
The Combined Approach to Query Answering in DL-Lite

R. Kontchakov,1 C. Lutz,2 D. Toman,3 F. Wolter4 and M. Zakharyaschev1

1 Department of CS and Information Systems 2 Fachbereich Mathematik und Informatik
Birkbeck College London, UK Universität Bremen, Germany

{roman,michael}@dcs.bbk.ac.uk clu@informatik.uni-bremen.de

3 D.R. Cheriton School of CS 4 Department of Computer Science
University of Waterloo, Canada University of Liverpool, UK
david@cs.uwaterloo.ca frank@csc.liv.ac.uk

Abstract

Databases and related information systems can bene-
fit from the use of ontologies to enrich the data with
general background knowledge. The DL-Lite family
of ontology languages was specifically tailored towards
such ontology-based data access, enabling an imple-
mentation in a relational database management system
(RDBMS) based on a query rewriting approach. In
this paper, we propose an alternative approach to im-
plementing ontology-based data access in DL-Lite. The
distinguishing feature of our approach is to allow rewrit-
ing of both the query and the data. We show that, in con-
trast to the existing approaches, no exponential blowup
is produced by the rewritings. Based on experiments
with a number of real-world ontologies, we demonstrate
that query execution in the proposed approach is often
more efficient than in existing approaches, especially
for large ontologies. We also show how to seamlessly
integrate the data rewriting step of our approach into
an RDBMS using views (which solves the update prob-
lem) and make an interesting observation regarding the
succinctness of queries in the original query rewriting
approach.

Introduction
Description logics (DLs), as well as DL-based dialects of
the Web ontology languages OWL and OWL 2, have been
tailored as knowledge representation formalisms support-
ing the ‘classical’ reasoning tasks such as satisfiability and
subsumption, which are used at the stage of ontology de-
sign. Modern DL reasoners are indeed able to classify
large and complex real-world ontologies, the OWL ver-
sion of the medical ontology Galen being the latest fallen
stronghold (Kazakov 2009). Along with the growing pop-
ularity and availability of ontologies, novel ways of their
use, which go far beyond classical reasoning, have started
to emerge. In particular, it is generally believed in the KR
community that ontology languages can play a key role in
the next generation of information systems. The core idea
is ontology-based data access, where ontologies enrich the
data with additional background knowledge, thus facilitat-
ing the use and integration of incomplete and semistruc-
tured data from heterogeneous sources (Dolby et al. 2008;

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Heymans et al. 2008; Poggi et al. 2008). In this context,
the main reasoning task is to answer queries posed to the
data while taking account of the knowledge provided by the
ontology. It has turned out, however, that this task does not
scale well in traditional DLs and is dramatically less efficient
than querying in standard relational database management
systems (RDBMSs).

An investigation of DLs for which ontology-based data
access can be reduced to query answering in RDBMSs—
thus taking advantage of the decades of research invested
to make RDBMSs scalable—was launched in the series of
papers (Calvanese et al. 2005; 2006; 2008). The ultimate
aim was to identify DLs for which every conjunctive query
q over a data instance D, given an ontology T , can be
rewritten—independently of D—into a first-order query qT

over D alone and then executed by an RDBMS. This effort
gave birth to a new family of DLs, called the DL-Lite fam-
ily, and subsequently to the OWL 2 QL profile of OWL 2.
The rewriting approach to ontology-based data access has
been implemented in various systems such as QuOnto (Ac-
ciarri et al. 2005), Owlgres (Stocker and Smith 2008) and
REQUIEM (Pérez-Urbina, Motik, and Horrocks 2008). Un-
fortunately, experiments have revealed that these systems do
not provide sufficient scalability even for medium-size on-
tologies (with a few hundred axioms). In a nutshell, the rea-

son is that the rewritten queries are of size (|T | · |q|)|q| in
all known rewriting techniques, which can be prohibitive for
efficient execution by an RDBMS when |T | is large (even if
|q| is relatively small).

A different combined approach to ontology-based data
access using RDBMSs, with the main goal of overcoming
the inherent limitation of the rewriting approach being ap-
plicable only to DLs where conjunctive query answering is
in AC0 for data complexity, has been proposed in (Lutz,
Toman, and Wolter 2009). This combined approach sepa-
rates query answering into two steps: first, the data D is
extended—independentlyof possible queries—by taking ac-
count of the ontology T , and then any given query over
T and D is rewritten—independently of D—to a relational
query over the extended data. The new technique was ap-
plied to (extensions of) the DL EL (underlying the OWL 2
EL profile), which is PTIME-complete for data complexity.

In this paper, we investigate the application of the com-
bined approach to conjunctive query answering for DL-Lite

247

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

ontologies. In particular, we present polynomial rewriting
techniques for both the data and the query in the case when
ontologies are formulated in DL-LiteNhorn, which properly
contains DL-Lite�,F (Calvanese et al. 2006) and is among
the most commonly used DL-Lite dialects without role in-
clusions. We also consider DL-Lite(HN)

horn , the extension of
DL-LiteNhorn with role inclusions, which covers the vast ma-
jority of DL-Lite ontologies used in practice. In this case,
we could not avoid an exponential blowup of the rewrit-
ten queries (only in the number of roles), while keeping the
expanded data polynomial. On the positive side, the expo-
nential rewriting allows us to answer a wider class of pos-
itive existential queries, which properly includes the con-
junctive queries. To evaluate the new techniques, we have
conducted experiments with real-world DL-Lite ontologies,
which demonstrate that the combined approach outperforms
pure query rewriting. It is to be noted, however, that these
amenities come at a price: in general, the combined ap-
proach is applicable only if the information system is al-
lowed to manipulate the source data, which may not be the
case in some information integration scenarios.

To explain our approach in more detail, suppose that we
want to answer conjunctive queries over a data instance D
given an ontology T . As a first step, we expand D by ‘ap-
plying’ the axioms of T , which gives a new data instance
D′ of size O(|D| · |T | + |T |2) in the worst case. Then,
given a conjunctive query q to be executed over D and T ,
we rewrite q into a first-order query q† over D′ (indepen-
dently of D and ‘almost’ independently of T) whose size
is O(|q|) for DL-LiteNhorn ontologies. The rewriting q† is
fundamentally different from the rewriting of (Kontchakov
et al. 2009), which involves an exponential blowup in the
worst case. For a DL-Lite(HN)

horn ontology T , we can re-
duce conjunctive query answering to the case without role
inclusions, but the resulting query may have to be a union of

r|q| queries of the form q†, where r is the maximum num-
ber of subroles of a role occurring in q. We also show that
the expansion of data can be implemented using views in
the RDBMS; this has a convenient side-effect that the ex-
panded database can be automatically and transparently ad-
justed when the underlying data is updated. In addition, the
view-based construction yields a novel way for pure query
rewriting for DL-LiteNhorn. When applied to DL-LiteF (Cal-
vanese et al. 2006), which disallows conjunction and all
number restrictions except (unqualified) existential quanti-
fiers and functionality constraints, this new technique blows
up the rewritten query only polynomially. As views are no
longer involved in this case, we obtain the first polynomial
pure query rewriting technique for a DL-Lite logic.

Preliminaries

We briefly introduce DL-Lite(HN)
horn , the most expressive di-

alect of DL-Lite for which positive existential query answer-
ing is in AC0 for data complexity under the unique name
assumption, along with its fragments that are considered in
this paper, such as DL-LiteNhorn. For more details and the re-
lation to other DL-Lite logics, we refer the interested reader
to (Artale et al. 2009). Let NI, NC and NR be countably infi-

nite sets of individual names, concept names and role names.
Roles R and concepts C are built according to the following
syntax rules, where P ∈ NR, A ∈ NC and m > 0:

R ::= P | P−, C ::= ⊥ | A | ≥ m R.

As usual, we write ∃R for ≥ 1 R and identify (P−)−

with P . We use N−
R to denote the set of all roles. In DL, on-

tologies are represented as TBoxes. A DL-Lite(HN)
horn TBox is

a finite set T of concept and role inclusions (CIs and RIs),
which take the form C1 � · · · � Cn � C and R1 � R2, re-
spectively. Denote by �∗

T the transitive-reflexive closure of
the RIs in T . It is required that if S �∗

T R with S �= R, then
T does not contain a CI with Ci = ≥ m R, for m ≥ 2, on
its left-hand side. Without this restriction, conjunctive query
answering becomes coNP-hard for data complexity (Artale
et al. 2009), which means that the combined approach is no
longer possible without an exponential blowup of the data
(Lutz, Toman, and Wolter 2009). DL-LiteNhorn is the frag-
ment of DL-Lite(HN)

horn in which RIs are disallowed.
An ABox is used to store instance data. Formally, it is

a finite set of concept assertions A(a) and role assertions
P (a, b), where A ∈ NC, P ∈ NR and a, b ∈ NI. We denote
by Ind(A) the set of individual names occurring in A, and
often write P−(a, b) ∈ A instead of P (b, a) ∈ A. A knowl-
edge base (KB) is a pair (T ,A), where T is a TBox and A
an ABox.

