
Leveraging Dependency Regularization for Event Extraction

Kai Cao, Xiang Li, and Ralph Grishman
Computer Science Department

New York University
719 Broadway, New York, NY, 10003
{kcao, xiangli, grishman}@cs.nyu.edu

Abstract

Event Extraction (EE) is a challenging Information Extrac-
tion task which aims to discover event triggers with specific
types and their arguments. Most recent research on Event Ex-
traction relies on pattern-based or feature-based approaches,
trained on annotated corpora, to recognize combinations of
event triggers, arguments, and other contextual information.
These combinations may each appear in a variety of linguistic
forms. Not all of these event expressions will have appeared
in the training data, thus adversely affecting EE performance.
In this paper, we demonstrate the overall effectiveness of De-
pendency Regularization techniques to generalize the patterns
extracted from the training data to boost EE performance. We
present experimental results on the ACE 2005 corpus, show-
ing improvement over the baseline system, and consider the
impact of the individual regularization rules.

Introduction

Event Extraction (EE) involves identifying instances of
specified types of events and the corresponding arguments
in text, which is an important but difficult Information Ex-
traction (IE) task. Associated with each event mention is
a phrase, the event trigger (most often a single verb or
nominalization), which evokes that event. More precisely,
our task involves identifying event triggers associated with
corresponding arguments and classifying them into specific
event types. For instance, according to the ACE 2005 an-
notation guidelines1, in the sentence “[She] was killed by
[an automobile] [yesterday]”, an event extraction system
should be able to recognize the word “killed” as a trigger
for the event DIE, and discover “an automobile” and “yes-
terday” as the Agent and Time Arguments. This task is quite
challenging, as the same event might appear in the form of
various trigger expressions and an expression might repre-
sent different events in different contexts.

Most recent research on Automatic Content Extraction
(ACE) Event Extraction relies on pattern-based or feature-
based approaches to building classifiers for event trigger and
argument labeling. Although the training corpus is quite

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/
english-events-guidelines-v5.4.3.pdf

large (300,000 words), the test data will inevitably con-
tain some event expressions that never occur in the training
data. To address this problem, we propose several Depen-
dency Regularization methods to help generalize the syntac-
tic patterns extracted from the training data in order to boost
EE performance. Among the syntactic representations, de-
pendency relations serve as important features or part of a
pattern-based framework in IE systems, and play a signifi-
cant role in IE approaches. These proposed regularization
rules will be applied either to the dependency parse outputs
of the candidate sentences or to the patterns themselves to
facilitate detecting the event instances. The experimental re-
sults demonstrate that our pattern-based system with the ex-
panded patterns can achieve substantial improvement over
the baseline, which is an advance over the state-of-the-art
systems.

The paper is organized as follows: we first describe the
role of dependency analysis in event extraction and how de-
pendency regularization methods can improve EE perfor-
mance. In the sections which follow, we describe our EE
systems including the baseline and enhanced system utiliz-
ing dependency regularization, we present experimental re-
sults, and we discuss related work.

Dependency Regularization

The ACE 2005 Event Guidelines specify a set of 33 types
of events, and these have been widely used for research on
event extraction over the past decade.

Some trigger words are unambiguous indicators of partic-
ular types of events. For example, the word murder indicates
an event of type DIE. However, most words have multi-
ple senses and so may be associated with multiple types of
events. Many of these cases can be disambiguated based on
the semantic types of the trigger arguments:

• fire can be either an ATTACK event (“fire a weapon”) or
END-POSITION event (“fire a person”), with the cases dis-
tinguishable by the semantic type of the direct object. dis-
charge has the same ambiguity and the same disambigua-
tion rule.

• leave can be either a TRANSPORT event (“he left the build-
ing”) or an END-POSITION event (“he left the administra-
tion”), again generally distinguishable by the type of the
direct object.

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

20

Given a training corpus annotated with triggers and event
arguments we can assemble a set of frames and link them
to particular event types. Each frame will record the event
arguments and their syntactic (dependency) relation to the
trigger. When decoding new text, we will parse it with a
dependency parser, look for a matching frame, and tag the
trigger candidate with the corresponding event type.

