we know about it: if we have full knowledge,
the database can denote just itself, if we have no knowledge
whatsoever, it can denote anything.

For input databases, the information ordering � is given
by

D � D′ ⇔ �D′� ⊆ �D� .

and in general this notion can be used with other semantics
of incompleteness as well. For the CWA semantics � �, it is
known (Gheerbrant, Libkin, and Sirangelo 2014) that D �
D′ iff there is a homomorphism h from D to D′ such that
h(D) = D′, which is called a strong onto homomorphism.

3 Many-Valued Query Answering

Let us come back to the example from the introduction: the
query ϕ(x) = R(x) ∧ ¬S(x) on the database D with R =
{1, 2} and S = {⊥, 2}. The answer annotates each element
with a truth value. We assume that the correct annotation
should assign u to 1 and f to 2, although we saw that under
the semantics of SQL negation, 1 is incorrectly assigned t.

This tells us that a many-valued answer is more than just
a set of tuples: it assigns truth values from T to tuples. The
semantics of a query should tell us how to assign these val-
ues correctly, but a particular evaluation mechanism need
not necessarily coincide with the semantics (in fact this is
rarely the case, as the correct semantics may be too expen-
sive to compute).

This suggests that we have to clearly distinguish three dis-
tinct concepts related to queries:

• their syntax ϕ (in this paper, the standard FO formulae);
• their semantics, which will be denoted by Sem(ϕ); and
• their evaluations, which will be denoted by Eval(ϕ).

The main questions we need to address are:

1) How can we say when a semantics Sem(ϕ) is correct?
2) When do we know that an evaluation Eval(ϕ) is appro-

priate for Sem(ϕ)?
3) How can we compare different evaluations?

We now proceed to define a framework in which we can
answer these questions.

Many-Valued Query Answers With a two-valued logic,
each tuple is classified into either true or false: we thus think
of a query returning the set of tuples on which it evaluates to
true, and the other set is its complement. With many-valued
semantics, tuples can be annotated with different truth values
of a logic L (even if only the set corresponding to t is given
to the user). This is captured by the following definition.
Definition 1. For a many-valued logic L with truth values
T, a k-ary query answer is a map A that assigns each truth
value τ ∈ T to a set Aτ of k-ary tuples over Const and Null.
Such a query answer is complete if no nulls occur in tuples.
We also write A↑τ for

⋃{Aσ | σ � τ}, i.e., the set of tuples
corresponding to truth values at least as informative as τ .

Note that we do not insist on the components of the an-
swer being disjoint. Although in many concrete semantics
they will be, there are cases when they are not, for instance
in many-valued logics having truth values that are combi-
nations of others, such as inconsistency, which means both
t and f at the same time (Ginsberg 1988). Also, from the
technical point of view all the results are true without such a
restriction, and hence we do not impose it.

Semantics and Ordering Our next goal is to define the se-
mantics �A� of query answers, and the information ordering
� associated with it. Note that query answers themselves are
incomplete databases, and thus we need to understand how
to compare them in terms of their information content.

For this, we again appeal to example (1) from the intro-
duction. If we deal with 3VL, then tuples are annotated with
t, f or u. One possibility is {t �→ ∅, f �→ ∅, u �→ {1}}. It
provides rather little information, just that the value 1 may
be considered as an answer, but we do not know whether it
is in fact in the answer. A slightly better option is {t �→ ∅,
f �→ ∅, u �→ {1,⊥}}, which in addition says that some cur-
rently unknown value is a potential answer. A still better one
is {t �→ ∅, f �→ ∅, u �→ {1, 2}}, which says that a concrete
value 2 is a potential answer. And an even more informative
one is {t �→ ∅, f �→ {2}, u �→ {1}}: value 2 is no longer an-
notated with u, but rather with a more informative value f,
saying that 2 is never in the difference of R and S.

This suggests that the semantics �A� of a k-ary query an-
swer A is a set of complete answers C that can improve our
knowledge of A in three possible ways:
1) some nulls in ū ∈ Aτ can be replaced with constants by

means of a valuation v, and v(ū) can be placed in Cτ ;
2) we can gain knowledge about a tuple in Cτ and move it

to Cσ if τ � σ; and
3) we can add a new tuple to any of the Cτ ’s, which reflects

the fact that we approximate certain answers, hence by
adding tuples we gain additional information.

All of the above ways of improving our knowledge of A are
captured by the following semantics of k-ary query answers.

�A� = { complete answer C | ∃ valuation v such that
v(Aτ) ⊆ C↑τ for each τ ∈ T } .

Every semantics of incompleteness gives us an informa-
tion ordering (see Section 2). For input databases, the order-

352

ing D � D′ was characterized by the existence of a homo-
morphism h from D to D′ such that h(D) = D′. For query
outputs, the ordering is denoted by �, and it is given by

A � A′ ⇔ �A′� ⊆ �A� .

The ordering � can be characterized as follows.

Proposition 1. For k-ary query answers, we have A � B
iff there exists a mapping h : Null → Const ∪ Null such that
h(Aτ) ⊆ B↑τ for every truth value τ .

