
Argumentative Approaches to Reasoning with Maximal Consistency

Ofer Arieli
School of Computer Science

The Academic College of Tel-Aviv, Israel ∗

Christian Straßer
Institute of Philosophy II,

Ruhr University Bochum, Germany †

Abstract

Reasoning with the maximally consistent subsets (MCS) of
the premises is a well-known approach for handling contra-
dictory information. We introduce two argumentation-based
methods for doing so: a declarative approach that is related to
Dung-style semantics for abstract argumentation, and a com-
putational approach that is based on extensions of Gentzen-
type proofs systems. This brings about a new perspective on
reasoning with MCS which shows a strong link between the
latter and argumentation systems, and which can be extended
to related formalisms. A by-product of this is the introduction
of a dynamic proof system for classical logic and rebuttal at-
tacks, which is sound and complete with respect to Dung’s
stable semantics for the associated argumentation framework.

Introduction

A well-established method for handling inconsistencies in
a given set of premises is to consider its maximally con-
sistent subsets (MCS). Following the influential work of
Rescher and Manor (1970) this approach has gained a con-
siderable popularity and was applied in many AI-related ar-
eas. The goal of this work is to develop systematic meth-
ods of representing and reasoning with MCS by means of
argumentation-based systems.

The relation between MCS-based reasoning and argu-
mentation theory has been already identified in the litera-
ture (see, e.g., (Amgoud and Besnard 2013)). The contribu-
tion of this paper is the provision of a uniform argumentative
approach for representing MCS-based formalisms and rea-
soning with them by proof theoretical tools. For this, we in-
corporate the sequent-based argumentation frameworks de-
scribed in (Arieli 2013; Arieli and Straßer 2015). This allows
us to introduce two complementary methods for reasoning
with MCS: a declarative method, based on Dung’s semantics
for argumentation frameworks (Dung 1995), and a compu-
tational method, generalizing standard proof systems, where
derivations have a non-monotonic flavor. We show that these
complementary disciplines are equivalent, and that they may
be carried on to some generalized argumentation-based con-
texts for reasoning with maximal consistency.

∗Supported by the Israel Science Foundation (grant 817/15).
†Supported by the Alexander von Humboldt Foundation.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Sequent-Based Argumentation

According to Dung (1995), abstract argumentation frame-
works may be viewed as directed graphs as follows:

Definition 1 An (abstract) argumentation framework is a
pair AF = 〈Args,Attack〉, where Args is a denumerable
set of elements, called arguments, and Attack is a relation
on Args×Args , whose instances are called attacks.

A B C

D

E

Figure 1: An argumentation framework with five arguments
and six attacks.

When it comes to applications, it is often useful to pro-
vide a specific account of the structure of arguments and the
concrete nature of argumentative attacks. For this we fol-
low the sequent-based approach introduced in (Arieli 2013;
Arieli and Straßer 2015), briefly described below.1

In what follows we restrict ourselves to classical logic
CL = 〈L,�CL〉, where L is a standard propositional lan-
guage with the basic connectives ¬,∧,∨,⊃,↔, and �CL is
the standard consequence relation of this logic. Atomic for-
mulas in L are denoted by p, q, compound formulas are de-
noted by ψ, φ, sets of formulas are denoted by S, T , and
finite sets of formulas are denoted by Γ, Δ. Arguments in
this setting are considered next:

Definition 2 Let S be a set of L-formulas.
• A sequent is an expression Γ ⇒ Δ, where Γ,Δ are finite
sets of formulas, and ⇒ is a reserved symbol (not in L).
• An argument is a sequent Γ ⇒ ψ where Γ �CL ψ. We
shall denote Prem(Γ ⇒ ψ) = Γ and Con(Γ ⇒ ψ) = ψ.
• An S-argument is an sequent Γ ⇒ ψ in which Γ ⊆ S . The
set of all the S-arguments is denoted Arg(S).
Note 1 Unlike other definitions of arguments in deductive
systems (e.g., (Besnard and Hunter 2001)), here the support
set of an argument need not be consistent nor minimal.