The semantics of DL-Lite(HN)
horn is defined in the standard

way based on interpretations I = (ΔI , ·I), where ΔI is
a non-empty domain and ·I an interpretation function that
maps each A ∈ NC to a subset AI ⊆ ΔI , each P ∈ NR

to a relation P I ⊆ ΔI × ΔI , and each a ∈ NI to an ele-
ment aI ∈ ΔI . Throughout the paper, we mostly adopt the
unique name assumption (UNA), i.e., require that aI �= bI

for distinct a, b ∈ NI. In the context of OWL, the UNA is
not adopted. The combined approach to the case without the
UNA is discussed later on in the paper. The interpretation
function ·I is extended to complex concepts and roles by
setting

(P−)I = {(e, d) | (d, e) ∈ P I},

⊥I = ∅, (≥ m R)I = {d | #{e | (d, e) ∈ RI} ≥ m},

where #X is the cardinality of X . Given an interpretation
I, we write I |= C1 � · · · � Cn � C if

⋂n
i=1 CI

i ⊆ CI ,

I |= R1 � R2 if RI
1 ⊆ RI

2 , I |= A(a) if aI ∈ AI , and
I |= P (a, b) if (aI , bI) ∈ P I . The interpretation I is a
model of a KB K = (T ,A) if I |= α for all α ∈ T ∪ A. K
is consistent if it has a model. We write K |= α whenever
I |= α for all models I of K.

Let NV be a countably infinite set of variables. Taken
together, the sets NV and NI form the set NT of terms. A
first-order (FO) query is a first-order formula q = ϕ(�v) in
the signature NC ∪ NR with terms from NT, where the con-
cept and role names are treated as unary and binary predi-
cates, respectively, and the sequence �v = v1, . . . , vk of vari-
ables from NV contains all the free variables of ϕ. The vari-
ables �v are called the answer variables of q, and q is k-ary
if �v comprises k variables. A positive existential query is
a first-order query of the form q = ∃�u ψ(�u,�v), where ψ is

248

constructed using conjunction and disjunction from concept
atoms A(t) and role atoms P (t, t′) with t, t′ ∈ NT. As in
the case of ABox assertions, we can write P−(t, t′) instead
of P (t′, t). A conjunctive query (CQ) is a positive existen-
tial query containing no disjunction. The variables in �u are
called the quantified variables of q. We denote by qvar(q)
the set of quantified variables �u, by avar(q) the set of answer
variables �v, and by term(q) the set of terms in q.

Let q = ϕ(�v) be a k-ary FO query and I an interpre-
tation. A map π : term(q) → ΔI with π(a) = aI , for
a ∈ term(q)∩NI, is called a match for q in I if I satisfies q
under the variable assignment that maps each v ∈ avar(q) to
π(v); in this case we write I |=π q. For a k-tuple of individ-
ual names �a = a1, . . . , ak, a match π for q in I is called an
�a-match if π(vi) = aI

i , i ≤ k. We say that �a is an answer to
q in an interpretation I if there is an �a-match for q in I and
use ans(q, I) to denote the set of all answers to q in I. We
say that �a is a certain answer to q over a KB K = (T ,A) if
�a ⊆ Ind(A) and I |= q[�a] for all models I of K. The set of
all certain answers to q over K is denoted by cert(q,K).

Throughout the paper, we use |K| to denote the size of a
KB K, that is, the number of symbols required to write K.
|T |, |A| and |q| are defined analogously. Unless otherwise
stated, we assume numbers to be encoded in binary, and thus
| ≥ mR| = O(log m).

ABox Extension

First, we describe the ABox extension part of the combined
approach to CQ answering in DL-LiteNhorn. Semantically,
the ABox extension means expanding the ABox A to a
canonical interpretation IK for the given KB K = (T ,A).
More specifically, IK is constructed by (i) expanding the
set Ind(A) of individual names in A with additional indi-
viduals to witness existential and number restrictions, and
(ii) expanding the extensions of concept and role names as
required by the CIs in T . The individual names in (i) are
taken from the set NT

I = {cP , cP− | P a role name in T },
which is assumed to be disjoint from Ind(A). The domain
of IK will contain those witnesses cR that are really needed
in any model of K. To identify such witnesses, we require
the following definition. A role R is called generating in K
if there exist a ∈ Ind(A) and R1, . . . , Rn = R such that the
following conditions hold:

(agen) K |= ∃R1(a) but R1(a, b) /∈ A for all b ∈ Ind(A)
(written a � cR1

),

(rgen) for i < n, T |= ∃R−
i � ∃Ri+1 and R−

i �= Ri+1

(written cRi
� cRi+1

).

It can be seen that R is generating in K if, and only if, every
model I of K contains some point x ∈ ΔI with an incoming
R-arrow, but there is a model I where no such x is identified
by an individual name in the ABox.

The canonical interpretation IK for K is defined as fol-
lows:

ΔIK = Ind(A) ∪ {cR | R ∈ N−
R , R is generating in K},

aIK = a, for all a ∈ Ind(A),

AIK = {a ∈ Ind(A) | K |= A(a)} ∪

{cR ∈ ΔIK | T |= ∃R− � A},

P IK = {(a, b) ∈ Ind(A) × Ind(A) | P (a, b) ∈ A} ∪

{(d, cP) ∈ ΔIK × NT
I | d � cP } ∪

{(cP− , d) ∈ NT
I × ΔIK | d � cP−}.

Clearly, IK is an extension of the ABox A if we represent
the concept and role memberships in the form of ABox as-
sertions. The number of domain elements in IK does not
exceed |K|.

The canonical interpretation IK is not in general a model
of K. Indeed, this cannot be the case because DL-LiteNhorn

does not enjoy the finite model property (Calvanese et al.
2005) whereas IK is always finite.

Example 1 Let K = (T ,A), where

T = {A � ∃P, ≥ 2P− � ⊥}, A = {A(a), A(b)}.

Then ΔIK = {a, b, cP}, P IK = {(a, cP), (b, cP)}, and so
cP ∈ (≥ 2 P−)IK and IK �|= K.

As far as query answering is concerned, this is not a prob-
lem. More important is that IK does not always give the
correct answers to CQs, i.e., it is not the case that IK |= q[�a]
iff K |= q[�a] for all k-ary CQs q and k-tuples �a ⊆ Ind(A).
We illustrate this with two examples.

Example 2 Consider the ‘cyclic’ query q = ∃v P (v, v)
over K = (T ,A), where

T = {A � ∃P, ∃P− � ∃P}, A = {A(a)}.

Then ΔIK = {a, cP }, P IK = {(a, cP), (cP , cP)} and
AIK = {a}. The assignment π defined by π(v) = cP shows
that IK |= q. On the other hand, the interpretation I with
ΔI = {a, 1, 2, . . .}, P I = {(a, 1)} ∪ {(n, n + 1) | n ≥ 1}
and AI = {a} is a model of K, but I �|= q. Thus K �|= q.

Example 3 Consider next the ‘fork-shaped’ query

q = ∃v2 (P (v1, v2) ∧ P (v3, v2))

over K = (T ,A), where

T = {A � ∃P}, A = {A(a), A(b)}.

Then ΔIK = {a, b, cP}, P IK = {(a, cP), (b, cP)} and
AIK = {a, b}. Clearly, IK |= q[a, b]. On the other hand,
the interpretation I with ΔI = {a, b, c1, c2}, AI = {a, b},
and P I = {(a, c1), (b, c2)} is a model of K such that
I �|= q[a, b]. Thus K �|= q[a, b].

We overcome these problems in two steps. First, we show
that the unravelling of IK into a forest-shaped interpretation
UK does give the right answers to queries. However,UK may
be infinite, and so we cannot store it as a database instance.
But, as shown in the next section, any given CQ q can be
rewritten into an FO query q† in such a way that the answers
to q over UK are identical to the answers to q† over IK. This
enables us to use the finite interpretation IK as a relational
instance and still obtain correct answers to queries.