One complication is that the frames may be embedded
in different syntactic structures: verbal and nominal forms,
relative clauses, active and passive voice, etc. Because of
the limited size of the training corpus, some triggers will
appear with frames not seen in the training corpus. To fill
these gaps, we will employ a set of dependency regulariza-
tion rules which transform the syntactic structure of the input
to reduce variation.

We describe here three of the regularization rules we use:

1. Verb Chain regularization

2. Passive Voice Regularization

3. Relative Clause Regularization

Verb Chain Regularization

We use a fast dependency parser (Tratz and Hovy 2011)
that analyzes multi-word verb groups (with auxiliaries) into
chains with the first word at the head of the chain. Verb
Chain (vch) Regularization reverses the verb chains to place
the main (final) verb at the top of the dependency parse tree.
This reduces the variation in the dependency paths from trig-
ger to arguments due to differences in tense, aspect, and
modality. Here is an example sentence containing a verb
chain:

Kobe has defeated Michael . (1)

has

defeated

dobj

Michael

vch

nsubj

K obe

Figure 1: Original Dependency Tree

In the above sentence, “has” is originally recognized as
the root of the dependency parse tree, while “defeated” is
the dependent of the word “has”. The dependency label of
(has, defeated) is vch. However, the semantic head
of the sequence (the word which determines the event type)
is the last word in the verb chain. To bring the trigger and
its arguments closer, we regularize the dependency structure
by making the last verb in this chain the head of the whole
verb chain. A further example:

has

defeated

K obe

dobj

Michael

vch

nsubj

Figure 2: Dependency Tree with Verb Chain Regularization

You must come to school tomorrow . (2)

����

����

��

��	��

��������

����

���

��	

����

����

����

Figure 3: Original Dependency Tree

����

����

��

��	��

��������

����

���

��	

����

����

����

Figure 4: Dependency Tree with Verb Chain Regularization

Passive Voice Regularization

Passive Voice Regularization combines active voice and pas-
sive voice syntactic structure. For example, even with Verb
Chain Regularization “Michael was defeated by Kobe.” and
“Kobe defeated Micheal.” have different syntactic struc-
tures. However they have the same meaning. To match the
syntactic patterns with passive voice and active voice struc-
ture, we introduce Passive Voice Regularization.

21

Passive Voice Regularization includes two types of
changes of the syntactic structure: tagging the ‘real’ subject
and the ‘real’ object.

Michael was defeated by Kobe. (3)

���

��������

	

��	�

�	�

�������

��� ��������	�

Figure 5: Original Dependency Tree with Verb Chain Regu-
larization

was

defeated

by K obe

dobj

Michael

vch agent

nsubj

Figure 6: Dependency Tree with Passive Voice Regulariza-
tion

In the sentence above, we regularize the syntactic struc-
ture by transforming “defeated-(agent)-by-(pobj)-Kobe” to
“defeated-(nsubj)-Kobe”. This transformation tags the
“real” subject. On the other hand, the dependency relation
“defeated-(nsubj)-Micheal” is changed to “defeated-(dobj)-
Micheal”. This tags the “real” object.

Relative Clause Regularization

Unlike other dependency regularizations, Relative Clause
Regularization add another dependency relation to the orig-
inal dependency structure. The new directed graph repre-
senting the dependency structure may not be acyclic. Rel-
ative Clause Regularization considers two types of relative
clauses:

1. Regular Relative Clause

The boy whom I saw yesterday went home . (4)

���

���

���	

���

��������

���

��	�

��

�����

���� �����

��	��

	��

���	��

Figure 7: Original Dependency Tree

���

���

�

���

�����	
��

����

���

��

�����

��

�����

	��

��

�
��

Figure 8: Dependency Tree with Regular Relative Clause
Regularization

2. Reduced Relative Clause

I like the boy playing basketball. (5)

����

� ���

	
�
������

����	���

����� ����

��	
��	���

����

Figure 9: Original Dependency Tree

System Description

Jet, the Java Extraction Toolkit2, provides a set of NLP com-
ponents which can be combined to create information ex-
traction systems. AceJet3 is a sub-system of Jet to extract

2http://cs.nyu.edu/grishman/jet/jet.html
3http://cs.nyu.edu/grishman/jet/guide/ACEutilities.html