Note 2 Γ ⇒ ψ ∈ Arg(S) for a finite Γ ⊆ S , iff S �CL ψ.

1We refer to these papers for some justifications of our choice.

Proceedings, Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016)

509

We shall use Gentzen’s sequent calculus LK (Gentzen
1934) for constructing arguments from simpler arguments
(see Figure 2). This is done by inference rules of the form:

Γ1 ⇒ Δ1 . . . Γn ⇒ Δn

Γ ⇒ Δ
. (1)

In what follows we shall say that the sequents Γi ⇒ Δi

(i = 1, . . . , n) are the conditions (or the prerequisites) of
the rule in (1), and that Γ ⇒ Δ is its conclusion.2

Axioms: ψ ⇒ ψ

Structural Rules:

Weakening:
Γ ⇒ Δ

Γ,Γ′ ⇒ Δ,Δ′

Cut:
Γ1 ⇒ Δ1, ψ Γ2, ψ ⇒ Δ2

Γ1,Γ2 ⇒ Δ1,Δ2

Logical Rules:

[∧⇒]
Γ, ψ, ϕ⇒ Δ

Γ, ψ ∧ ϕ⇒ Δ
[⇒∧]

Γ ⇒ Δ, ψ Γ ⇒ Δ, ϕ

Γ ⇒ Δ, ψ ∧ ϕ

[∨⇒]
Γ, ψ ⇒ Δ Γ, ϕ⇒ Δ

Γ, ψ ∨ ϕ⇒ Δ
[⇒∨]

Γ ⇒ Δ, ψ, ϕ

Γ ⇒ Δ, ψ ∨ ϕ
[⊃⇒]

Γ ⇒ ψ,Δ Γ, ϕ⇒ Δ

Γ, ψ ⊃ ϕ⇒ Δ
[⇒⊃]

Γ, ψ ⇒ ϕ,Δ

Γ ⇒ ψ ⊃ ϕ,Δ

[¬⇒]
Γ ⇒ Δ, ψ

Γ,¬ψ ⇒ Δ
[⇒¬]

Γ, ψ ⇒ Δ

Γ ⇒ Δ,¬ψ

Figure 2: The proof system LK

Attack rules allow for the elimination of sequents. We
shall denote by Γ �⇒ ψ the elimination of Γ⇒ ψ. Alterna-
tively, s denotes the elimination of s. Now, a sequent elim-
ination rule (or an attack rule) resembles an inference rule,
except that its conclusion is a discharging of one condition:

Γ1 ⇒ Δ1, . . . ,Γn ⇒ Δn

Γn �⇒ Δn
. (2)

The prerequisites of attack rules usually consist of three in-
gredients. The first sequent in the rule’s prerequisites is the
“attacking” sequent, the last sequent is the “attacked” se-
quent, and the other prerequisites are the conditions for the
attack. In this view, conclusions of sequent elimination rules
are the eliminations of the attacked arguments.

The elimination rule that we shall use is the following:

Undercut:
Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬

∧
Γ′
2 Γ2,Γ

′
2 ⇒ ψ2

Γ2,Γ′
2 �⇒ ψ2

This rule (sometimes called Ucut for short) is a sequent-
based variation of a rule with a similar name that has been
considered in the literature of logical argumentation frame-
works (see, e.g., (Pollock 1992; Besnard and Hunter 2001)).
We refer to (Arieli and Straßer 2015) for a list of further
sequent elimination rules that are useful in other contexts.

2As usual, axioms are treated as inference rules without condi-
tions, i.e., they are rules of the form

Γ⇒Δ
.