The unravelling UK is defined as follows. A path in IK is
a finite sequence acR1

· · · cRn
, n ≥ 0, such that a ∈ Ind(A)

249

and R1, . . . , Rn satisfy (agen) and (rgen) (that is, a � cR1

and cRi
� cRi+1

, for 1 ≤ i < n). We denote by tail(σ)
the last element in a path σ. The interpretation UK is then
defined by taking:

ΔUK = {a · cR1
· · · cRn

| a ∈ Ind(A), n ≥ 0,

a � cR1
� · · · � cRn

},

aUK = a, for all a ∈ Ind(A),

AUK = {σ ∈ ΔUK | tail(σ) ∈ AIK},

PUK = {(a, b) ∈ Ind(A) × Ind(A) | P (a, b) ∈ A}

∪ {(σ, σ · cP) ∈ ΔUK × ΔUK | tail(σ) � cP }

∪ {(σ · cP− , σ) ∈ ΔUK × ΔUK | tail(σ) � cP−},

where ‘·’ denotes concatenation. Notice that the interpre-
tations I constructed in Examples 2 and 3 are isomorphic
to the respective unravellings UK. The interpretation UK is
forest-shaped in the sense that the graph G = (V, E) with
V = ΔUK and E = {(σ, σ · cR) | tail(σ) � cR} is a forest.
The map τ : ΔUK → ΔIK defined by taking τ(σ) = tail(σ)
is a homomorphism from UK onto IK, and so UK |= q im-
plies IK |= q for all CQs q (but, as shown in Examples 2
and 3, not necessarily vice versa). Just like IK, the inter-
pretation UK is not in general a model of K. A simple ex-
ample is given by K = (T ,A), T = {A � ≥ 2P} and
A = {A(a)}, where we have UK �|= A � ≥ 2P because a
is P -related only to a · cP in UK. Nevertheless, UK gives the
right answers to all CQs, as shown by the following:

Theorem 4 For every consistent DL-LiteNhorn KB K and ev-
ery CQ q, we have cert(q,K) = ans(q,UK).

The proof of this theorem, as well as all other omitted
proofs, can be found in Appendix: Proof of Theorem 4.

Note that Theorem 4 requires consistency of K. We
shall see below that there is an FO query qT⊥ such that

ans(qT⊥ ,A) = ∅ iff K = (T ,A) is consistent. This will al-
low us to check consistency using an RDBMS before build-
ing the canonical interpretation.

Query Rewriting for DL-LiteN
horn

We now present a polytime algorithm that rewrites every CQ
q into an FO query q† such that

– ans(q,UK) = ans(q†, IK),

– the length of q† is O(|q| · |T |) (and can be made O(|q|)
by adding an auxiliary database relation).

By Theorem 4, we can compute the answers to q over K
using an RDBMS to execute q† over IK stored as a relational
instance.

To simplify notation, we often identify a CQ q with the
set of its atoms and use P−(v, u) ∈ q as a synonym of
P (u, v) ∈ q. The rewriting q† of the CQ q = ∃�u ϕ is defined
as a formula of the form

q† = ∃�u (ϕ ∧ ϕ1 ∧ ϕ2 ∧ ϕ3),

where ϕ1, ϕ2 and ϕ3 are Boolean combinations of equalities
t1 = t2 and each of the ti is either a term in q or a constant
cR ∈ NT

I .

The purpose of ϕ1 is to select only those matches where
all answer variables receive values from Ind(A), as required
by the definition of certain answers:

ϕ1 =
∧

v∈avar(q)

∧
cR∈NT

I

(v �= cR).

The intuition behind ϕ2 and ϕ3 is that the rewriting q† of q
has to select exactly those matches of q in IK that can be
‘reproduced’ as matches in UK. Due to the forest structure
of UK, this requirement imposes strong constraints on the
way in which variables can be matched to the non-ABox
elements of IK. Essentially, the part of q that is mapped
to the non-ABox elements of IK must be homomorphically
embeddable into a forest. This intuition is captured by the
following definition. Let (N−

R)∗ be the set of all finite words
over N−

R (including the empty word ε).

Definition 5 Let q = ∃�uϕ be a CQ with R(t, t′) ∈ q. A
partial function fR,t : term(q) → (N−

R)∗ is a tree witness
for R and t in q if its domain is minimal (with respect to set-
theoretic inclusion) such that the following conditions hold,
where w ∈ (N−

R)∗:

– fR,t(t) = ε;

– if fR,t(s) = ε and R(s, s′) ∈ q then fR,t(s
′) = R;

– if fR,t(s) = w · S and S′(s, s′) ∈ q with S′ �= S− then
fR,t(s

′) = w · S · S′;

– if fR,t(s) = w · S and S−(s, s′) ∈ q then fR,t(s
′) = w.

Note that, for R(t, t′) ∈ q, a tree witness fR,t does not
necessarily exist. However, if it does exist then it is clearly
unique. The following lemma shows that tree witnesses can
be efficiently computed.

Lemma 6 Given a CQ q and R(t, t′) ∈ q, it can be decided
in time O(|q|) whether a tree witness fR,t exists. And if it
does exist, fR,t can be computed in time O(|q|).

Proof. Follows from Lemma 15 (to be proved in Appendix:
Proof of Theorem 10), which provides a step-by-step pro-
cedure for constructing a tree witness, with the steps mim-
icking the four rules above. This procedure may fail in the
construction process, in which case no tree witness exists. �

Intuitively, the tree witness fR,t deals with matches π in
IK, where for some R(t, t′) ∈ q, we have π(t′) = cR.
The reproduction π′ of this match in UK has to satisfy
π′(t′) = σ ·cR for some σ. Due to the condition R−

i �= Ri+1

in (rgen), we have σ · cR · cR− /∈ ΔUK . By the defini-
tion of UK, (π′(t), σ · cR) ∈ RUK thus implies π′(t) = σ.
Now, fR,t serves two purposes. First, it identifies, via its
domain D ⊆ term(q), those terms in q that must be mapped
by π′ to the subtree of UK with root π′(t). Second, it de-
scribes a homomorphic embedding of q|D (i.e., q restricted
to D) into that subtree: fR,t(s) = R1 · · ·Rk means that
π′(s) = π(t) · cR1

· · · cRk
. Due to the structure of UK, it can

actually be seen that the described homomorphic embedding
is the only possible embedding of this kind. Therefore, if the
tree witness for R(t, t′) does not exist, then no homomor-
phic embedding is possible, which means that t′ cannot be

250

mapped to σ · cR in UK, and so not to cR in IK either. This
is precisely what ϕ2 is for:

ϕ2 =
∧

R(t,t′)∈q
fR,t does not exist

(t′ �= cR).

Example 7 We illustrate ϕ2 using the query q = ∃v P (v, v)
and KB K from Example 2. As we saw, K �|= q but IK |= q
since (cP , cP) ∈ P IK . Now observe that there exists no tree
witness fP,v because otherwise we would have fP,v(v) = ε
and, by P (v, v) ∈ q, also fP,v(v) = P , contrary to fP,v

being a function. Thus, v �= cP is a conjunct of ϕ2, and so
IK �|= q†. In general, the variable v can only be matched to
an ABox individual no matter what K is: both v �= cP and
v �= cP− are conjuncts of ϕ2 and, by the definition of IK,
we have (cR, cR) �∈ P IK for all K and R /∈ {P, P−}.

If fR,t exists and R(t, t′) ∈ q then, in principle, t′ can
be mapped to a cR in IK. But then we still have to ensure
that all terms in the domain D of fR,t are matched in IK
in a way that can be reproduced in the relevant subtree of
UK by a homomorphic embedding. As already mentioned,
the only possible such embedding is the one described by
fR,t, and thus it suffices to ensure that if t′ is mapped to cR,
then each term s in the domain of fR,t is mapped to fR,t(s).
To achieve this using a conjunct ϕ3 of only linear size, we
first define an appropriate equivalence relation on terms. For
s, t ∈ term(q) and R ∈ N−

R , we write s ≡R
q t if there are

atoms R(s, s′), R(t, t′) ∈ q, fR,s exists and fR,s(t) = ε.

Lemma 8 For all R ∈ N−
R , ≡R

q is an equivalence relation.

Proof. Reflexivity of ≡R
q is trivial by the definition of tree

witnesses, while both symmetry and transitivity are imme-
diate consequence of the following observation.

Suppose that fR,t(s) is defined. Then there are atoms
Ri(ti−1, ti) ∈ q, 0 < i ≤ n, with R = R1, t = t0, s = tn
such that the following property holds: if fR1,t0(tj) = ε, for
0 < j ≤ n, then Rj = R−

1 and, in the case when j < n,
we also have Rj+1 = R1. Moreover, if fR1,t0(tn) = ε
then fR1,tn

is clearly defined (remember that in this case
Rn = R−

1) and fR1,tn
(t0) = ε. To see this, it suffices to

observe that to compute fR1,t0(tn) we can take the word
R1 · R2 · · ·Rn and then successively remove from it all the
leftmost pairs of the form R · R− (cf. reductions in free
groups). If in the removal process we obtain a word of the
form Ri ·Rj ·w with Ri = R−

j then fR1,t0(tj) = ε. To com-
pute fR1,tn

(t0), we can take the same word R1 · R2 · · ·Rn,
successively remove from it all the rightmost pairs of the
form R · R−, and then take the inverse. �

For R ∈ N−
R and t ∈ term(q), denote by [t]Rq the equiv-

alence class of ≡R
q generated by t. We can now define ϕ3

with the required properties by taking:

ϕ3 =
∧
[t]Rq

fR,t exists

(∨
R(s,s′)∈q

s≡R
q t

(s′ = cR) →
∧

s≡R
q t

(s = t)
)
.