This is an analog of the existence of a homomorphism
from A to B, except that the image of a tuple in Aτ may
appear not only in Bτ but also in any Bσ for σ � τ . When
the statement of Proposition 1 holds, we say that A � B is
witnessed by h.

Query Semantics and Evaluations We now use the no-
tions of query answers and information orderings to explain
what semantics and evaluation are.

Definition 2. A query semantics for a many-valued logic L
with truth values T is a function Sem that, with a syntactic
query ϕ(x̄) where |x̄| = k, and a database D, associates a
k-ary query answer Sem(ϕ,D) such that:

1) the union of all Semτ (ϕ,D) is adom(D)k, and
2) if D � D′, then Sem(ϕ,D) � Sem(ϕ,D′).

The first condition simply says that every tuple is accounted
for, i.e., assigned at least one value by the semantic function.
The second condition is the preservation of informativeness
(Libkin 2016a): if we know more about the input, we know
more about the output.

Definition 3. A T-valued evaluation procedure Eval takes a
syntactic query ϕ(x̄) with |x̄| = k, a database D and an as-
signment ā of elements of adom(D) to x̄, and returns a truth
value Eval(ϕ,D, ā) ∈ T. The k-ary query answer produced
by Eval on ϕ and D is denoted by Eval(ϕ,D), where

Evalτ (ϕ,D) = {ā ∈ adom(D)k | Eval(ϕ,D, ā) = τ}
is the set of tuples on which Eval returns τ .

We remark that, for any two distinct truth values τ and σ,
Semτ (ϕ,D) and Semσ(ϕ,D) may have tuples in common,
whereas Evalτ (ϕ,D) and Evalσ(ϕ,D) are always disjoint,
as an evaluation procedure assigns precisely one truth value
to each tuple.

Most commonly, the evaluation output given to the user is
simply Evalt(ϕ,D), serving as an approximation of certain
answers. As we saw, this is often refined with information
about other truth values. Moreover, other sets often need to
be computed even if the goal is to just return Evalt(ϕ,D).

Information orderings on query answers suggest what can
be considered as potential evaluations for a given semantics.
Indeed, the least condition we should impose on evaluations
is that they cannot produce more information than the se-
mantics gives us; that is, Eval(ϕ,D) � Sem(ϕ,D) for every
query ϕ and every database D.

This is very permissive however; for instance, evaluations
satisfying this condition may unnecessarily identify nulls

with constants or with each other. As a simple example, con-
sider the ordering f � t, and a query ϕ(x) so that on a da-
tabase with adom(D) = {1,⊥} its semantics assigns f to
⊥ and t to 1. Now suppose an evaluation does the opposite,
that is, it assigns f to 1 and t to ⊥. Intuitively this is wrong,
as the evaluation somehow knows more about the null ⊥
than the semantics does. However, the ordering allows this,
since Eval(ϕ,D) � Sem(ϕ,D) is witnessed by a map h that
sends ⊥ to 1.

This suggests getting rid of arbitrary maps witnessing
Eval(ϕ,D) � Sem(ϕ,D) and only permitting identity; in
this case, evaluation simply distributes tuples among sets
corresponding to different truth values.
Definition 4. We say that Eval is an evaluation for seman-
tics Sem if Eval(ϕ,D) � Sem(ϕ,D) is witnessed by the
identity mapping, that is, Evalτ (ϕ,D) ⊆ Sem↑τ (ϕ,D) for
every query ϕ, database D, and truth value τ .

Thus, if an evaluation Eval assigns truth value τ to a tuple,
then the semantics must assign a value σ that is at least as in-
formative as τ . The following is an immediate consequence
of the definition.
Proposition 2. Let Eval be an evaluation for Sem. If τ is a
maximal truth value with respect to �, then Evalτ (ϕ,D) ⊆
Semτ (ϕ,D).

In most of the cases naturally arising in handling incom-
pleteness, the semantics of truth value t is the set of certain
answers (with nulls), and t is a maximal truth value with re-
spect to �. Thus, in this case, the proposition implies that in
an evaluation the set of tuples assigned t gives us an approx-
imation of certain answers.

It would be desirable to extend Proposition 2 to other truth
values: if Eval assigns τ to a tuple ā, then the semantics does
the same (which is so far guaranteed only for the maximal
truth values). However, such a requirement is too strong: if
Sem assigns each tuple to only one truth value, this simply
means that Eval and Sem coincide, which usually precludes
us from having a computationally efficient Eval. Ideally, we
want Eval to deviate from Sem as little as possible. Thus,
we only allow them to be different when Eval cannot infer
any information about a tuple and so assigns it the least truth
value τ0 (in the concrete semantics that we use, it will be the
unknown u).
Definition 5. For a query ϕ, an evaluation procedure Eval

• has correctness guarantees for semantics Sem if, for ev-
ery database D and for every truth value τ �= τ0, we have
Evalτ (ϕ,D) ⊆ Semτ (ϕ,D);

• preserves informativeness if Eval(ϕ,D) � Eval(ϕ,D′)
whenever D � D′.
In the next section we give a recipe for obtaining evalua-

tion procedures with correctness guarantees, and then study
it for some concrete logics.

