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Abstract

All natural languages allegedly tend to minimize the length
(and thus, the number of crossings) of syntactic dependencies
by arranging words into an adequate linear order. Focusing on
Ancient Greek as a case of study, this paper demonstrates that
this tendency is far from constant. The method consists in in-
ducing a pair of networks from a text representing a given
diachronic variety, using lemmas as nodes and word relations
(either syntactic dependency or linear adjacency) as arcs. Al-
though the pair members share some topological properties
(such as small-world effect, scale-freeness and disassortative
mixing), they also diverge in some respects. By comparing
the divergence in the Classic variety with that of the Late va-
riety through Spectrum Analysis, a change is observed. This
phenomenon may lead to rethinking how the cognitive com-
plexity of language is measured and whether it is equivalent
for different (varieties of) languages. In particular, this pa-
per proposes the existence of a trade-off between dependency
length minimization and pragmatic principles.

Introduction

The interaction between linear order and syntax is an ever-
green topic in linguistics, encompassing constraints on word
order of the main grammatical functions (Greenberg 1963)
and rules for spelling out a given phrase structure (Kayne
1994). A new light may be cast on this interaction by net-
work science, which arose as an attempt to model com-
plex systems with a data-driven approach (Baronchelli et al.
2013). It has revealed thus far non-trivial facts in several do-
mains, not least linguistics (Caldarelli 2007).

A network is a graph consisting of a set N of nodes (a syn-
onym of vertices) and a set A of arcs (if directed) or edges
(if undirected). A network can be induced from a corpus of
texts by positing an equivalence between nodes and words,
arcs and word relations. These relations can be syntactic in
nature like the dependency of a child node from its parent
in a tree representation. Moreover, they can be based also
on the adjacency between a preceding word and a following
word in a sentence (henceforth called co-occurrence). Nei-
ther of these is capable in itself to account for the whole
range of linguistic phenomena: syntax dims the pragmatic
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strategies of information structure. On the other hand, adja-
cent words are very often grammatically unrelated (Ferrer-i-
Cancho, Solé, and Köhler 2004). Together, they give a more
comprehensive picture.

The interest in objects like networks relies in the fact
that they show global emergent properties, possibly differ-
ent from the sum of those of local structures (i.e. single sen-
tences). These properties represent general features of a lan-
guage and are assumed to be pretty overlapping in networks
based on dependency and co-occurrence (Solé et al. 2010).
Nonetheless, this assumption has never been tested on pairs
of networks induced from the same data source. The aim
of this work is assessing whether the results of this test are
consistent and, if a divergence is observed instead, whether
it changes across different (varieties of) languages.

The rest of this work starts by providing a concise back-
ground on linguistic networks. Then it shows how the ar-
rangement of words affects lengths and crossings of the
syntactic dependencies of languages, and Ancient Greek
in particular. The texts from which the networks are in-
duced are then presented together with the results of their
analysis. The degree of the divergence between dependency
and co-occurrence networks across different varieties of An-
cient Greek is measured through Spectrum Analysis. Finally,
some conclusions are drawn from the results about the cog-
nitive complexity of languages and the principles underpin-
ning linear order arrangement.

Previous Works

The first attempt of inducing a network from a corpus ex-
ploited collocations (Ferrer-i-Cancho and Solé 2001), i.e.
pairs of words appearing close to each other more often
than random. Collocations approximated syntactic relations.
Since then, networks based on this principle have been stud-
ied deeply and sophisticated filters have been developed to
test the significance of collocations (Masucci and Rodgers
2009). Later, networks started being induced from tree-
banks, which are collections of texts already annotated with
syntactic dependencies (Ferrer-i-Cancho, Solé, and Köhler
2004). These guarantee a better accuracy, without the need
of pruning noise automatically. On the other hand, annotated
data are more sparse than raw data.

These networks, independently from their induction pro-
cess, were analysed according to some widely-used met-
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rics. Both collocation and dependency networks were shown
to display some shared properties. Firstly, they are small-
world, i.e. compact and navigation-friendly. This effect is
associated with both an average clustering coefficient higher
than random by several orders of magnitude and an average
shortest path length almost equivalent to random. The aver-
age clustering coefficient C measures the tendency of cre-
ating dense clusters, i.e. the probability that the neighbours
of a node are themselves connected. Assume that cn is the
number of neighbours of a given node n, and en is the num-
ber of actually connected pairs among the neighbours of n.
The ratio between en and the number of possible neighbour
connections is averaged over every n:

C = 〈 en
cn(cn − 1)

〉 (1)