Example 9 We illustrate ϕ3 using the ‘fork-shaped’ query
q = ∃v2 (P (v1, v2)∧P (v3, v2)) from Example 3. For every

KB K, if UK |= q[a1, a3] and v2 is not mapped to an ABox
individual, then a1 = a3. This is not the case in IK as,
depending on K, we might be able to map v2 to cP . Thus, it
is sufficient to add (v2 = cP) → (v1 = v3) as a conjunct to
P (v1, v2)∧P (v3, v2). This is achieved using ϕ3 as follows:
fP,v1

exists and [v1]
P
q = {v1, v3}; therefore, ϕ3 contains the

conjunct (v2 = cP) → (v1 = v3), as required.

It is easy to see that q† can be computed in polynomial
time in the size of the query q and the set NT

I . The length
of q† is O(|q| · |T |) since ϕ1 is of length O(|q| · |T |) and
ϕ2, ϕ3 are of length O(|q|). If we add a unary database table
aux that identifies exactly the elements of NT

I , then we can
replace ϕ1 with

ϕ′
1 =

∧
v∈avar(q)

¬aux(v)

and obtain q† of size O(|q|).
The main result of this paper is the following theorem:

Theorem 10 For every DL-LiteNhorn KB K and every CQ q,

ans(q†, IK) = ans(q,UK).

The proof is given in Appendix: Proof of Theorem 10.

Canonical Interpretation by FO Queries

The aim of this section is to show that the canonical in-
terpretation IK for a DL-LiteNhorn KB K = (T ,A) can be
constructed by means of FO queries. This will allow us to
implement the construction of IK in an RDBMS using (ma-
terialised) views. The benefit is that updates of the ABox A,
such as insertions and deletions, are automatically reflected
in those views, which solves the problem of updating IK in
a simple and elegant way.

Given a DL-LiteNhorn TBox T and concept and role names
A and P , we construct FO queries qTA (x) and qTP (x, y) such

that the answers to qTA and qTP over A coincide with AIK

and, respectively, P IK for all ABoxes A and K = (T ,A). It
will be convenient for us to regard A as an interpretation IA
that includes all elements of NT

I as domain elements which
are not involved in any concept or role memberships:

– ΔIA = Ind(A) ∪ NT
I ;

– AIA = {a | A(a) ∈ A}, for all A ∈ NC;

– P IA = {(a, b) | P (a, b) ∈ A}, for all P ∈ NR.

Instead of constructing ΔIA explicitly for evaluating the
subsequent queries in a relational system, we could rely on
domain independence of relational queries (Abiteboul et al.
1995).

We now construct qTA (x) in three steps. First, for each
concept C in T , we inductively define a query expTC(x)
whose answers on IA determine CIK when restricted to
ΔIK (this restriction will be ensured in the third step). To
simplify presentation, we assume that T contains all CIs of
the form ≥ m R � ≥ m′ R, for pairs of concepts ≥ mR
and ≥ m′ R in T such that m′ < m, and no ≥ m′′ R, for
m′ < m′′ < m, occurs in T . Clearly, the extended TBox is

251

only linearly larger than the original one. Set

exp
T ,0
⊥ (x) = ⊥, exp

T ,0
A (x) = A(x),

exp
T ,0
∃R (x) = (x = cR−) ∨ ∃y R(x, y),

exp
T ,0
≥mR(x) = ∃y1, . . . , ym

(∧
1≤i≤m

R(x, yi) ∧
∧
i�=j

(yi �= yj)
)
,

where m ≥ 2, and for j ≥ 1, set

exp
T ,j
C (x) = exp

T ,j−1
C (x) ∨

∨
C1�···�Cn�C

n∧
i=1

exp
T ,j−1
Ci

(x).

Thus, exp
T ,j
C (x) adds to exp

T ,j−1
C (x) those elements of

ΔIA that can be obtained by one inference step of SLD res-
olution (Kowalski and Kuehner 1971). As we do not need
more than |T | inference steps, the formulas exp

T ,j
C (x) are

all equivalent for j ≥ |T |. We set expTC(x) = exp
T ,|T |
C (x).

Lemma 11 For a DL-LiteNhorn TBox T and a concept C in
T , ans(expT

C , IA) ∩ ΔIK = CIK for all KBs K = (T ,A).

Second, we construct queries qTP (x, y) that determine

P IK (directly, without selecting a subset of the answers).
Let rgenTRn

be the set of pairs (R1, Rn−1) of roles in T
such that there is a sequence R1, . . . , Rn satisfying (rgen).
Clearly, rgenTRn

depends only on T and can be computed in

time polynomial in |T |. For a role name P , set

qTP (x, y) = P (x, y) ∨
(
genTP (x) ∧ (y = cP)

)
∨(

genTP−(y) ∧ (x = cP−)
)
,

genTR(x) = agenTR(x) ∨∨
(R1,S)∈rgenT

R

(
∃z agenTR1

(z) ∧ (x = cS)
)
,

agenTR(x) = expT∃R(x) ∧ ¬∃y R(x, y) ∧
∧

cS∈NT
I

(x �= cS).

Lemma 12 For a DL-LiteNhorn TBox T and a role name P ,
ans(qTP , IA) = P IK for all KBs K = (T ,A).

To define queries qTA (x) computing AIK , it is enough, by
Lemma 11, to restrict expTA(x) to the domain of IK. So as
the third step we set qTA (x) = expTA(x) ∧ D(x), where

D(x) =
∧

cR∈NT
I

(
(x = cR) → ∃z genTR(z)

)
.

Lemma 13 For a DL-LiteNhorn TBox T and a concept name
A, ans(qTA , IA) = AIK for all KBs K = (T ,A).

The constructed queries qTA and qTP allow us to define IK
based on IA using views. They also provide us with the
previously announced query qT⊥ = ∃x (expT

⊥(x) ∧ D(x))
which can be used to check consistency of K (see the remark
after Theorem 4): a KB K = (T ,A) is consistent if, and
only if, ans(qT⊥ , IA) = ∅.

Polynomial Rewriting for DL-LiteF
core

A very interesting observation is that we can combine the
rewritten query q† with the queries constructing IK. The
resulting FO query qT ,† can be executed directly over IA
rather than IK. Thus we obtain a novel technique for the

pure query rewriting approach. It involves only a polynomial
blowup for DL-LiteFcore, called DL-LiteF in (Calvanese et al.
2006), which is the fragment of DL-LiteNhorn with CIs of the
form C1 � C2, ≥ 2R � ⊥ or C1 � C2 � ⊥ and the Ci of
the form A or ∃R. More precisely, the length of qT ,† for a
DL-LiteFcore TBox T is

O(|q| · |T | · max
R a role in T

|rgenTR |),

which is linear in |q| and at most cubic in |T |. All the
previously known query rewriting techniques for DL-LiteF
produce exponential results. Our technique can also be ap-
plied to DL-LiteNcore, which extends DL-LiteFcore with arbi-
trary number restrictions ≥ mR. In this case, however, we
have to take account of the number encoding because the
subformulas exp

T ,0
≥mR(x) are of length O(m2). If the num-

bers are represented in unary then |qT ,†| = O(|q| · |T |5). If
the numbers are coded in binary and we are allowed to use
aggregation functions (e.g., COUNT in SQL), then |qT ,†| is
O(|q| · |T |4). Furthermore, if the subqueries exp

T ,j
C (x) are

defined as views and thus contribute with size 1 to the length
of exp

T ,j+1
C (x) (a form of structure sharing), then similar

considerations also apply to TBoxes in the full language of
DL-LiteNhorn. Without views or aggregation, the queries used
for constructing IK are of exponential size.

Query Answering in DL-Lite(HN)
horn

We now show how our (combined) approach to CQ answer-
ing over DL-LiteNhorn KBs can be extended to answering pos-
itive existential queries over DL-Lite(HN)

horn KBs, which can
contain role inclusions, subject to the constraint formulated
in the preliminaries. In fact, we show that this more general
case can be reduced (at a price of an exponential blowup) to
CQ answering over DL-LiteNhorn KBs.

Given a DL-Lite(HN)
horn KB K = (T ,A), we first transform

(in polynomial time) the TBox T into a DL-LiteNhorn TBox
Th by removing all RIs and adding the CIs ∃R � ∃S when-
ever R �∗

T S. Since Kh = (Th,A) is a DL-LiteNhorn KB, it
has a canonical interpretation IKh

, which can be stored as a
relational instance in the RDBMS. We then show that every
positive existential query q can be rewritten into a union of
CQs (UCQ) qh such that the answers to q over K coincide
with the answers to qh over IKh

. We rely on Theorem 10 to
answer the UCQ qh in a component-wise fashion.

We construct qh in two steps. First, we compensate the
removal of RIs from T and transform q into another posi-
tive existential query q′ by replacing each atom R(t, t′) in
q with the disjunction

∨
S�∗

T
R S(t, t′). Clearly, q′ can be

constructed in polynomial time. Second, we convert q′ into
disjunctive normal form qh, i.e., into a UCQ. Of course, this
results in an exponential blowup. More precisely, we ob-
tain a union of at most r|q| conjunctive queries, where r is
the maximum over |{S | S �∗

T R}|, for role atoms R(t, t′)
in q, which is an improvement over the known (|T | · |q|)|q|

bound for the pure query rewriting approach.