4 Correct and Efficient Evaluation

The previous section gave us a general framework for rea-
soning about many-valued query answers, as well as query
evaluations and semantics. We now demonstrate that, in this

353

framework, it is easy to generate evaluation procedures with
correctness guarantees. In fact, all we need to do is define
them for atomic formulae and then lift to all of FO.

We always assume that the set Ω or propositional connec-
tives of a many-valued logic L includes the connectives ∧
and ∨; the only condition on their interpretation is that they
are associative so that we can unambiguously define

∧
T

and
∨
T when T is a tuple of truth values.

By FOL we mean the closure of atomic formulae R(x̄)
and x = y under propositional connectives from Ω and
quantifiers ∀, ∃. If Ω = {∧,∨,¬} this is the usual first-order
logic, but in general we can be more permissive about propo-
sitional connectives.

We look at procedures that lift evaluations of atoms fol-
lowing the syntax of formulae;1 in fact standard query eval-
uation procedures are such (even if they optimize a query
first, then they follow the syntax). This is captured by the
following definition.
Definition 6. An evaluation procedure Eval for FOL is
called syntactic if it follows the rules below. For proposi-
tional connectives, we have

Eval
(
ω
(
ϕ1(x̄1), . . . , ϕm(x̄m)

)
, D, ā

)
=

ωL
(
Eval

(
ϕ1(x̄1), D, ā1

)
, . . . ,Eval

(
ϕm(x̄m), D, ām

))

where āi is the subtuple of ā corresponding to the variables
in x̄i. For quantifiers, we have

Eval
(∃y ϕ(x̄, y), D, ā

)
=

∨
a∈adom(D)

Eval
(
ϕ(x̄, y), D, (ā, a)

)
,

Eval
(∀y ϕ(x̄, y), D, ā

)
=

∧
a∈adom(D)

Eval
(
ϕ(x̄, y), D, (ā, a)

)
.

In other words, for a syntactic procedure, we need to de-
fine rules for atoms R(x̄) and x = y, and then lift to all of
FOL using the above rules. Our goal is then to show that
correctness of such procedures can also be lifted from atoms
to all of FOL. For this, we need some mild conditions on the
semantics.

First, we assume that each formula ϕ(x̄) can be viewed
also as a formula ϕ(ȳ), as long as all variables in x̄ occur in
ȳ, in some order. For instance, a formula ϕ(x, y) with out-
put X (which is a set of pairs) can also be viewed as a for-
mula ϕ(y, x, z) with the output {(b, a, c) | (a, b) ∈ X, c ∈
adom(D)}. In general, Semτ

(
ϕ(ȳ), D

)
is defined as the set

of all tuples ā ∈ adom(D)|ȳ| such that the subtuple of ā cor-
responding to the positions of x̄ belongs to Semτ

(
ϕ(x̄), D

)
.

This is essentially a free condition; all natural logic-based
semantics will be such, and thus we assume it always holds.

The main condition is the compatibility of Sem with L.
To explain it informally, suppose that a tuple ū belongs to
Semτ (ϕ,D) and Semσ(ψ,D), where τ , σ, and τ ∧ σ are
truth values carrying some information, i.e., different from
τ0. Then we would expect ū to be in the set correspond-
ing to τ ∧ σ in Sem(ϕ ∧ ψ,D), if the semantics reflects the
meaning of the connectives. Note that τ0 is essentially the

1In some contexts, such procedures are called compositional.

‘no-information’ value (i.e., the fallback position when we
cannot assign any value carrying real information). Hence
we do not impose any conditions on the tuple with respect to
τ0. Now we extend this idea to arbitrary propositional con-
nectives.

Definition 7. A query semantics Sem is compatible with a
many-valued logic L if for each m-ary connective ω ∈ Ω,
truth values satisfying ωL(σ1, . . . , σm) = τ �= τ0, formulae
ϕ1(x̄), . . . , ϕm(x̄) and ϕ(x̄) = ω(ϕ1, . . . , ϕm), we have

⋂
σi �=τ0

Semσi(ϕi, D) ⊆ Semτ (ϕ,D) .

Theorem 1. Assume that the semantics Sem is compatible
with L, and Eval is a syntactic evaluation procedure. If Eval
has correctness guarantees (for Sem) for atomic formulae,
then it has correctness guarantees for all FOL formulae.

Most reasonable semantics, including all of those in Sec-
tion 5, will be compatible with the many-valued logics we
use. Thus, Theorem 1 says that the key tasks for obtaining an
evaluation scheme with correctness guarantees are choosing
the right many-valued logic, and choosing the right evalua-
tion for atomic formulae. The rest is then guaranteed.