The value of C thus ranges from 0 (no possible pair in-
stantiated) to 1 (all possible pairs instantiated). On the other
hand, shortest path length D consists in the minimum num-
ber of arcs needed to reach one node from another averaged
over every possible pair of arcs. If function Dmin(x, y) re-
turns the minimum path length between nodes x and y, and
the operator 〈...〉 expresses averaging, then:

D = 〈Dmin(x, y)〉 (2)
Small-world networks are unaffected by random node

deletion, but their properties change dramatically when a
hub node (one of the most connected) is deleted (Albert,
Jeong, and Barabási 2000). As for the comparison with ran-
dom networks, these are generated through the following
method (Erdős and Rényi 1961). Given a number of nodes
n = |N | and arcs a = |A| from the original network, ran-
dom pairs from n candidate nodes are linked until the re-
quired threshold of arcs a is reached.

Another renowned property is a power-law cumulative
distribution of the degree P (k): the degree k of a node
equals to the number of its connections. If they are ori-
ented, in- and out-degree are distinguished. P (k) indicates
the heterogeneity of a network (Barabási and Albert 1999)
and abides by the following formula:

P (k) ∝ k−γ (3)
Finally, linguistic networks display disassortative mixing,

i.e. negative assortativity. This property captures the ten-
dency of arcs to link nodes with similar degrees. It is mea-
sured as k̂nn(k), the average degree of the neighbours of a
node as a function of its degree1.

Word Order

The network properties surveyed in the previous section
mirror high-level properties of natural language. The cur-
rent section points out that they dim at least a phenomenon
that constitutes a parameter of variation across languages.
Specifically, the amount of non-projective arcs, i.e. syntactic
dependency arcs that intersect other arcs.

1This has emerged as a valid alternative to Pearson’s correla-
tion coefficient, which has statistical problems in large networks
(Serrano, Boguñá, and Pastor-Satorras 2006).

Linear Arrangement Problem

The length of a syntactic relationship is defined as the Eu-
clidean distance between its elements. The mean distance
〈d〉 over each connected pair in a sentence is proportional
to the complexity of processing it sequentially. If u ∼ v is
a pair of nodes connected by an arc, π(u) is a function re-
turning the position in linear order of node u, and n is the
number of tokens in the sentence, then:

〈d〉 =
∑

u∼v |π(v)− π(u)|
(n− 1)

(4)

The word orderings of the natural languages stem from
the choice of an optimal solution to the problem of min-
imizing 〈d〉, i.e. the so-called linear arrangement problem
(Ferrer-i-Cancho 2006). Among all possible linear order-
ings, only the subset satisfying this requirement is perva-
sively attested. In turn, the low frequency of the crossings of
syntactic dependency arcs is a side effect of this optimiza-
tion, rather than originating from an independent principle.
This is because a crossing becomes more likely with longer
arcs (Gómez-Rodrı́guez and Ferrer-i-Cancho 2016).

The ban against the presence of crossings is called pro-
jectivity, which is defined as follows: any dependency sub-
tree must cover a contiguous region of a sentence (Marcus
1965). Assume that i → j stands for a dependency between
nodes i and j and instead i, j stands for the array of ele-
ments delimited by these nodes (included). Subtreei is the
set of nodes that can be reached following oriented arcs start-
ing from node i with an arbitrary number of steps. Then the
projectivity requirement can be expressed as in this formula
(Havelka 2007):

i → j ∧ v ∈ (i, j) ⇒ v ∈ Subtreei (5)

Violations of this constraint are nonetheless ubiquitous.
If it does not hold, then v is said to be “in a gap”. An arc
covering at least a node in a gap is non-projective. The per-
centage of these arcs is a common measure of how much
non-projectivity is widespread in a certain language.

Non-projectivity in Ancient Greek

Ancient Indo-European languages have more non-projective
arcs compared to their modern descendants. Among the for-
mer group, the most striking rate shows up in Ancient Greek.
In the Ancient Greek Treebank (Bamman, Mambrini, and
Crane 2009), which contains texts from Homer to Plato, the
percentage of non-projective arcs is 15.15%. In a sample
group of modern Indo-European languages, a range from
1.37% (Portuguese) to 5.90% (Dutch) is reported instead
(Mambrini and Passarotti 2013).

The authors lead back this idiosyncrasy to some linguistic
phenomena. In particular, clitic postpositive particles tend to
be in a gap. As they are prosodically non-autonomous, they
occur in some fixed positions, most notably the second one
(Wackernagel’s law). The second source of non-projectivity
is the drift of modifiers apart from their head.