Theorem 14 For all consistent DL-Lite(HN)
horn KBs K and

positive existential queries q, cert(q,K) = ans(q†h, IKh
).

Proof. By Theorems 4 and 10, it suffices to show that
cert(q,K) = cert(qh,Kh). Let q (and so qh) be k-ary.

252

(⊆) Let �a be a k-tuple of individual names from A such
that Kh �|= qh[�a]. Then there is a model Ih of Kh such that
Ih �|= qh[�a]. Construct a new interpretation I by setting
ΔI = ΔIh , AI = AIh for all A ∈ NC, and

P I = {(d, e) | (d, e) ∈ SIh for S ∈ N−
R , S �∗

T P}

for all P ∈ NR. To show that K = (T ,A) �|= q[�a], it suffices
to prove that (i) I |= T and (ii) I �|= q[�a].

(i) By definition, I |= R � S for all RIs R � S in T .
To prove that we have I |= C1 � · · · � Cn � C for all CIs
C1 � · · · �Cn � C in T , assume d ∈ (C1 � · · · �Cn)I and
show that d ∈ CI . This follows if d ∈ (C1 � · · · � Cn)Ih

because Ih |= C1 � · · · � Cn � C and CIh ⊆ CI by the
definition of C and I. Assume to the contrary of what has
to be shown that d /∈ (C1 � · · · � Cn)Ih . Then there exists
Ci such that d /∈ CIh

i . Since d ∈ CI
i , this can only be

the case if Ci is of the form ≥ m R. Then there exist e and
S such that (d, e) ∈ SIh , S �∗

T R and S �= R. By the
definition of DL-Lite(HN)

horn , this means that m = 1. But then
d ∈ (∃S)Ih and ∃S � ∃R ∈ Th imply d ∈ (∃R)Ih , which
is a contradiction as d /∈ CIh

i .

(ii) Assuming I |=π q for an �a-match π for q in I, we
show that Ih |=π q′, which is equivalent to Ih |=π qh.
As q′ is constructed from subformulas of the form A(t) and∨

S�∗
T

R S(t, t′), for R(t, t′) ∈ q, we consider two cases.

For A(t), we have Ih |=π A(t) whenever I |=π A(t), be-
cause AI = AIh . For

∨
S�∗

T
R S(t, t′) with R(t, t′) ∈ q,

if I |=π R(t, t′) then, by the construction of I, there ex-
ists S with S �∗

T R and (π(t), π(t′)) ∈ SIh , from which
Ih |=π

∨
S�∗

T
R S(t, t′). As q′ is built from these sub-

formulas using only conjunction and disjunction, we have
Ih |=π q′ whenever I |=π q. Thus, Ih |= qh[�a].

(⊇) If Kh = (Th,A) |= qh[�a] then (Th ∪ T ,A) |= q[�a].
But then T |= Th implies K = (T ,A) |= q[�a]. �

Query Answering in DL-Lite(HF)
horn

without UNA

The Web ontology language OWL does not adopt the unique
name assumption (UNA), but allows instead equality and in-
equality constraints of the form a ≈ b and a �≈ b for individ-
ual names a, b. Without UNA, CQ answering in DL-LiteNcore

(with or without ≈ and �≈) becomes CONP-hard for data
complexity (Artale et al. 2009). If, however, DL-Lite(HN)

horn

TBoxes contain concepts ≥ m R with m ≥ 2 only in the
form of functionality constraints ≥ 2 R � ⊥ (this frag-
ment is called DL-Lite(HF)

horn) then query answering is ‘only’
PTIME-complete for data complexity. If concepts ≥ m R
with m ≥ 2 are disallowed altogether, then the complex-
ity further drops to LOGSPACE. In the combined approach,
both equality and functionality constraints can be eliminated
at the stage of constructing the canonical interpretation. In-
deed, given a DL-LiteFhorn KB K = (T ,A), denote by eqK
the minimal equivalence relation such that

– (a, b) ∈ eqK, for each a ≈ b in K,

– ≥ 2R � ⊥ ∈ T , R(a, b), R(a′, b′) ∈ A, (a, a′) ∈ eqK
implies (b, b′) ∈ eqK.

To construct IK, we first compute the relation eqK and
then take it into account in the definition of AIK and P IK

above by stating in the exp
T ,j
C (x) that they can also be ob-

tained from exp
T ,j−1
C (y) ∧ eqK(x, y); the queries qTP (x, y)

are modified accordingly. The RIs in DL-Lite(HF)
horn can be

treated at the query rewriting stage similarly to DL-Lite(HN)
horn

under UNA.

Note also that DL-Lite(HF)
horn TBoxes (and OWL 2 QL on-

tologies) may contain role disjointness, (a)symmetry and
(ir)reflexivity constraints. The presented approach can be
extended to handle these features.

Experiments

We evaluate the performance of the combined rewriting
technique by comparing it with the pure query rewriting ap-
proach introduced in (Calvanese et al. 2005; 2006; 2007;
2008) and implemented in the QuOnto system (Acciarri et
al. 2005; Poggi, Rodriguez, and Ruzzi 2008).

The experiments use several DL-Lite ontologies formu-
lated in DL-Litecore, the common fragment of DL-LiteNhorn

and the logic underlying QuOnto. Among the ontologies
considered are the DL-Litecore approximation Galen-Lite of
the medical ontology Galen (consisting of the DL-Litecore

CIs implied by Galen), the Core ontology (a representation
of a fragment of a supply-chain management system used by
the bookstore chain Waterstone’s), the StockExchange ontol-
ogy (an EU financial institution’s ontology), and the Univer-
sity ontology (a DL-Litecore version of the LUBM ontology
developed at Lehigh University to describe the university or-
ganisational structure). The sample ontologies cover a wide
spectrum of DL-Lite ontologies, ranging from complex con-
cept hierarchies (as in Galen-Lite) to ontologies with rich
role interactions (such as Core). The data was stored and the
test queries were executed using DB2-Express version 9.5
running on Intel Core 2 Duo 2.5GHz CPU, 4GB memory
and 500GB storage under Linux 2.6.28.

Figure 1 summarises the running times for several test
queries and randomly generated ABoxes of various size.
For each ABox, we report the number of individuals (Ind,
in thousands), the numbers of concept assertions (CAs,
in millions) and role assertions (RAs, in millions) in the
original ABox and in the canonical interpretation. For
each query, we then show the execution times in the
columns UN (the unmodified query over the original ABox,
which does not give correct answers and serves as an ‘ul-
timate lower bound’), RW (the rewritten query executed
over the canonical interpretation), and QO (the query pro-
duced by QuOnto executed over the original ABox). The
queries reported in the table are sample CQs with 3–6
atoms of various topologies (the exact shapes of the queries
can be found at http://www.dcs.bbk.ac.uk/˜roman/
query-rewriting/queries.txt; the queries to Stock-
Exchange and University were taken from (Pérez-Urbina,
Motik, and Horrocks 2009)); the size of the queries is lim-
ited by the feasibility of creating a QuOnto rewriting; the
technique proposed here scales to considerably larger con-
junctive queries. In the case of the University ontology, role
inclusions were incorporated into the query rewriting as out-

253

ABox size (in M) query
Ind original canonical Q1 Q2 Q3 Q4

(in K) CA RA CA RA UN RW QO UN RW QO UN RW QO UN RW QO

Galen-Lite

2733 concepts,

207 roles, and

4888 axioms

20 2.0 2.0 9.9 3.7 0.02 0.04 13.69 0.02 0.08 1.65 0.02 0.11 1m 28 0.12 0.22 16m 11
50 5.0 5.0 24.8 9.3 0.04 0.55 14.39 0.05 0.19 2.21 0.03 0.28 51.39 0.11 0.43 13m 26
70 10.0 10.0 43.0 15.4 0.03 0.76 17.56 0.11 0.55 3.01 0.06 0.73 1m 11 0.15 0.63 13m 00

100 20.0 20.0 75.0 25.8 0.05 0.87 23.86 0.14 0.76 6.55 0.12 0.95 1m 31 0.18 1.52 16m 23

Core
81 concepts,

58 roles, and

381 axioms

50 2.0 2.0 5.5 2.8 0.22 0.37 17m 41 0.30 0.41 38m 16 0.13 0.29 1m 7 0.19 0.46 6m 26
100 5.0 5.0 11.8 5.7 0.46 3.97 25m 32 0.53 5.97 97m 47 0.50 1.10 2m 15 0.20 1.00 12m 02
200 10.0 10.0 23.7 11.4 0.80 5.73 38m 33 0.86 6.65 67m 13 0.81 1.78 3m 28 0.78 2.57 13m 38
300 20.0 20.0 54.5 27.8 1.28 7.32 23m 04 1.34 8.03 71m 49 1.87 3.12 5m 31 1.70 3.86 14m 55