Similarly, preserving informativeness can be lifted from
atomic formulae to arbitrary ones. Recall that D � D′ iff
D′ = h(D) for some homomorphism h. Thus, if we have an
atomic formula ϕ(x̄) and a truth value τ = Eval(ϕ,D, ā),
then we expect h(ā) to provide us with at least as much in-
formation in h(D), that is, τ � Eval

(
ϕ, h(D), h(ā)

)
. If this

happens for all D � D′, we say that Eval respects � for ϕ.

Theorem 2. Let Eval be a syntactic evaluation procedure
that respects � for all atomic formulae. Then Eval preserves
informativeness for all FOL formulae.

We now address the data complexity of evaluation pro-
cedures. Normally one expects the data complexity of FO-
based logics to be in AC0. However, we imposed no con-
dition on the many-valued interpretation of the connectives
∧ and ∨, and quantifiers are defined by iterating those oper-
ations. Such iterations tend to increase complexity to NC1

(Barrington, Immerman, and Straubing 1990), still a small
parallel complexity class. The AC0 complexity of FO is due
to the fact that ∧ and ∨ are idempotent, but in some many-
valued logics they may not be.

Proposition 3. If Eval is a syntactic evaluation procedure
that has NC1 data complexity for atomic formulae, then it
has NC1 data complexity for all FO formulae. If it has AC0

data complexity for atomic formulae, and the connectives ∧
and ∨ are idempotent, then Eval has AC0 data complexity.

The result is slightly more general in two ways. First,
if the data complexity of Eval for atomic formulae is in a
class K given by circuits that are closed under NC1 circuit-
building operations (i.e., can be incorporated into log-depth
bounded fan-in circuits without increase in complexity) then
Eval is K for all queries. For instance, if we find an evalu-
ation scheme for atomic formulae that is in PTIME, then it
remains in PTIME for all queries. Second, we do not even
need idempotency for the AC0 bound: what is required is a

354

weak idempotency, saying that there is k > 0 so that iter-
ating the operation k + 1 times is the same as iterating it k
times (for k = 1, this is the usual idempotency τ ∗ τ = τ ,
when ∗ is either ∧ or ∨).

5 Applications: 3VL, 4VL, and 2VL

We now demonstrate the applicability of the framework de-
veloped in the previous section. To begin with, we show that
the main result of Libkin (2016b) – an efficient and correct
3VL evaluation procedure that mends some of the most glar-
ing issues with SQL’s evaluation of nulls – is an immedi-
ate application of the framework for 3VL. As a bonus, we
show that the evaluation procedure also preserves informa-
tiveness. We then provide a refinement, already hinted at in
the introduction, by showing how to classify some of the un-
known tuples in a way that generates additional useful infor-
mation (for instance, ruling them out as certain answers). We
finally show that certainty guarantees are impossible with
the usual Boolean 2-valued logic, thus justifying the deci-
sion by the designers of practical query languages (SQL) to
use 3VL.

3VL

We start with the usual truth values t, f, u. For a tuple ā,
an incomplete database D, and a k-ary query ϕ(x̄), t means
that ā is in the answer for all D′ ∈ �D� and f means that ā
is not in the answer for all D′ ∈ �D�. Thus, we define the
three-valued semantics Sem3v(ϕ,D) as follows:

Semt
3v(ϕ,D) = �⊥(ϕ,D) ,

Semf
3v(ϕ,D) = �⊥(¬ϕ,D) ,

Semu
3v(ϕ,D) = adom(D)k − (

�⊥(ϕ,D) ∪�⊥(¬ϕ,D)
)
.

That is, the set corresponding to t is the set of tuples which
are certainly true, the set of f contains tuples which are cer-
tainly false, and other tuples are classified as unknown.

Note that one still needs to make sure that this is a seman-
tics in the sense of Definition 2, that is, it classifies all the
tuples in adom(D)k and it returns more informative results
on more informative tuples. We can show this, as well as the
fact that this semantics is compatible with 3VL in the sense
of Definition 7.

Proposition 4. Sem3v is a query semantics that is compati-
ble with 3VL.

Therefore, by Theorem 1, we only need to provide a cor-
rect evaluation procedure Eval3v for atomic formulae R(x̄)
and x = y, and then lift to full FO using the rules for syntac-
tic evaluation procedures. Recall the notion of correctness:
for each truth value τ ∈ {t, f}, if Eval

(
ϕ(x̄), D, ā

)
= τ ,

then ā ∈ Semτ
3v(ϕ,D). Combining this with the definition

of �⊥, we derive evaluations for atomic formulae.

• If Eval3v
(
R(x̄), D, ā

)
= t, then v(ā) ∈ v(RD) for every

valuation v, so we must require ā ∈ RD.
• If Eval3v

(
R(x̄), D, ā

)
= f, then v(ā) �∈ v(RD) for every

valuation v, so we make it the condition for Eval3v return-
ing false.

s

t f

u

¬
t f
f t
s s
u u

∧ t f s u

t t f s u
f f f f f
s s f u u
u u f u u

∨ t f s u

t t t t t
f t f s u
s t s u u
u t u u u

Figure 1: 4VL knowledge ordering and truth tables.

• If Eval3v(x = y,D, (a, b)) = t, then v(a) = v(b) for ev-
ery valuation v, hence we must require a = b.