Consider Figure 1 as an example: the discourse particles
mén and nun crowd around the second position and are in
a gap, as they do not belong to the subtree including lógioi
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Perséōn mén nun hoi lógioi Phoı́nikas aitı́ous phası̀ genésthai tês diaphorês.
Pers.-GEN DISC indeed the-NOM scholars-NOM Phoen.-ACC cause-ACC assert-3PL be-INF the-GEN rivalry-GEN

aux

adv

subj

compaux

part
subj

xobj

obl

aux

‘Indeed, the Persian scholars assert the Phoenicians to be responsible for the rivalry’ Herodotus, Histories I 1.1.

Figure 1: A syntactic dependency tree, with labeled arcs above and the morphological glosses below. Abbreviations: part =
partitive, aux = auxiliary word, adv = adverbial, subj = subject, xobj = predicative object, comp = complement, obl = oblique.

‘scholars’ and Perséōn ‘of the Persians’. Moreover, a depen-
dent, the subject Phoı́nikas ‘the Phoenicians’, is distanced
from its head, the subordinate verb genésthai ‘to be’, by the
predicative object aitı́ous ‘responsible’ and the main verb
phası̀ ‘they assert’.

Nonetheless, the rate of non-projective arcs tapered off in
later varieties of Ancient Greek (as well as in all Ancient
Indo-European languages). This is possibly due to both a
different clitic positioning that weakened the Wackernagel’s
law (Taylor 1990) and a grammaticalization of continuous
constituents, which merged in the same phrase a head with
its modifier (Devine and Stephens 2000). In fact, a trend to-
wards a more fixed word order increased the rate of adjacent
head-modifier pairs (Gulordava and Merlo 2015). For these
reasons, the Classic and Late varieties of Ancient Greek,
which represent the beginning and the middle stages of this
evolution, fit well as a case of study. They are as similar as
possible, but they differ in a parameter affecting deeply word
order, namely the degree of non-projectivity.

Data and Method

The data are obtained from the collection of dependency
treebanks developed through the PROIEL (Pragmatic Re-
sources in Old Indo-European Languages) project (Haug
and Jøhndal 2008). Two of them were selected: one contains
the Histories by Herodotus (440-429 B.C.) and the other
the Greek New Testament (49-150 ca. A.D.): they represent
Classic and Late varieties, respectively2. Both were levelled
off to the same amount of tokens, namely 67247.

The percentage of non-projective arcs amounts to 9.27%
in the Classic variety, against 2.65% in the Late variety3.
The basic intuition is that this makes word order diverge
from syntax more in the former than in the latter. Of course,
there is an inherent difference between dependencies and co-
occurrences. In a sentence, every word that does not lie in
the tail has exactly an adjacent following word. On the other
hand, the number of its syntactically dependent words can

2Although they belong to different genres and are limited to a
single book, they are both written in prose. Finding representative
and comparable resources for ancient languages is problematic.

3These values are affected also by the average sentence length,
namely 20.29% against 15.84%, respectively. In effect, longer sen-
tences favour higher non-projectivity.

range from zero to the length of the sentence minus one.
The role of non-projectivity is scattering even more depen-
dent words far from the the position adjacent to their head.
In fact, the percentage of arcs that overlap in adjacency and
dependency (i.e. the number of relations with Euclidean dis-
tance 1) is 38.04% in the Classic variety, and 46.51% in the
Late variety.

From each of these two treebanks, a dependency networks
was induced through a previously devised method (Ferrer-i-
Cancho et al. 2007): a pair of words is connected if there
is at least a syntactic relation between them in a sentence.
However, the method used in this paper differs in some re-
spects: it is based on lemmas rather than forms to reduce data
sparseness. Furthermore, the graph is oriented to distinguish
head from dependent nodes. To my knowledge, a global de-
pendency network of an ancient Indo-European language
(Latin) has been investigated only once (Passarotti 2014).

Secondly, the induction process was repeated, this time
based on co-occurrence. Two nodes in the networks are
linked if they are adjacent at least once in a sentence. This
method, contrary to those based on collocations, is not fil-
tered: its aim is not approximating syntax, but rather mir-
roring exactly linear order. In order to be comparable, co-
occurrence networks are lemma-based and oriented, too.
The latter condition allows to distinguish a following from
a preceding node. Basic information about the four induced
networks is summed up in Table 14.

Variety Relation Name Nodes Edges
classic dependency CD 5378 34244
classic adjacency CA 5398 34076
late dependency LD 3005 20695
late adjacency LA 3025 20788

Table 1: Details about the Ancient Greek networks.