Definition 3 Let S be a set of formulas and let θ be a sub-
stitution.
• An inference rule of the form of (1) is Arg(S)-applicable
if for every 1 ≤ i ≤ n, θ(Γi) ⇒ θ(Δi) is LK-provable.
• An elimination rule of the form of (2) is Arg(S)-applicable
if θ(Γ1) ⇒ θ(Δ1) and θ(Γn) ⇒ θ(Δn) are in Arg(S) and
for every 1 < i < n, θ(Γi) ⇒ θ(Δi) is LK-provable.
In the second case above we say that θ(Γ1) ⇒ θ(Δ1) attacks
θ(Γn) ⇒ θ(Δn). Note that the attacker and the attacked se-
quents must be elements of Arg(S).3

Sequent-based argumentation frameworks for classical
logic and Undercut are now defined as follows:
Definition 4 The sequent-based argumentation framework
for S is the framework AF(S) = 〈Arg(S),Attack〉 where
(s1, s2) ∈ Attack iff s1 Undercut-attacks s2.

Reasoning with MCS
To provide argumentative approaches for reasoning with in-
consistent premises by their maximally consistent subsets
we need to capture the following entailments:
Definition 5 Let S be a set of formulas. We denote by
Cn(S) the transitive closure of S with respect to classical
logic and by MCS(S) the set of all the maximally consistent
subsets of S . We denote:
• S|∼mcsψ iff ψ ∈ Cn(

⋂
MCS(S)).

• S|∼∪mcsψ iff ψ ∈
⋃

T ∈ MCS(S) Cn(T).

Approach I: Using Dung-Style Semantics
Our first approach of using sequent-based argumentation
for computing the entailments of Definition 5 is based on
Dung’s semantics for abstract argumentation frameworks.
Given a framework AF (Definition 1), a key issue in its un-
derstanding is the question what combinations of arguments
(called extensions) can collectively be accepted from AF .
According to Dung (1995), this is determined as follows:
Definition 6 Let AF = 〈Args,Attack〉 be an argumenta-
tion framework, and let E ⊆ Args .
• E attacks an argument A if there is an argument B ∈ E
that attacks A (i.e., (B,A) ∈ Attack). The set of arguments
that are attacked by E is denoted E+.
• E defends A if E attacks every argument that attacks A.
• E is called conflict-free if it does not attack any of its ele-
ments (i.e., E+ ∩E = ∅), E is admissible if it is conflict-free
and defends all of its elements, and E is complete if it is ad-
missible and contains all the arguments that it defends.
• The minimal complete subset of Args is called the
grounded extension of AF , and a maximal complete subset
of Args is called a preferred extension of AF . A complete
set E is called a stable extension of AF if E ∪ E+ = Args .
• We write Adm(AF) [respectively: Cmp(AF), Prf(AF),
Stb(AF)] for the set of all the admissible [respectively:
complete, preferred, stable] extensions of AF and Grd(AF)
for the unique grounded extension of AF .

3This requirement prevents situations in which, e.g., ¬p ⇒ ¬p
attacks p⇒ p (by Undercut), although S = {p}.

510

Example 1 In Figure 1, ∅, {A}, {B} and {B,D} are ad-
missible, ∅, {A}, and {B,D} are complete, ∅ is grounded,
{A} and {B,D} are preferred, and {B,D} is stable.
Definition 7 Let AF(S) = 〈Arg(S),Attack〉 be a sequent-
based argumentation framework. We denote:
• S |∼gr ψ if there is s ∈ Grd(AF(S)) and Con(s) = ψ.
• S |∼∩prfψ if there is s ∈

⋂
Prf(AF(S)) and Con(s) = ψ.

• S|∼∩stbψ if there is s ∈
⋂
Stb(AF(S)) and Con(s) = ψ.

• S |∼∪prfψ if there is s ∈
⋃
Prf(AF(S)) and Con(s) = ψ.

• S|∼∪stbψ if there is s ∈
⋃
Stb(AF(S)) and Con(s) = ψ.

The relation between Dung’s semantics for sequent-based
frameworks and MCS-reasoning is shown next:4

Proposition 1 Let S be a set of formulas and ψ a formula.
1. S|∼grψ iff S|∼∩prfψ iff S|∼∩stbψ iff S|∼mcsψ.
2. S|∼∪prfψ iff S|∼∪stbψ iff S|∼∪mcsψ.