• If Eval3v(x = y,D, (a, b)) = f, then v(a) �= v(b) for ev-
ery valuation v, hence we must require not only a �= b but
also a, b ∈ Const to guarantee this condition.

The second of the above conditions can be expressed with
the notion of unifiable tuples: these are tuples ā and b̄ of the
same length such that v(ā) = v(b̄) for some valuation v. We
then write ā ⇑ b̄. This condition can be tested in linear time
(Paterson and Wegman 1978).

All of the above tells us that the evaluation for atoms is:

Eval3v
(
R(x̄), D, ā

)
=

⎧⎨
⎩

t ā ∈ RD

f �b̄ ∈ RD such that ā ⇑ b̄

u otherwise ,

Eval3v
(
x = y,D, (a, b)

)
=

⎧⎨
⎩

t a = b

f a �= b and a, b ∈ Const

u otherwise .

Extended to all of FO by the rules of Definition 6, this is
exactly the procedure proposed by Libkin (2016b). Since in
3VL binary connectives are idempotent, the main result of
that paper is an immediate corollary of our framework:
Corollary 1. Eval3v has correctness guarantees with respect
to the three-valued semantics, and AC0 data complexity.

In addition, we can show that the procedure Eval3v returns
more informative results on more informative inputs:
Proposition 5. Eval3v preserves informativeness.

4VL

We will now show how to refine the notion of unknown (u)
to provide additional information with query answers. So far
the appearance of u in query evaluation accounts for two dis-
tinct possibilities. One is that a tuple is classified as t or f
by the semantics, but the evaluation procedure – which ap-
proximates the semantics – does not see this. The second
possibility is that it is actually known that a tuple cannot be
classified as either t or f by the semantics, as it may, or may
not, be in the answer depending on the interpretation of in-
complete information.

355

We now separate the two by adding a new truth value s
(sometimes), which means that sometimes a tuple is in the
query result, and sometimes it is not. We define a 4-valued
semantics Sem4v with sets corresponding to t, f, s, u. The
sets Semt

4v(ϕ,D) and Semf
4v(ϕ,D) are defined in the same

way as for 3VL, i.e., they are �⊥(ϕ,D) and �⊥(¬ϕ,D),
respectively. Sems

4v(ϕ,D) is defined as
{
ā ∈ adom(D)k | ∃ valuations v, v′ such that

v(D) |= ϕ
(
v(ā)

)
, v′(D) �|= ϕ

(
v′(ā)

)}

and Semu
4v(ϕ,D) = ∅ (i.e., tuples can be annotated with u

only by evaluation procedures). If a tuple is in Sems
4v(ϕ,D),

we know with certainty that it cannot be in �⊥(ϕ,D) nor in
�⊥(¬ϕ,D), so we do gain knowledge compared to labeling
such a tuple with u.

The knowledge ordering � for 4VL and the truth tables
for its connectives are shown in Figure 1. Note that s ∨ s is
not s but u. Indeed, if we have a tuple ā in Sems

4v(ϕ,D) and
Sems

4v(ψ,D), we can only conclude that there is a valuation
v such that v(D) |= ϕ ∨ ψ

(
v(ā)

)
, but we cannot conclude

that v′(D) �|= ϕ ∨ ψ
(
v′(ā)

)
for some v′. Likewise, we have

s ∧ s = u.
To explain the ordering of s, t, and f, assume that we got

a value s for some tuple ā on a database D; it means that
�D� contains databases on which ā is in the answer as well
as databases on which it is not. If we now have a more infor-
mative database D′, that is, D � D′, then �D′� ⊆ �D�, and
we have three possibilities: either ā is in the answer on all
databases in �D′� (value t), or it is not in the answer on all
such databases (value f), or it is on some and not on others
(value s). Hence, by going to a more informative database, s
either stays, or improves to t or f. The latter in turn give us
complete knowledge: going to a more informative database
does not affect the answer. This leads to the ordering shown
in Figure 1.

As for 3VL, we have defined a proper semantics (it pre-
serves informativeness) that is compatible with the logic.
Proposition 6. Sem4v is a query semantics that is compati-
ble with 4VL, and the operations ∧, ∨ and ¬ are monotone
with respect to � in 4VL.

Thus, by Theorem 1, to get a four-valued evaluation pro-
cedure Eval4v, we need to define it for atomic formulae and
lift by the rules of Definition 6. The evaluation of R(x̄) and
x = y in Eval4v is the same as in Eval3v, with just one dif-
ference: u is replaced by s.

The correctness of Eval4v can be easily shown. Moreover,
while the connectives ∧ and ∨ are not idempotent (s ∧ s =
s∨ s = u, and this is how u can be produced by Eval4v), they
are weakly idempotent: s∨ s∨ s = s∨ s, and likewise for ∧.
Therefore, we have:
Theorem 3. Eval4v has correctness guarantees w.r.t. Sem4v,
and AC0 data complexity. Furthermore, Eval4v preserves in-
formativeness for all FO queries.