Results

The first part of this section shows that co-occurrence and
dependency networks mainly share their topological prop-
erties, although some differences obtain. In particular, the

4Note that the values refer to the largest connected component.
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Figure 2: Average neighbour degree as a function of the de-
gree for Classic (left) and Late (right) varieties. The x-axis
represents degree, whereas y-axis average neighbour degree.
Adjacency is plotted as triangles, dependency as circles.

former surpasses the latter in small-world effect and disas-
sortative mixing. The second part instead will be focused on
the relationship between a pair of networks for a given vari-
ety, relying upon spectrum analysis. This allows to provide
a measure for the possible divergence and compare diver-
gences themselves.

Topological Properties

The metrics related to the small-world effect were computed
through the R package igraph (Csardi and Nepusz 2006).
Table 2 shows the values of the average clustering coeffi-
cient and shortest path length of the networks in Table 1
and of their corresponding Erdős-Rényi random graphs. It
emerges that all the four networks are small-world, since
C 
 Crandom and D ≈ Drandom. Furthermore, it is note-
worthy that in co-occurrence networks the small-world ef-
fect, and hence compactness, are stronger: intuitively, adja-
cency allows more alternative follow-ups for a given node
than dependency.

Name C D Crandom Drandom

CD 0.333 3.368 0.002 4.875
CA 0.457 3.064 0.002 4.875
LD 0.432 3.410 0.005 4.372
LA 0.560 2.865 0.005 4.372

Table 2: Clustering coefficients and shortest path lengths.

As for cumulative degree distribution, the nodes with a
high degree, called hubs, are generally verbs in dependency
networks. This is because they dominate directly all their ar-
guments and modifiers, the so-called full valency, in their
sentence trees (Čech, Mačutek, and Žabokrtskỳ 2011). On
the other hand, hubs are function words in co-occurrence
networks due to their frequency (Ferrer-i-Cancho and Solé
2001). The negative exponent of the power law in Formula
3 fitting the cumulative degree distribution plot is 1.946 for
CD and 1.906 for CA, 1.981 for LD and 1.894 for LA: all
of them are pretty overlapping. The networks appear to be
scale-invariant, but they miss the expected range of the ex-
ponent 2 < γ < 3 (Solé et al. 2010). Perhaps, what flattens

the slope of the power law is the downscaling of function
words and their bridging role in languages with a rich mor-
phology: they are undermined by inflectional suffixes, but
these are deleted in lemma-based networks.

Finally, consider the scatter plot in Figure 2. Although it
cannot be fit by a power law, average degree of the neigh-
bours of a node clearly drops as the node degree arises.
Therefore, both co-occurrence and dependency networks are
disassortative. Their data points are completely separated,
though, especially with a low degree. As a consequence, co-
occurrence networks are more disassortative.

Spectrum Analysis

A network consisting in a set of nodes N and arcs A can be
conceived as a binary adjacency matrix A. This is a matrix
with |N | rows and |N | columns, where the cell (i, j) is filled
with 1 if there is an arc linking i and j in A, and filled with
0 otherwise. Spectrum analysis is based on the eigenvalues
of this matrix. λ is an eigenvalue for A if there exists an
|N |-dimensional vector x that satisfies this equation:

Ax = λx (6)

The non-zero vector x is said to be an eigenvector associ-
ated to its eigenvalue λ. The spectrum is a density distribu-
tion of the set Λ {λ0 ≤ λ1 ≤ ... ≤ λ|N |−1} (whose cardi-
nality is |N |) and the multiplicities of its members (roughly,
the times they repeat).

Spectrum analysis unravels global patterns that remain
hidden to the metrics mentioned thus far (Choudhury, Chat-
terjee, and Mukherjee 2010). Co-occurrence networks in-
duced from real texts are distinguishable from small-world,
scale-free, and disassortative networks generated randomly
through the Dorogovtsev-Mendes growth model (Dorogovt-
sev, Mendes, and Samukhin 2000) only because of their
spectra. In particular, in the former the eigenvalues are more
densely concentrated around 0.

According to the authors, this difference stems from the
fact that the probability a word co-occurs with any other is
not the pure outcome of its frequency. Rather, words have
precise constraints on their neighbourhood. In particular, el-
ements belonging to the same part of speech tend to have
pretty overlapping sets of neighbours. This pattern results
into a high number of similar rows in the matrix. As the rank
is the measure of how many linearly independent rows (or,
equivalently, columns) are found in a matrix, density under
0 means low rank and hence it entails the regularity of some
combinations.