University
31 concepts,

25 roles, and

103 axioms

100 2.0 2.0 5.5 2.7 0.06 2.61 26m 08 0.10 0.15 49m 36 0.02 0.05 29m 10 0.45 0.67 9m 49
300 5.0 5.0 13.9 7.2 0.05 5.22 36m 22 0.21 0.13 33m 54 0.02 0.03 29m 29 0.94 1.84 9m 52
500 10.0 10.0 25.2 13.7 0.06 5.18 22m 17 0.13 0.32 31m 33 0.02 0.02 24m 43 1.48 2.40 10m 02
800 20.0 20.0 46.5 25.3 0.06 0.10 27m 48 0.11 0.30 56m 44 0.02 0.02 27m 42 3.34 3.66 9m 51

StockExchange
17 concepts,

12 roles, and

62 axioms

200 2.0 2.0 7.0 4.0 1.01 4.08 4m 19 0.89 2.88 17m 56 1.02 2.98 67m 34 1.01 4.06 >2 h
500 5.0 5.0 17.6 10.0 2.34 8.64 5m 01 2.08 6.01 12m 11 2.43 6.57 35m 33 1.71 9.26 >2 h

1000 10.0 10.0 35.2 20.1 4.47 11.33 6m 19 4.34 13.36 15m 56 4.47 14.37 45m 42 4.45 20.84 >2 h
1500 20.0 20.0 57.3 35.5 9.31 18.30 7m 12 16.32 22.05 11m 09 9.15 39.37 38m 24 10.31 56.74 >2 h

Figure 1: Query processing times (in seconds).

lined above, without a significant impact on the overall re-
sults.

The results can be summarised as follows: (1) query
answering in our approach is competitive in performance
with executing the original queries over the data (indeed,
the query rewriting simply introduces additional selection
conditions on top of the original CQ that are executed in a
pipelined fashion by the RDBMS); (2) query answering us-
ing the QuOnto approach is often prohibitively expensive
even for relatively small ontologies; and (3) the construction
of canonical interpretations via materialised views can be
performed off-line within 2 hours even for the largest data
sets (where loading the data into the RDBMS alone takes
tens of minutes.) Incremental updates of the ABox can be
supported by relying on techniques developed for efficient
materialised view maintenance (Colby et al. 1996) albeit
not all of these techniques have been implemented in com-
mercial database systems such as DB2 as of today.

Conclusion

We presented a combined approach to CQ answering in
DL-LiteNhorn and some of its variants and demonstrated that
this approach often allows more efficient query execution
than pure query rewriting. There are several open issues for
future work. In particular, we do not know whether the com-
bined approach can be implemented for DL-Lite(HN)

horn with-
out an exponential blowup in the rewritten queries. A closely
related open problem is whether the combined approach for
DL-LiteNhorn can be extended to positive existential queries
without such a blowup. Finally, our polynomial rewriting
for DL-LiteFcore in the pure query rewriting approach raises
the question whether the exponential blowup can also be
avoided in other variants of DL-Lite.

Appendix: Proof of Theorem 4

Theorem 4 For every satisfiable DL-LiteNhorn KB K and ev-
ery CQ q, cert(q,K) = ans(q,UK).

Proof. Suppose K = (T ,A). As shown in (Artale et al.
2009), K |= q[�a] if, and only if, JK |= q[�a], where JK is the
(canonical or minimal) model of K constructed inductively
as follows.

Step 0. Set W0 = Ind(A) and, for all concept and role
names A and P , set A0 = {a ∈ W0 | K |= A(a)} and

P0 = {(a, b) | P (a, b) ∈ A}; P−
0 is the inverse of P0. In

parallel with the construction of JK we also define a map
h : ΔJK → ΔUK . At step 0, we set h0(a) = a for a ∈ W0.

The domain ΔJK of JK will consist of Ind(A) and mul-
tiple copies of certain ‘virtual’ points yR for some roles R,
which are supposed to serve as witnesses for incoming R-
arrows. If w is a copy of yR then we write cp(w) = yR.

Step n+1. For a role R and a point w ∈ Wn, let rn(R, w)
be the number of distinct R-successors of w in Wn, that is,
rn(R, w) =

∣∣{u ∈ Wn | (w, u) ∈ Rn}
∣∣. Let r(R, a), for

a ∈ Ind(A), be the maximum m for which K |= ≥ m R(a)
and, for cp(w) = yS , let r(R, w) be the maximum number
m for which K |= ∃S− � ≥ m R. If such an m does not
exist then we set r(R, a) = 0 or, respectively, r(R, w) = 0.

For each w ∈ Wn with r(R, w) − rn(R, w) = l > 0, we
add l new points u1, . . . , ul to Wn, set cp(ui) = yR, add
the ui to An if K |= ∃R− � A, and add the pairs (w, ui)
to Rn. This defines Wn+1, An+1 and Pn+1, for all concept
and role names A and P . Let us now define hn+1. Suppose
that hn(w) = a ∈ Ind(A). If a � cR then a · cR ∈ ΔUK ,
(a, a · cR) ∈ RUK , and we set hn+1(ui) = a · cR, for i ≤ l.
If a �� cR then, by (agen), there is b ∈ Ind(A) such that
R(a, b) ∈ A, i.e., (a, b) ∈ RUK . Set hn+1(ui) = b. Assume
now that hn(w) = σ · cS for some S. By IH, we have
cp(w) = yS . If cS � cR then σ · cS · cR ∈ ΔUK and
(σ · cS , σ · cS · cR) ∈ RUK . We set hn+1(ui) = σ · cS · cR,
for i ≤ l. Otherwise, by (rgen), we must have S− = R and
(σ · cS , σ) ∈ RUK . We then set hn+1(ui) = σ, for i ≤ l.

Step ω. Finally, set ΔJK =
⋃

i<ω Wi, AJK =
⋃

i<ω Ai

and PJK =
⋃

i<ω Pi, for all role and concept names A and

P in K, and aJK = a for all individual names a. (Note that
JK |= K.) And let h =

⋃
i<ω hi.

254

It follows immediately from the definition that UK is a
substructure of JK. On the other hand, the map h is clearly
a homomorphism from JK onto UK. Therefore, JK |= q[�a]
if, and only if, UK |= q[�a]. �

Appendix: Proof of Theorem 10

To prove Theorem 10, we first give a more ‘imperative’ def-
inition of the tree witnesses:

Lemma 15 Given a CQ q and R(t, t′) ∈ q, define a relation

XR,t =
⋃

i≥0 X i
R,t ⊆ term(q) × (N−

R)∗, where

X0
R,t = {(t, ε)},

X i+1
R,t = X i

R,t ∪ {(s′, R) | (s, ε) ∈ X i
R,t, R(s, s′) ∈ q} ∪

{(s′, w · S · S′) | (s, w · S) ∈ X i
R,t,

S′(s, s′) ∈ q and S′ �= S−} ∪

{(s′, w) | (s, w · S) ∈ X i
R,t, S−(s, s′) ∈ q},

for i ≥ 0. A tree witness fR,t exists and fR,t = XR,t if, and
only if, XR,t is a partial function.

Proof. It should be clear from the definitions that if a tree
witness exists then the X i

R,t construct it in a step-by-step
fashion. On the other hand, XR,t always exists and if it is
not a partial function then there can be no fR,t satisfying the
definition of the tree witnesses. �

As an immediate consequence, we obtain the following
composition property:

Lemma 16 If fR,t and fS,s exist, fR,t(s) = w ·Q, Q �= S−

and fS,s(s
′) is defined, then fR,t(s

′) = fR,t(s) · fS,s(s
′).

Proof. We have (s′, w · w) ∈ X i+j
R,t if (s, w) ∈ X i

R,t and

(s′, w′) ∈ Xj
S,s. �

Theorem 10 For every DL-LiteNhorn KB K and every CQ q,

we have ans(q†, IK) = ans(q,UK).

Proof. (⊇) Let τ be an�a-match for UK and the CQ q. Define
a map π : term(q) → ΔIK by taking π(t) = tail(τ(t)), for
all t ∈ term(q). By the definitions of π and UK, we have
IK |=π ϕ, and so π is an �a-match for IK and q. Thus, it
remains to show that IK |=π ϕ1 ∧ ϕ2 ∧ ϕ3. To do this, we
require the following lemma:

Lemma 17 Suppose that R(t, t′) ∈ q and π(t′) = cR. Then
(s, S1 · · ·Sk) ∈ XR,t implies τ(s) = τ(t) · cS1

· · · cSk
. It

follows that XR,t is a partial function and fR,t = XR,t.

Proof. By Lemma 15, it suffices to show that, for every
i ≥ 0, if (s, S1 · · ·Sk) ∈ X i

R,t then τ(s) = τ(t)·cS1
· · · cSk

.
We proceed by induction on i. For the basis of induction, we
have X0

R,t = {(t, ε)}, and so there is nothing to show. For
the induction step, we consider three cases in accordance

with the definition of X i+1
R,t .