Let us now return to the example (1) from the introduc-
tion. The procedure Eval3v will assign u to 1 and ⊥, and f
to 2, in line with the fact that �⊥(ϕ,D) = ∅, and refining
this information by stating that 2 belongs to �⊥(¬ϕ,D).

The procedure Eval3v does leave open the possibility that 1
could be a certainly true or a certainly false answer, as it as-
signs u in an attempt to provide an approximation of certain
answers in a computationally efficient way. The evaluation
procedure Eval4v further refines this by assigning s to 1, thus
confirming that it cannot be a certain answer.

Revisiting Boolean Logic

We were able to obtain many-valued evaluation procedures
with ease. Can we perhaps adapt the techniques so as to get
an evaluation procedure based on Boolean logic for approx-
imating certain answers? To the SQL designers, it appeared
that they could not, hence they used 3VL. Now we formally
prove that they were right.

We say that Eval is a Boolean evaluation if it assigns val-
ues t, f to formulae, and satisfies the following rules:

Eval(ϕ ∧ ψ,D, ā) = Eval(ϕ,D, ā) ∧ Eval(ψ,D, ā) ,

Eval(ϕ ∨ ψ,D, ā) = Eval(ϕ,D, ā) ∨ Eval(ψ,D, ā) ,

Eval(¬ϕ,D, ā) = ¬Eval(ϕ,D, ā) ,

where ∧,∨ and ¬ are the usual Boolean connectives inter-
preted on t, f. In other words, we give ourselves complete
freedom in defining the evaluation for atomic formulae and
quantifiers, but insist on respecting the usual Boolean logic.

A certain answers semantics Sem is any semantics such
that Semt(ϕ,D) ⊆ �⊥(ϕ,D). Then, we have the following
impossibility result.
Theorem 4. No certain answers semantics admits a Bool-
ean evaluation.

In other words, if Eval respects the Boolean semantics of
∧,∨,¬, then we cannot have Evalt(ϕ,D) ⊆ �⊥(ϕ,D) for
all FO formulae ϕ and all databases D, that is, Eval will
sometimes return false positives.

To explain why this is the case, suppose that we can find
a Boolean evaluation Eval with Evalt(ϕ,D) ⊆ �⊥(ϕ,D).
Take D = {R(a), S(⊥)}; if Eval

(
R(x), D, a

)
= f, then

Eval
(¬R(x), D, a

)
= t, but a �∈ �⊥

(¬R(x), D
)

and hence
Eval

(
R(x), D, a

)
= t. Next, if Eval

(¬S(x), D, a
)
= f, then

Eval
(
S(x), D, a

)
= t. But a �∈ �⊥

(
S(x), D

)
, which im-

plies Eval
(¬S(x), D, a

)
= t. Now consider ϕ(x) = R(x)∧

¬S(x); from the above, we have Eval(ϕ,D, a
)
= t, but it is

easily seen that a �∈ �⊥(ϕ,D), since a complete database
where ⊥ is interpreted as a falsifies ϕ(a). This contradic-
tion shows that a Boolean evaluation for a certain answers
semantics cannot exist.

6 Comparison and Optimality of Evaluations

The notion of information ordering � on many-valued out-
puts allows us to compare different evaluation procedures:
those returning more informative outputs are preferable.
Given two evaluation procedures Eval and Eval′, we say that
Eval is more informative if Eval′(ϕ,D) � Eval(ϕ,D) for
every formula ϕ and database D.

In fact we can use this notion even if Eval and Eval′ use
different sets of truth values, as long as the orderings on the
common truth values are the same. Indeed, in such a case,

356

we simply assume that the set of tuples corresponding to a
missing truth value is empty. This allows us to compare 3VL
and 4VL evaluations.

Our first result shows that the 4VL evaluation properly
refines 3VL, that is, it adds information.

Proposition 7. For every FO query ϕ and every database
D, we have Evalτ3v(ϕ,D) = Evalτ4v(ϕ,D) if τ is t or f. Fur-
thermore, Evals4v(ϕ,D) is disjoint from both �⊥(ϕ,D) and
�⊥(¬ϕ,D). Consequently, Eval4v is more informative than
Eval3v.

This indicates that if we only care about certain answers
(i.e., tuples that evaluate to t), and not about the additional
information that the 4VL procedure provides, then Eval3v
is the evaluation we should use. But can it be improved? It
turns out to be the best among syntactic evaluation proce-
dures, but otherwise improvements are possible.

We start with the optimality result saying that among syn-
tactic procedures based on t, f, and u, one cannot beat Eval3v.

Theorem 5. Let 3VL′ be a three-valued logic with the same
ordering on truth values {t, f, u} as 3VL, and let Eval′3v be a
syntactic evaluation procedure based on 3VL′ that has cor-
rectness guarantees w.r.t. Sem3v. Then Eval3v is more infor-
mative than Eval′3v.