Corollary 1 Let S be a set of formulas and ψ a formula.
1. If S|∼∩prfψ and ψ �CLϕ then S|∼∩prfϕ.
2. If S|∼∩prfψ then S �|∼∩prf¬ψ.
3. If S|∼∩prfψ and S|∼∩prfϕ then S|∼∩prfψ ∧ ϕ.
4. If S|∼∩prfψ or S|∼∩prfϕ then S|∼∩prfψ ∨ ϕ.
5. If S|∼∩prf¬ψ or S|∼∩prfϕ then S|∼∩prfψ ⊃ ϕ.
6. S|∼∩prfψ iff {φ | S|∼∩prfφ}|∼∩prfψ.
7. Items 1–6 above hold also for |∼∩stb and |∼gr.

Approach II: Using Dynamic Derivations

The second argumentation-based approach for reasoning
with MCS is a proof-theoretical one.
Definition 8 A (proof) tuple is a quadruple 〈i, s, J,A〉,
where i (the tuple’s index) is a number, s (the tuple’s se-
quent) is either a sequent or an eliminated sequent, J (the
tuple’s justification) is a string, and A (the attacker of the tu-
ple’s sequent) is the empty set or a singleton (of a sequent).

Proofs in our case are sequences of tuples obtained by
applications of rules in LK and applications of Undercut.
Definition 9 A simple (dynamic) derivation (for a set S of
formulas) is a finite sequence D = 〈T1, . . . Tm〉 of proof
tuples, where each Ti ∈ D is of one of the following forms:
• An introducing tuple for Γ⇒Δ:

Ti = 〈i,Γ⇒Δ, “R; i1, . . . , in”, ∅〉,
where R ∈ LK is Arg(S)-applicable for a substitution
θ, the numbers i1, . . . , in < i are indexes of introducing
tuples for the θ-substitutions of the conditions of R, and
Γ⇒Δ is the θ-substitution of the conclusion of R.

• An eliminating tuple of Γ2⇒ψ2:
Ti = 〈i,Γ2 �⇒ψ2, “Ucut; i1, j, i2”,Γ1⇒ψ1〉,

where Γ1 ⇒ ψ1 Ucut-attacks Γ2 ⇒ ψ2, and there are
introducing tuples for the sequents Γ1 ⇒ ψ1, Γ2 ⇒ ψ2,
and ⇒ ψ1 ↔ ¬

∧
Γ′
2 (for Γ′

2 ⊆ Γ2), whose indexes are,
respectively, i1 , i2, and j (all of which are less than i).
4Due to lack of space proofs are omitted.

Given a simple derivation D, Top(D) is the tuple with the
highest index in D and Tail(D) is the simple derivation D
without Top(D). To indicate that the validity of a derived
sequent (in a simple derivation) is in question due to attacks
on it, we need the following evaluation process.

Definition 10 Given a simple derivation D, the algorithm in
Figure 3 computes three sets: Elim(D) – eliminated sequents
whose attacker is not already eliminated, Attack(D) – the
sequents that attack a sequent in Elim(D), Accept(D) – the
derived sequents in D that are not in Elim(D).

function Evaluate(D) /* D – a simple derivation */
Attack := Elim := Derived := ∅;
while (D is not empty) do {

if (Top(D) = 〈i, s, J, ∅〉) then
Derived := Derived ∪ {s};

if (Top(D) = 〈i, s, J, r〉) then
if (r �∈ Elim) then

Elim := Elim ∪ {s}; Attack := Attack ∪ {r};
D := Tail(D); }

Accept := Derived− Elim;
return (Attack, Elim, Accept)

Figure 3: Evaluation of a simple derivation

Definition 11 A simple derivation D is coherent, if there
is no sequent that eliminates another sequent, and later is
eliminated itself, that is: Attack(D) ∩ Elim(D) = ∅.