22

Methods P R F
Sentence-level in (Ji and Grishman 2011) 67.6 53.5 59.7
MaxEnt classifier with local features in (Li, Ji, and Huang 2013) 74.5 59.1 65.9
Joint beam search with local features in (Li, Ji, and Huang 2013) 73.7 59.3 65.7
Joint beam search with local and global features in (Li, Ji, and Huang 2013) 73.7 62.3 67.5
Cross-entity in (Ji and Grishman 2011) † 72.9 64.3 68.3
AceJet baseline system 66.4 69.2 67.7
AceJet with dependency regularization 68.2 69.2 68.7

Table 1: Performance comparison (%) with the state-of-the-art systems. † beyond sentence level.

����

� ���

	
�

������

����	���

����� ����

��	

��	���

����

�����

Figure 10: Dependency Tree with Reduced Relative Clause
Regularization

the types of information (entities, relations, and events) an-
notated on the ACE corpora. The AceJet Event Extraction
framework is a combination of a pattern-based system and
feature-based system.

Training proceeds in three passes over the annotated train-
ing corpus. Pass 1 collects all the event patterns, where a
pattern consists of a trigger and a set of arguments along
with the syntactic path from the trigger to each argument,
and both the dependency path and the linear sequence path
(a series of noun chunks and words) are recorded. Pass 2
records the frequency with which each pattern is associated
with an event type – the ‘event score’. Pass 3 treats the event
score as a feature, combines it with a small number of other
features and trains a maximum entropy model.

At test time, to classify a candidate trigger (any word
which has appeared at least once as a trigger in the train-
ing corpus) the tagger finds the best match between an event
pattern and the input sentence and computes an event score.
This score, along with other features, serves as input to the
maximum entropy model to make the final ED prediction.

We incorporate the proposed Dependency Regularization
techniques based on the AceJet baseline system to improve
the system performance.

Experiment

In this subsection, we will introduce the evaluation dataset,
compare the performance of applying dependency regular-
ization methods with other state-of-the-art systems, and dis-
cuss the contributions of these different dependency regular-

ization rules.

Dataset

We used the ACE 2005 corpus as our testbed. For compari-
son, we used the same test set with 40 newswire articles (672
sentences) as in (Ji and Grishman 2008; Liao and Grishman
2010) for the experiments, and randomly selected 30 other
documents (863 sentences) from different genres as the de-
velopment set. The remaining 529 documents (14,840 sen-
tences) are used for training. We also did experiments using
the entire corpus in 10-fold cross-validation.

Following previous work (Ji and Grishman 2008; Liao
and Grishman 2010; Ji and Grishman 2011; Li, Ji, and
Huang 2013), a trigger candidate is counted as correct if its
event subtype and offsets match those of a reference trig-
ger. The ACE 2005 corpus has 33 event subtypes that, along
with one class “None” for the non-trigger tokens, constitutes
a 34-class classification problem. Finally we use Precision
(P), Recall (R), and F-measure (F1) to evaluate the overall
performance.

Table 1 presents the overall performance of the systems
with gold-standard entity mention and type information. We
can see that our system with dependency regularizations can
improve the performance over our baseline setting, and also
advances the current state-of-the-art systems.

Overall Performance

Tables 2 and 3 show the effects of individual regularization
rules: Table 2 using the standard 40-document test set, Table
3 using cross-validation. (To apply passive voice regulariza-
tion, we need to first implement verb chain regularization.
Therefore we show the performance with the combination of
verb chain and passive voice regularization.) We expect that
the cross-validation results are more indicative since they in-
volve a larger test sample. (The absolute scores are lower
because the larger test sample involves multiple text genres.)
In addition to trigger scores, these tables report accuracy in
finding event arguments and associating roles with these ar-
guments.

Table 3 shows that verb chain regularization and pas-
sive voice regularization do help improve the performance
of event extraction. However, relative clause regularization
seems not to improve the system. This difference in effect
can be roughly understood in terms of the event identifica-
tion process described earlier. If a trigger word is associated

23

Regularization Trigger Argument Role

original 67.75 44.06 39.85
vch 68.51 44.77 40.61

vch & pv 68.51 44.65 40.87

rc 67.82 43.75 39.66
rc & vch & pv 68.73 44.57 40.79

Table 2: Event Extraction performance (%) with different dependency regularizations, where original – original dependency
parse output without regularization, vch – verb chain regularization, pv – passive voice regularization, and rc – relative clause
regularization.