With procedures that are not syntactic, we can do better
than Eval3v. As an extreme case, suppose we have an FO for-
mula ϕ(x) and we start the evaluation by checking whether
ϕ is equivalent to true. If it is, we output adom(D); other-
wise we proceed with Eval3v. Clearly, we get more informa-
tion than from Eval3v alone, but the problem is that checking
whether ϕ is a tautology is undecidable. However, this sug-
gests that some manipulations of formulae can help, and we
now give one example that improves upon Eval3v, while re-
taining good data complexity.

By nnf(ϕ) we mean the negation normal form (NNF) of
ϕ, that is, a formula equivalent to ϕ which is in prenex nor-
mal form, with all the negations pushed to atomic formulae.
As long as a logic has De Morgan’s laws, conversion to NNF
can be done purely syntactically; it is easy to verify that De
Morgan’s laws hold in the logics we deal with (3VL, 4VL).

Let x̄ = (x1, . . . , xk) be the tuple of free variables of
ϕ. Given an atomic subformula ψ of ϕ, a database D and
a tuple ā = (a1, . . . , ak) of elements of adom(D), we let
Fψ(ϕ, ā), or simply Fψ when ϕ and ā are clear from the
context, be the set of all atomic subformulae ψ′ of ϕ such
that the result of replacing each xi with ai, for every i ∈
{1, . . . , k}, in ψ and ψ′ gives the same formula. We say that
ψ is redundant in ϕ w.r.t. D and ā if

1) Fψ(ϕ, ā) contains a formula that occurs positively and a
formula that occurs negatively in ϕ;

2) Eval3v(ψ,D, ā) = u; and
3) Eval3v(ϕ[t/Fψ], D, ā) = Eval3v(ϕ[f/Fψ], D, ā), where

ϕ[t/Fψ] and ϕ[f/Fψ] are obtained by replacing all oc-
currences of formulae in Fψ in ϕ by true and false, re-
spectively.

For a quantifier-free formula ϕ in NNF, we let

Evalnnf(ϕ,D, ā) = max
�

{Eval3v(ϕ,D, ā),Eval3v(ϕ
′, D, ā)}

where ϕ′ ranges over formulae ϕ[t/Fψ], in which ψ is re-
dundant. It can be shown that the maximum always exists,
hence the above is well defined.

For an arbitrary formula ϕ, we define Evalnnf(ϕ,D, ā) as
Evalnnf

(
nnf(ϕ), D, ā

)
, where the rules for quantifiers ∃ and

∀ are the same in Evalnnf and in Eval3v. Recall that, in NNF
formulae, Boolean connectives occur only in the quantifier-
free part, which is handled by the above rule.

The conversion into NNF depends only on the size of
ϕ, and the computation of the redundant atomic subformu-
lae of ϕ, for a fixed ϕ, requires a constant number of calls
to Eval3v. Hence, Evalnnf has the same data complexity of
Eval3v, that is, AC0. Moreover, we can show the following:

Proposition 8. The evaluation procedure Evalnnf has cor-
rectness guarantees with respect to Sem3v and it is more in-
formative than Eval3v. In fact

Evalt3v(ϕ,D) ⊆ Evaltnnf(ϕ,D) ⊆ �⊥(ϕ,D)

and both inclusions can be proper.

As an example, consider the query ϕ(x) = ∃y (
R(x, y)∧

(y = 1 ∨ y �= 1)
)

and a database D where RD = {(1,⊥)}.
Then, Evalnnf(ϕ,D, 1) = t and Eval3v(ϕ,D, 1) = u. The
SQL counterpart of the query ϕ is SELECT R.A FROM R
WHERE R.B=1 OR R.B<>1, which returns the empty set,
whereas the certain answer is 1. Here, Eval3v gives the re-
sult of the SQL evaluation, while Evalnnf gives us the certain
answer.

7 Conclusion

The main message of the paper is that certain answers can
be efficiently approximated with the help of many-valued
logics, and the structure of truth values in the logic lets us
obtain more refined information than just certain answers
themselves. Our results also bridge the general approach of
Libkin (2016a) to defining and computing certain answers
with many-valued procedures as practiced by commercial
DBMSs. In particular, we have shown how to define the se-
mantics of many-answers, and how to ensure that queries
preserve informativeness of databases.

As for future work, we would like to apply these ideas
in some of the scenarios where certain answers are the pre-
ferred query semantics, and to look at different semantics
of incompleteness. For the first direction, natural candidates
are applications such as data integration and exchange (Are-
nas et al. 2014; Lenzerini 2002), where efficient query an-
swering is hard to achieve for full FO, and where constraints
make the process even more complicated (Calı̀, Lembo, and
Rosati 2003; Calı̀ et al. 2004). Note that our approach, not
being restricted to a fragment of FO, makes it easy to incor-
porate constraints.

A slightly different direction is to see if our many-valued
approach could be used in knowledge-base reasoning tasks
where three-valued logic was previously used to generate
sound evaluations (Levesque 1998; Liu and Levesque 2003).
While technically different, the approaches share the idea of
using many-valuedness for efficient approximation, and Liu

357

and Levesque (2003) further showed how database evalua-
tion techniques could be used for reasoning with knowledge
bases.