The four networks induced in this paper were treated for
the current purpose as unoriented, so that each A be sym-
metric, and its eigenvalues fall in the domain of real num-
bers. Eigenvalues and multiplicities were calculated for each
and the resulting density distribution is plotted in Figure 3.
Whereas the dependency-based spectra are quite similar in
both their peak and slope, the co-occurrence-based spectra
vary to a greater extent. The co-occurrence-based spectrum
diverges from the respective dependency-based one more in
the Late variety than in the Classic variety, where the values
are less shrank around 0. The co-occurrence-based matrix
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Figure 3: Density distributions of the spectra of Classic (left) and Late (right) varieties of Ancient Greek, zoomed around 0.

of the Classic variety in fact is expected to be less regular,
because of the higher freedom of its word order.

Discussion

According to the results, the properties of dependency net-
works are stable, confirming the hypothesis of their univer-
sality (Ferrer-i-Cancho et al. 2007). Co-occurrence network
properties are prone to variation instead. Assuming that lan-
guage networks have a cognitive reality, and that both syn-
tactic dependencies and linear order are relevant for lan-
guage comprehension and generation, then it is tempting to
raise a question: are some languages more complex than oth-
ers (Sampson, Gil, and Trudgill 2009)?

The results reveal two facets, both at the global (net-
work) and local (sentences) level. Starting from the former,
consider the Classic variety of Ancient Greek and its co-
occurrence network. On the one hand, the low amount of
eigenvalues around 0 points towards a lack of regularity. On
the other hand, the strong small-world effect makes the net-
work fit for computability: a high clustering coefficient en-
ables a fast local processing, and a low average shortest path
length guarantees an efficient global integration (Deco et al.
2008). Both these effects originate from the the higher av-
erage dependency length of the Classic variety compared to
the Late variety, which results into a freer word order and a
high number of crossings (Gómez-Rodrı́guez and Ferrer-i-
Cancho 2016).

In fact, as for the local level, dependency length mini-
mization plays a minor role in Classic Ancient Greek (al-
though the average dependency length is still lower than
random (Gulordava and Merlo 2015)). The reason lying
behind this apparent anomaly is that word arrangement is
constrained by multiple factors. For example, it has been

shown that languages do not favour dependency length min-
imization during the early stages of their evolution, select-
ing subject-object-verb order. Later, this is transformed into
subject-verb-object order, which is optimal for minimization
(Ferrer-i-Cancho 2014). In particular, the author maintains
that the factor setting off against dependency length mini-
mization (conceived as on-line memory minimization) is the
maximum predictability of the verb (by its final position).

Nonetheless, predictability cannot account for Ancient
Greek linear order because its positions are not fixed. In-
stead, the explanation may be led back to iconicity (Haiman
1980). Iconicity ensures an isomorphism between syntac-
tic and semantic structures. Thus, semantically related el-
ements (such as heads and dependents) are linearly close:
this improves regularity and results into dependency length
minimization. On the other hand, initial positions correlate
with old information, and vice versa final positions with new
information. Moreover, what is uppermost (most relevant)
in the speaker’s mind is expressed with the highest prior-
ity (Croft 2002). The last two principles are candidate to
be responsible for the Classic Ancient Greek behaviour. Fu-
ture studies may verify this hypothesis and possibly integrate
them into the framework of the linear arrangement problem.

Conclusion

Considering networks induced from the same Ancient Greek
texts, this paper demonstrated that dependency networks dis-
play constant behaviours, whereas those of co-occurrence
networks vary. This leads to different extents of divergence
between the two across different varieties of language. The
significance of these results is that a comparison of this sort
has been accomplished for the first time: the related variation
was thus far unobserved. This work proposed that the vari-
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ation stems from competing motivations in linear arrange-
ment, i.e. dependency length minimization against informa-
tion and relevance principles. All of them may emerge from
a common reason, i.e. that sentence position is iconic with
respect to semantics and pragmatics.

Future enhancements possibly include polishing the net-
work representations. Lemmas should be substituted with
forms as network nodes. Inflectional morphology is perva-
sive in richly fusive languages such as Ancient Greek, and
this would enable a fair comparison with languages endowed
with independent function words. Furthermore, weighting
the arcs would make complex networks more reliable (Bar-
rat et al. 2004).
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syntactic dependency networks. Physical Review E 69(5):051915.
Ferrer-i-Cancho, R. 2006. Why do syntactic links not cross? Eu-
rophysics Letters 76(6):1228–1235.
Ferrer-i-Cancho, R. 2014. Why might sov be initially preferred
and then lost or recovered? a theoretical framework. In The Evolu-
tion of Language-Proceedings of the 10th International Conference
(EVOLANG’10), 66–73.
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