Regularization Trigger Argument Role

original 54.505 40.913 37.363
vch 54.868 41.461 37.570

vch & pv 55.116 41.647 38.186

rc 54.687 40.866 37.300
rc & vch & pv 55.102 41.439 37.900

Table 3: Event Extraction Performance(%) with 10-fold cross validation, where original – original dependency parse output
without regularization, vch – verb chain regularization, pv – passive voice regularization, and rc – relative clause regularization.

in the training corpus with two or more event types, includ-
ing None, it will give rise to multiple event patterns. At test
time, to disambiguate a trigger word, we will seek the best
match to an event pattern, including a match between the
dependency paths. If the training example has a modal or
auxiliary while the test sentence has a tensed verb, the paths
will be different and no match will be possible. vch regu-
larization maps these to a common structure, enabling de-
pendency paths to be aligned and some triggers to be dis-
ambiguated. Similarly if the training example is passive
and the test example active, the paths cannot be correctly
aligned; passive regularization makes a correct alignment
possible. In contrast, if the training example involves a full
clause and the test example a relative clause, generally one
of the arguments (subject or object) can be aligned, which is
generally sufficient to disambiguate the trigger. The relative
clause regularization may permit an additional argument to
be aligned, but this infrequently improves disambiguation.

Table 4 reports on the number of matches between can-
didate triggers and event patterns, confirming that each of
the regularization rules leads to an increase in the number of
matches.

Examples of events identified through regularization rules
include:

1. With Verb Chain Regularization, the sentence “Taco ball
is appealing.” is detected as an APPEAL event, which was
ignored in the original framework.

2. With Passive Voice Regularization, the sentence “Thou-
sands of people were killed by the army .” is detected as a
DIE event, which was ignored in the original framework.

Upper and Lower Bounds

The AceJet system has a baseline F-score of 67.7% for
event detection, which is high and comparable to the current
state-of-the-art performance. Based on our investigation, the
potential performance of event extraction with dependency

regularization ranges from 62.6% to 77.4%, where the up-
per bound and lower bound correspond to different modifi-
cations on top of the original event patterns.

1. Upper Bound Since the test data contains many triggers
that never appear in the training data, such as the AT-
TACK event trigger intifada, some events cannot be de-
tected solely using the training data. Hence, there is an
upper bound for the performance of event detection. We
extracted event patterns from the test data with the trig-
gers that appear in the training data. Then we added these
patterns to the pattern set extracted from the training data.
With the expanded patterns, the F-score of event detection
reaches 77.4%, which is considered as the upper bound of
the performance with dependency regularization.

2. Lower Bound The trigger word itself contains the most
indicative information about the event, and is often suffi-
cient to trigger an event. In other words, dependency reg-
ularization would not help in this case. For example, “has
died” is a high-frequency pattern in ACE data, but the
verb “die” itself is enough to detect the DIE event. Even
without dependency regularization, the word “die” may
still be identified as a DIE event trigger, because many
DIE events are triggered by the verb “die” in the training
data. Other syntactic information would not help much ei-
ther here, compared to the dominant contribution of “die”
word itself. We removed all the roles from the patterns
and only kept the triggers, which resulted in an F-score
of 62.6%. We consider it as the lower bound of the event
detection performance with dependency regularization.

Related Work

Although there have been quite a few distinct designs for
event extraction systems, most are loosely based on using
patterns to detect instances of events, where the patterns con-
sist of a predicate, event trigger, and constraints on its local

24

Regularization Matched Patterns Increase Decrease

original 6274 – –
vch 6815 143 5 (compared to orig)

vch & pv 6862 18 4 (compared to vch)
rc 6367 45 1 (compared to orig)

Table 4: Matched Event Patterns of the candidates pv – passive voice regularization, and rc – relative clause regularization.
Increase – the number of candidates matching more patterns, Decrease – the number of candidates matching less patterns

syntactic context. The constraints may involve specific lexi-
cal items or semantic classes. Some recent studies use high-
level information to aid local event extraction systems. For
example, (Finkel, Grenager, and Manning 2005), (Maslen-
nikov and seng Chua 2007), (Ji and Grishman 2008) and
(Patwardhan and Riloff 2007) tried to use discourse, docu-
ment, or cross-document information to improve informa-
tion extraction. Other research extends these approaches by
introducing cross-event information to enhance the perfor-
mance of multi-event-type extraction systems. (Liao and Gr-
ishman 2010) use information about other types of events to
make predictions or resolve ambiguities regarding a given
event. (Li, Ji, and Huang 2013) implements a joint model
via structured prediction with cross-event features.