Now we are ready to define derivations in our framework.

Definition 12 Let S be a set of formulas. A (dynamic)
derivation (based on S) is a simple derivation D of one of
the following forms:

a) D = 〈T 〉, where T = 〈1, s, J, ∅〉 is a proof tuple.
b) D extends a dynamic derivation by a sequence

〈T1, . . . , Tn〉 of introducing tuples (of the form
〈i, s, J, ∅〉), whose sequents (the s’s) are not in Elim(D).

c) D is a coherent extension of a dynamic derivation by a
sequence 〈T1, . . . , Tn〉 of eliminating tuples (of the form
〈i, s, J, r〉), whose attacking sequents (the r’s) are not
Ucut-attacked by a sequent in Accept(D) ∩ Arg(S) and
the attack is based on conditions (justifications) in D.5

One may think of a dynamic derivation as a proof that
progresses over derivation steps. At each step the derivation
is extended by a ‘block’ of introducing or eliminating tuples,
and the status of the derived sequents is updated accordingly.
Derived sequents may be eliminated by new proof tuples,
and eliminated sequents may be ‘restored’ if their attacking
tuples are counter-attacked by a new eliminating tuple. The
outcomes of a dynamic derivation are defined next.

5These are sound attacks: by coherence neither of the attacking
sequents of the additional elimination tuples is in Elim(D), and by
the other condition they are not attacked by an accepted sequent.

511

Definition 13 A sequent s is finally (or safely) derived in
a derivation D (for S) if s ∈ Accept(D) and D cannot be
extended to a derivation D′ (for S) such that s ∈ Elim(D′).
Proposition 2 If s is finally derived in D then it is finally
derived in any extension of D.

The induced entailment is now defined as follows:
Definition 14 S |∼ ψ if there is a dynamic derivation for S ,
in which Γ⇒ψ is finally derived for some finite Γ ⊆ S .
Example 2 A dynamic derivation for S={p,¬p, q}:

1 p ⇒ p Axiom
2 ⇒ p,¬p [⇒¬], 1
3 ⇒ p ∨ ¬p [⇒∨], 2
4 ⇒ p ∨ ¬p ↔ ¬(p ∧ ¬p) . . .
5 q ⇒ q Axiom

Note that q⇒q is finally derived. Any attempt to attack this
sequent by sequents of the form p,¬p⇒ψ or p,¬p, q⇒ψ,
where ψ is logically equivalent to ¬q, is counter attacked by
⇒ p ∨ ¬p (introduced in Tuple 3), using the justification in
Tuples 4 (These are the only attacks on q⇒q by attackers in
Arg(S)). Thus, the above derivation cannot be extended to a
derivation in which q ⇒ q is attacked, and so S |∼ q.

Note, however, that the above derivation can be extended
by the following tuples, yielding an elimination of p⇒p:

6 ¬p ⇒ ¬p Axiom
7 ⇒ ¬p ↔ ¬p . . .
8 p �⇒ p Ucut, 6, 7, 1 ¬p ⇒ ¬p

In turn, this derivation can be extended as follows, yielding
an attack on ¬p⇒¬p:

9 ⇒ p ↔ ¬¬p . . .
10 ¬p �⇒ ¬p Ucut, 1, 9, 6 p ⇒ p

and now p ⇒ p is not eliminated anymore. Still, p⇒ p can
be re-attacked by ¬p⇒¬p, and so forth. As a consequence,
we have that S �|∼ p and S �|∼ ¬p.
Note 3 The present setting of dynamic derivations may be
viewed as an improvement of a similar setting, introduced
in (Arieli and Straßer 2014). The main difference is that here
the way sequents can be introduced in a proof depends on
the already introduced elimination sequents. This in partic-
ular guarantees the correspondence, shown in Theorem 1,
between entailments induced by dynamic derivations and
entailments induced by some Dung-style semantics of the
associated sequent-based frameworks. This correspondence
does not hold for the formalism in (Arieli and Straßer 2014).