(i) Let (s′, R) ∈ X i+1
R,t , (s, ε) ∈ X i

R,t and R(s, s′) ∈ q.

By IH, τ(s) = τ(t). First assume τ(s) /∈ Ind(A). Then
by (rgen), π(t′) = cR and R(t, t′) ∈ q entail tail(τ(s)) =
tail(τ(t)) �= cR− . Once more by (rgen), UK |=τ R(s, s′)

implies τ(s′) = τ(s) · cR = τ(t) · cR as required. Now
assume τ(s) /∈ Ind(A). Then (agen), π(t′) = cR and
R(t, t′) ∈ q yield that R(τ(t), b) = R(τ(s), b) /∈ A for any
b ∈ Ind(A). Thus UK |=τ R(s, s′) implies τ(s′) = τ(t)·cR.

(ii) Let (s′, w · S · S′) ∈ X i+1
R,t , (s, w · S) ∈ X i

R,t, for

some w = S1 · · ·Sk, S′ �= S− and S′(s, s′) ∈ q. Then, by
IH, τ(s) = τ(t) · cS1

· · · cSk
· cS . So, since S′ �= S− and

UK |=τ S′(s, s′), (rgen) gives us τ(s′) = τ(s) · cS′ , as
required.

(iii) Suppose (s′, w) ∈ X i+1
R,t , (s, w ·S) ∈ X i

R,t, for some

w = S1 · · ·Sk, and S−(s, s′) ∈ q. By IH, we have τ(s) =
τ(t) · cS1

· · · cSk
· cS. In view of (rgen) and UK |=τ S(s′, s),

we then obtain τ(s′) = τ(t) · cS1
· · · cSk

, as required. �

We can now show that IK |=π ϕ1 ∧ ϕ2 ∧ ϕ3.

ϕ1: By the definition of matches, we have τ(v) ∈ Ind(A)
for any v ∈ avar(q) and cR ∈ NT

I . And by the definition
of π, π(v) �= cR for any such v. Thus, IK |=π ϕ1.

ϕ2: Let R(t, t′) ∈ q and π(t′) = cR. To prove IK |=π ϕ2,
it is enough to show that fR,t exists, which follows from
Lemma 17. Thus, IK |=π ϕ2.

ϕ3: Take an equivalence class [t]Rq such that fR,t exists. As-
sume there is R(s, s′) ∈ q with s ≡R

q t and π(s′) = cR,
i.e., the premise in ϕ3 is true. Then fR,s(t) = ε and
Lemma 17 yields τ(s) = τ(t). Take an R(t, t′) ∈ q.
Since τ(s) = τ(t), R(s, s′) ∈ q, and tail(τ(s′)) = cR,
(agen) and (rgen) yield τ(s′) = τ(t′). Thus π(t′) = cR.
Since fR,t(s

′′) = ε, another application of Lemma 17
yields τ(s′′) = τ(t) as required.

This shows that ans(q†, IK) ⊇ ans(q,UK).

(⊆) Assume now that π is an �a-match for IK and q†. Our
aim is to show that there is an �a-match τ for UK and q†.
Obviously, we can set τ(t) = π(t) whenever π(t) ∈ Ind(A).
Defining τ(t) for other t ∈ term(q)—that is, for the terms
t that are mapped by π to points of the form cR in IK—is a
bit more involved.

Lemma 18 Suppose that R(t, t′) ∈ q and π(t′) = cR. If
fR,t(s) is defined then

π(s) =

{
cS , if fR,t(s) = w · S,

π(t), if fR,t(s) = ε.

Proof. The proof is by induction on i in the definition of
XR,t. The basis of induction is proved in the same way as in
the proof of Lemma 17. For the induction step, we consider
three cases.

(i) If (s′, R) ∈ X i+1
R,t , (s, ε) ∈ X i

R,t and R(s, s′) ∈ q

then, by IH, π(s) = π(t). Clearly, IK |=π R(s, s′) imply
either (i.1) π(s) /∈ Ind(A) and then, in view of π(t′) = cR

and (rgen), π(s) �= cR− , or (i.2) π(s) ∈ Ind(A) and then,
by (agen), R(π(s), b) /∈ A for all b ∈ Ind(A). In either
case, IK |=π S(s, s′) implies π(s′) = cR as required.

(ii) If (s′, w · S · S′) ∈ X i+1
R,t , (s, w · S) ∈ X i

R,t, S′(s, s′)

in q, S′ �= S− then, by IH, π(s) = cS . As IK |=π S′(s, s′)
and S′ �= S−, by (rgen), π(s′) = cS′ .

255

(iii) Suppose that (s′, w) ∈ X i+1
R,t , (s, w · S) ∈ X i

R,t and

S−(s, s′) ∈ q. If w = ε then S = R and, by IK |=π ϕ3,
π(s′) = π(t). Otherwise, w = w′ · Q and, by the definition
of X i

R,t, there is (s′′, w′ · Q) ∈ X i
R,t with (s′, ε) ∈ XS,s′′ .

By IH, π(s′′) = cQ and, since IK |=π ϕ2, XS,s′′ is a par-
tial function and fS,s′′(s

′) = ε. As IK |=π ϕ3, we obtain
π(s′′) = π(s′) = cQ. �

Call a term t ∈ term(q) a root (of q under π) if

– either π(t) ∈ Ind(A)

– or π(t) = cR and there is no atom R(t′, t) ∈ q.

A root t is called initial if there is no S(s, s′) ∈ q such that
s is a root, π(s′) = cS , fS,s(t) is defined and fS,s(t) �= ε.

Example 19 Consider the KB K = (T ,A) with

T = {A1 � A, A2 � A, ∃P− � ∃S � ∃R,

∃R− � ∃S, A � ∃P},

A = {A1(a), A2(b)}.

Then the canonical interpretation IK is as follows:

ΔIK = {a, b, cP , cS , cR},

AIK = {a, b}, AIK
1 = {a}, AIK

2 = {b},

P IK = {(a, cP), (b, cP)}, RIK = {(cP , cR)},

SIK = {(cP , cS), (cR, cS)}.

Let q = ∃t1t2t3t4 (R(t1, t2) ∧ S(t2, t3) ∧ S(t4, t3)). Then

fR,t1(t2) = R, fR,t1(t1) = ε,

fR,t1(t3) = R · S, fR,t1(t4) = R,

fS,t4(t3) = S, fS,t4(t4) = ε,

fS,t4(t2) = ε and fS,t4(t1) is not defined.

It is readily checked that the map π defined by taking

π(t1) = cP , π(t2) = π(t4) = cR, π(t3) = cS

is an �a-match for IK and q†. Both t1 and t4 are roots, while
t2 and t3 are not roots. Moreover, fR,t1(t4) = R, while
fR,t4(t1) is not defined.

Root t1 is initial (although t4 is a root with S(t4, t3) ∈ q,
π(c3) = cS and fS,t4(t1) not defined). On the contrary, root
t4 is not initial because fR,t1(t4) = R.

Lemma 20 If π(t) ∈ Ind(A) then t is an initial root.

Proof. By definition, if π(t) ∈ Ind(A) then t is a root. To
show that t is initial, assume to the contrary that there is
some S(s, s′) ∈ q such that s is a root, π(s′) = cS , fS,s(t)
is defined and fS,s(t) �= ε. By Lemma 18, π(t) ∈ NT

I ,
which is a contradiction. �

Lemma 21 For each t ∈ term(q), either t is an initial root
or there is an initial root s ∈ term(q) such that fR,s(t) is
defined and nonempty.

Proof. Let t ∈ term(q). We first find a root r and then an
initial root s that are ‘connected’ to t.

If t is a root, we set r = t. Otherwise, there is some
R0(t1, t0) ∈ q with t0 = t and π(t0) = cR0

. Further, either
t1 is a root or there is some R1(t2, t1) ∈ q with π(t1) = cR1

.
We iterate this argument until we reach a root. To show that
this indeed eventually happens, suppose otherwise. Then
there is an infinite sequence R0(t1, t0), R1(t2, t1), . . . of
atoms in q such that t = t0 and π(ti) = cRi

for all i ≥ 0. By

(rgen), we have Ri �= R−
i+1 for all i ≥ 0. Since term(q) is

finite, there are j, k with j < k and tj = tk. As IK |=π ϕ2,

the tree witness fRk,tk+1
exists. Since Ri �= R−

i+1 for all

i ≥ 0, it is easy to see that fRk,tk+1
(ti) = RkRk−1 · · ·Ri

for all i ≤ k. We thus obtain fRk,tk+1
(tj) = Rk · · ·Rj ,

contrary to fRk,tk+1
(tk) = Rk and tk = tj . So there is a se-

quence R0(t1, t0), . . . , R�−1(t�, t�−1) ∈ q such that t0 = t,
r = t� is a root, Ri �= R−

i+1, for i < �− 1, and π(ti) = cRi
,

for i ≤ � − 1. By the definition of tree witnesses, we then
have fR′,r(t) = R�−1 · · ·R0 �= ε, where R′ = R�−1.