For other semantics, one obvious candidate is open-world,
which is commonly used, but makes computing certain an-
swers harder due to complexity considerations. Still there
is hope of going beyond existential positive queries us-
ing many-valuedness: for instance, Grahne, Moallemi, and
Onet (2015) showed how to use Belnap’s four-valued logic
to compute certain answers for conjunctive queries with
negated atoms. In the opposite direction, one can look at
semantics that are more restrictive; e.g., semantics of uncer-
tainty represented by a finite number of possible worlds, as
in the work by Olteanu, Koch, and Antova (2008).

Acknowledgments We thank the anonymous referees and
Eugenia Ternovska for their comments. Part of this work
was done when the first author visited the University of Ed-
inburgh. Supported by EPSRC grants J015377, M025268.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Abiteboul, S.; Kanellakis, P.; and Grahne, G. 1991. On
the representation and querying of sets of possible worlds.
Theoretical Computer Science 78(1):158–187.
Arenas, M.; Barceló, P.; Libkin, L.; and Murlak, F. 2014.
Foundations of Data Exchange. Cambridge Univ. Press.
Arieli, O., and Avron, A. 1996. Reasoning with logical
bilattices. J. Logic, Language and Information 5(1):25–63.
Arieli, O., and Avron, A. 1998. The value of the four values.
Artif. Intell. 102(1):97–141.
Barrington, D. A.; Immerman, N.; and Straubing, H. 1990.
On uniformity within NC1. JCSS 41(3):274–306.
Belnap, N. D. 1977. A useful four-valued logic. In Modern
Uses of Multiple-Valued Logic. D. Reidel. 8–37.
Bertossi, L. 2011. Database Repairing and Consistent
Query Answering. Morgan & Claypool Publishers.
Calı̀, A.; Calvanese, D.; De Giacomo, G.; and Lenzerini, M.
2004. Data integration under integrity constraints. Inf. Syst.
29(2):147–163.
Calı̀, A.; Lembo, D.; and Rosati, R. 2003. On the decidabil-
ity and complexity of query answering over inconsistent and
incomplete databases. In PODS, 260–271.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. Au-
tom. Reasoning 39(3):385–429.
Date, C., and Darwen, H. 1996. A Guide to the SQL Stan-
dard. Addison-Wesley.
Doherty, P.; Lukaszewicz, W.; Skowron, A.; and Szalas, A.
2006. Knowledge Representation Techniques - A Rough Set
Approach. Springer.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Comput. 9(3/4):365–386.

Gessert, G. H. 1990. Four valued logic for relational data-
base systems. SIGMOD Record 19(1):29–35.
Gheerbrant, A.; Libkin, L.; and Sirangelo, C. 2014. Naı̈ve
evaluation of queries over incomplete databases. ACM
Trans. Database Syst. 39(4):1–31.
Ginsberg, M. L. 1988. Multivalued logics: a uniform ap-
proach to reasoning in artificial intelligence. Computational
Intelligence 4:265–316.
Grahne, G.; Moallemi, A.; and Onet, A. 2015. Intuitionistic
data exchange. In 9th Alberto Mendelzon Workshop.
Grahne, G. 1991. The Problem of Incomplete Information
in Relational Databases. Springer.
Halevy, A.; Rajaraman, A.; and Ordille, J. 2006. Data inte-
gration: The teenage years. In VLDB, 9–16.
Imielinski, T., and Lipski, W. 1984. Incomplete information
in relational databases. Journal of the ACM 31(4):761–791.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2011. The combined approach to ontology-
based data access. In IJCAI, 2656–2661.
Lenzerini, M. 2002. Data integration: a theoretical perspec-
tive. In ACM PODS, 233–246.
Levesque, H. J. 1998. A completeness result for reasoning
with incomplete first-order knowledge bases. In KR, 14–23.
Libkin, L. 2014. Incomplete information: what went wrong
and how to fix it. In PODS, 1–13.
Libkin, L. 2016a. Certain answers as objects and knowl-
edge. Artificial Intelligence 232:1–19.
Libkin, L. 2016b. SQL’s three-valued logic and certain an-
swers. ACM Trans. Database Syst. 41(1):1–28.
Lipski, W. 1984. On relational algebra with marked nulls.
In ACM PODS, 201–203.
Liu, Y., and Levesque, H. J. 2003. A tractability result for
reasoning with incomplete first-order knowledge bases. In
IJCAI, 83–88.
Lutz, C.; Seylan, I.; and Wolter, F. 2015. Ontology-mediated
queries with closed predicates. In IJCAI, 3120–3126.
Olteanu, D.; Koch, C.; and Antova, L. 2008. World-set de-
compositions: expressiveness and efficient algorithms. The-
oretical Computer Science 403(2-3):265–284.
Paterson, M., and Wegman, M. N. 1978. Linear unification.
JCSS 16(2):158–167.
Reiter, R. 1977. On closed world data bases. In Logic and
Data Bases, 55–76.
van der Meyden, R. 1998. Logical approaches to incom-
plete information: A survey. In Logics for Databases and
Information Systems, 307–356.

358