Now we can show how dynamic derivations allow for rea-
soning with maximally consistent sets of premises.
Proposition 3 Let S be a finite set of formulas and ψ a for-
mula. Then S |∼mcs ψ iff S |∼ ψ.
Example 3 S = {p,¬p, q}, MCS(S) = {{p, q}, {¬p, q}},
and so

⋂
MCS(S) = {q}. By Proposition 3, S |∼ q while

S �|∼ p and S �|∼ ¬p, as indeed shown in Example 2.
By Propositions 1 and 3 we therefore have two comple-

mentary sequent-based argumentation methods for reason-
ing with maximal consistency:
Theorem 1 For finite sets of premises |∼gr, |∼∩prf , |∼∩stb

and |∼ are the same, and all of them are equivalent to |∼mcs.

Reasoning with Consistent Subsets
The entailment relation in Definition 5 may be strengthened
in a various ways. We conclude by considering one of them.
Definition 15 (Benferhat, Dubois, and Prade 1997) Let S
be a set of formulas and ψ a formula. Then S ||∼mcs φ if:

1. It holds that T �CLφ for some consistent subset T of S .
2. There is no consistent subset T of S such that T �CL¬φ.

Let us denote by ||∼gr the entailment that is defined like
|∼gr (Definition 7), except that instead of Undercut the attack
relations are Consistency Undercut and Defeating Rebuttal:

Consistency Undercut:
⇒ ¬

∧
Γ′
2 Γ2,Γ

′
2 ⇒ ψ2

Γ2,Γ′
2 �⇒ ψ2

Defeating Rebuttal:
Γ1 ⇒ ψ1 ⇒ ψ1 ⊃ ¬ψ2 Γ2 ⇒ ψ2

Γ2 �⇒ ψ2

Proposition 4 Let S be a set of formulas and ψ a formula.
Then S ||∼mcs ψ iff S||∼grψ.

For the computational counterpart of this generalization,
we denote by ||∼ the consequence relation of our dynamic
proof system (see Definition 14), using attacks by Consis-
tency Undercut and Defeating Rebuttal (instead of Ucut).
Proposition 5 Let S be a finite set of formulas and ψ a for-
mula. Then S ||∼mcs ψ iff S ||∼ ψ.

By Propositions 4 and 5 we have:
Theorem 2 For finite sets of premises ||∼gr and ||∼ are the
same, and both of them are equivalent to ||∼mcs.

References
Amgoud, L., and Besnard, P. 2013. Logical limits of ab-
stract argumentation frameworks. Journal of Applied Non-
Classical Logics 23(3):229–267.
Arieli, O., and Straßer, C. 2014. Dynamic derivations for
sequent-based logical argumentation. Proc. COMMA’14,
89–100. IOS Press.
Arieli, O., and Straßer, C. 2015. Sequent-based logical argu-
mentation. Argument and Computation 6(1):73–99.
Arieli, O. 2013. A sequent-based representation of logical
argumentation. CLIMA’13, LNCS 8143, 69–85. Springer.
Benferhat, S.; Dubois, D.; and Prade, H. 1997. Some syn-
tactic approaches to the handling of inconsistent knowledge
bases: A comparative study, part 1: The flat case. Studia Log-
ica 58(1):17–45.
Besnard, P., and Hunter, A. 2001. A logic-based theory of
deductive arguments. J. Artif. Intell. 128(1–2):203–235.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. J. Artif. Intell. 77:321–357.
Gentzen, G. 1934. Investigations into logical deduction. (In
German). English translation: ‘The Collected Works of Ger-
hard Gentzen’, edited by M. E. Szabo, North-Holland, 1969.
Pollock, J. 1992. How to reason defeasibly. J. Artif. Intell.
57(1):1–42.
Rescher, N., and Manor, R. 1970. On inference from incon-
sistent premises. Theory and Decision 1:179–217.

512