If r is an initial root, we set s = r. Otherwise, there is
some R0(s0, s

′
0) ∈ q such that s0 is a root, π(s′0) = cR0

,
fR0,s0

(r) is defined and fR0,s0
(r) �= ε. If s0 is initial, we

set s = s0. Otherwise, there is some R1(s1, s
′
1) ∈ q such

that s1 is a root, π(s′1) = cR1
, fR1,s1

(s0) is defined and
fR1,s1

(s0) �= ε. Let fR1,s1
(s0) = w · R. By Lemma 18,

π(s0) = cR and, in view of IK |=π R0(s0, s
′
0), π(s′0) = cR0

and (rgen), we have R �= R−
0 . By Lemma 16, fR1,s1

(r) =
fR1,s1,(s0) · fR0,s0

(r). We can repeat this argument, and
each time the word fRi,si

(r) becomes strictly longer. Due to
finiteness of q, we thus eventually reach an initial root s such
that R(s, s′) ∈ q, π(s′) = cR and fR,s(r) is defined and
non-empty. To complete the proof, we notice that fR,s(t) is
also defined and fR,s(t) = fR,s(r) · fR′,r(t) �= ε. �

Lemma 22 Suppose R(r, r′), S(s, s′) ∈ q are such that
both r and s are initial roots, π(r′) = cR, π(s′) = cS and
fR,r(t), fS,s(t) are defined. Then fR,r(t) = fS,s(t) and
π(r) = π(s).

Proof. Assume for definiteness that |fR,r(t)| ≤ |fS,s(t)|.
Without loss of generality we assume (t, w0 · w1) ∈ XS,s

and (t, w2 · w1) ∈ XR,r, where w2 is either empty or its
last symbol is distinct from the last symbol of w0. Then
we have (r, w0 · w−

2) ∈ XS,s, where w−
2 is the inverse of

w2. Therefore, fS,s(r) = w0 · w−
2 . As r is an initial root,

fS,s(r) = ε, and so both w0 and w2 are empty and fS,s(t) =
fR,r(t). As IK |=π ϕ3, we obtain π(r) = π(s). �

We are now in a position to define an �a-match τ for UK

and q. For each cR ∈ ΔIK , we choose a γ(cR) ∈ ΔUK with
tail(γ(cR)) = cR and define a map τ : term(q) → ΔUK as
follows:

(a) if π(t) ∈ Ind(A) then we set τ(t) = π(t);

(b) if π(t) /∈ Ind(A) and t is an initial root, then we set
τ(t) = γ(π(t));

(c) if fR,s(t) is defined for an initial root s ∈ term(q)
and fR,s(t) = S1 · · ·Sk �= ε, then set τ(t) = τ(s) ·
cS1

· · · cSk
.

256

By Lemma 21, τ is total. To see that it is well-defined, it
suffices to observe that, by Lemma 20, cases (a)–(c) are dis-
joint (i.e., for each t ∈ term(q), τ(t) is defined in only one
of them) and that (c) is well-defined by Lemma 22. Thus, it
remains to show that τ is an �a-match for UK and q.

Note first that, by the definition of τ and Lemma 18, we
have

tail(τ(t)) = π(t), for all t ∈ term(q). (1)

By the definition of UK and (1), all concept atoms in q are
satisfied by τ . Let R(t, t′) ∈ q such that IK |=π R(t, t′).
It remains to show that UK |=τ R(t, t′). The following six
cases are possible:

1. π(t) and π(t′) are defined in (a). Then (τ(t), τ(t′)) equals
(π(t), π(t′)) ∈ Ind(A) × Ind(A). Thus, UK |=τ R(t, t′).

2. π(t) is defined in (a) and π(t′) in (b). Then π(t) is in
Ind(A). By the definition of IK, π(t′) = cR contrary to
t′ being a root as R(t, t′) ∈ q. So this case is impossible.

3. π(t) is defined in (a) and π(t′) in (c). Then τ(t) = π(t) ∈
Ind(A) and, by Lemma 20, t is an initial root. By the
definition of IK, π(t′) = cR. As IK |=π ϕ2, fR,t(t

′) is
defined and fR,t(t

′) = R. By Lemma 22, (c) and (a), we
thus have τ(t′) = π(t) · cR. Clearly, UK |=τ R(t, t′).

4. π(t) and π(t′) are defined in (b). Then π(t) = cS for
some S such that there is no S(s, t) ∈ q, and so S �= R−.
By the definition of IK, π(t′) = cR, contrary to π(t′)
being a root as R(t, t′) ∈ q, so this case is impossible.

5. π(t) is defined in (b) and π(t′) in (c). Then π(t) = cS

for some S with no S(s, t) ∈ q, and so S �= R−. By the
definition of IK, π(t′) = cR. As IK |=π ϕ2, fR,t(t

′) is
defined and, clearly, fR,t(t

′) = R. By Lemma 22, (c) and
(b), we thus have τ(t) = γ(π(t)) and τ(t′) = γ(π(t))·cR.
Clearly, UK |=τ R(t, t′).

6. π(t) and π(t′) are defined in (c). Then there is an ini-
tial root s with fS,s(t) = S1 · · ·Sk and τ(t) = τ(s) ·
cS1

· · · cSk
. By Lemma 22, the definition of τ(t′) does

not depend on the choice of a particular initial root, so we
assume it is s. If R �= S−

k then fS,s(t
′) = S1 · · ·Sk · R

and thus τ(t′) = τ(s) · cS1
· · · cSk

· cR. Otherwise,

i.e., if R = S−
k then fS,s(t

′) = S1 · · ·Sk−1 and thus
τ(t′) = τ(s) · cS1

· · · cSk−1
. In either case, by (1),

π(t) = tail(τ(t)) and π(t′) = tail(τ(t′)). Also, in
both cases IK |=π R(t, t′), and by the definition of UK,
UK |=τ R(t, t′).

Thus, ans(q†, IK) ⊆ ans(q,UK), which completes the proof
of Theorem 10. �

References

Abiteboul, S.; Hull, R.; Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.

Acciarri, A.; Calvanese, D.; De Giacomo, G.; Lembo, D.;
Lenzerini, M.; Palmieri, M.; Rosati, R. 2005. QUONTO:
Querying ontologies. In Proc. of AAAI, 1670–1671.

Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The DL-Lite family and relations. J.
of Artificial Intelligence Research 36:1–69.

Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2005. DL-Lite: Tractable description logics
for ontologies. In Proc. of AAAI, 602–607.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2006. Data complexity of query answering
in description logics. In Proc. KR, 260–270.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. of
Automated Reasoning 39(3):385–429.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2008. Inconsistency tolerance in P2P data in-
tegration: an epistemic logic approach. Information Systems
33(4):360–384.

Colby, L. S.; Griffin, T.; Libkin, L.; Mumick, I. S.; and
Trickey, H. 1996. Algorithms for deferred view mainte-
nance. In ACM SIGMOD: Management of Data, 469–480.

Dolby, J.; Fokoue, A.; Kalyanpur, A.; Ma, L.; Schonberg,
E.; Srinivas, K.; and Sun, X. 2008. Scalable grounded con-
junctive query evaluation over large and expressive knowl-
edge bases. In Proc. of ISWC, 403–418.

Heymans, S. et al. 2008. Ontology reasoning with large data
repositories. In Ontology Management, Semantic Web, Se-
mantic Web Services, and Business Applications, Springer.
89–128.

Kazakov, Y. 2009. Consequence-driven reasoning for Horn-
SHIQ ontologies. In Proc. of IJCAI, 2040–2045.

Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2009. Combined FO rewritability for
conjunctive query answering in DL-Lite. In Proc. of DL,
vol. 477 of CEUR-WS.

Kowalski, R., and Kuehner, D. 1971. Linear resolution with
selection function. Artificial Intelligence 2:227–260.

Lutz, C.; Toman, D.; and Wolter, F. 2009. Conjunctive
query answering in the description logic EL using a rela-
tional database system. In Proc. of IJCAI, 2070–2075.

Pérez-Urbina, H.; Motik, B.; and Horrocks, I. 2008. Effi-
cient Query Answering for OWL 2. In Proc. of ISWC, 489–
504.

Pérez-Urbina, H.; Motik, B.; and Horrocks, I. 2009. A
comparison of query rewriting techniques for DL-Lite. In
Proc. of DL, vol. 477 of CEUR-WS.

Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. J. on Data Semantics 10:133–173.

Poggi, A.; Rodriguez, M.; and Ruzzi, M. 2008. Ontology-
based database access with DIG-Mastro and the OBDA Plu-
gin for Protégé. In Proc. of OWLED 2008, vol. 496 of
CEUR-WS.

Stocker, M.; and Smith, M. 2008. Owlgres: A scalable OWL
reasoner. In Proc. of OWLED 2008, vol. 496 of CEUR-WS.

257