Event extraction systems have used patterns and features
based on a range of linguistic representations. For exam-
ple, (Miwa et al. 2014) used both a deep analysis and a
dependency parse. The original NYU system for the 2005
ACE evaluation (Grishman, Westbrook, and Meyers 2005)
incorporated GLARF, a representation which captured both
notions of transparency and verb-nominalization correspon-
dences.4 However, assessment of the impact of individual
regularizations has been limited; this prompted the investi-
gation reported here.

Dependency Regularization has been utilized before to
improve the performance of detecting event triggers with
specific types. (Cao, Li, and Grishman 2015) used 3 types
of dependency regularizations: Verb Chain Regularization,
Transparent Regularization, and Nominalization Regular-
ization. (Cao et al. 2015) used active learning to fill gaps in
the ACE event training data, and (Li et al. 2015) improved
the event detection performance by exploiting the semantic
knowledge encoded in Abstract Meaning Representation.

Conclusion

In this paper we have proposed several Dependency Reg-
ularization steps to improve the performance of the Event
Extraction framework, including Passive Voice Regulariza-
tion and Relative Clause Regularization. The experimen-
tal results have demonstrated the effectiveness of these tech-
niques, which has helped our pattern-based trigger detection
system achieve 68.7% F-measure (with 1.1% absolute im-
provement over the baseline). In addition, this dependency
regularization technique can also help enhance the perfor-
mance of our event argument detection and role labeling by
around 0.7% and 1.0% absolute improvement.

4The official evaluations were made with a complex value met-
ric and so are hard to compare with more recent results.

References

Cao, K.; Li, X.; Fan, M.; and Grishman, R. 2015. Improv-
ing event detection with active learning. In Proceedings of
RANLP.
Cao, K.; Li, X.; and Grishman, R. 2015. Improving event
detection with dependency regularization. In Proceedings of
RANLP.
Finkel, J. R.; Grenager, T.; and Manning, C. 2005. Incor-
porating non-local information into information extraction
systems by gibbs sampling. In Proceedings of ACL.
Grishman, R.; Westbrook, D.; and Meyers, A. 2005. NYU’s
English ACE 2005 system description. In Proceedings of
the ACE 2005 Evaluation Workshop.
Ji, H., and Grishman, R. 2008. Refining event extraction
through cross-document inference. In Proceedings of ACL.
Ji, H., and Grishman, R. 2011. Using cross-entity inference
to improve event extraction. In Proceedings of ACL.
Li, X.; Nguyen, H. T.; Cao, K.; and Grishman, R. 2015.
Improving event detection with abstract meaning represen-
tation. In Proceedings of ACL-IJCNLP Workshop on Com-
puting News Storylines (CNewS 2015).
Li, Q.; Ji, H.; and Huang, L. 2013. Joint event extraction via
structured prediction with global features. In Proceedings of
ACL.
Liao, S., and Grishman, R. 2010. Using document level
cross-event inference to improve event extraction. In Pro-
ceedings of ACL.
Maslennikov, M., and seng Chua, T. 2007. A multi-
resolution framework for information extraction from free
text. In Proceedings of ACL.
Miwa, M.; Thompson, P.; Korkontzelos, I.; and Ananiadou,
S. 2014. Comparable study of event extraction in newswire
and biomedical domains. In Proceedings of COLING 2014,
the 25th International Conference on Computational Lin-
guistics: Technical Papers.
Patwardhan, S., and Riloff, E. 2007. Effective informa-
tion extraction with semantic affinity patterns and relevant
regions. In Proceedings of EMNLP.
Tratz, S., and Hovy, E. 2011. Fast, effective, non-projective,
semantically-enriched parser. In Proceedings of EMNLP.

25

