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Abstract 
Modeling and simulation of human activities is becoming a 
hot research area for validating activity recognition algo-
rithms used to generate useful synthetic datasets for assis-
tive environments and other smart spaces. Context-driven 
simulation, an emerging approach that utilizes abstract 
structures of state spaces (contexts), can enhance the scala-
bility and realism of simulations. However, the context-
driven approach is demanding of users’ efforts in specifying 
not only activity models, but also the corresponding con-
texts and contextual transitions associated with these activi-
ties. In this paper, we propose a method to reduce users’ ef-
forts in configuring simulation by using k-means clustering 
and principal component analysis approaches to automate 
the derivation of contexts from a given set of activities. We 
validate our approach by comparing the actual sequenced 
activities with the derived sequenced activities. 

 Introduction   
A key challenge in using smart technology, such as smart 
homes, to support independent living of the elderly and 
people with chronic diseases, is to monitor activities 
through sensors and recognize emergency situations 
through programmable and automatic recognition. Re-
search in recognition systems requires a large number of 
datasets and test beds that can evaluate the effectiveness 
and accuracy of newly developed algorithms or activity 
models. Unfortunately, relevant datasets are scarce. Simu-
lation of human activities in smart home environments is 
therefore becoming very important as an alternative source 
of datasets for researchers (Hadidi and Noury 2010, Hueb-
scher and McCann 2004, Jahromi et al. 2011). 

 We addressed these issues and developed Persim 3D 
(Lee et al. 2015). This simulator is based on a context-
driven approach that addresses scalability (Lee et al. 2013). 
It is also based on a special activity-modeling approach, 
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activity playback, that enhances realism (Liu et al. 2015). 
In Persim 3D, context was introduced as a new abstract 
simulation entity that represents consecutively occurring 
space states and defines a set of available activities that can 
be performed if such a simulation context is reached.  

All contexts of a simulation scenario are formed into a 
context graph, which can automatically schedule activities. 
The simulator steps through and drives the contexts instead 
of stepping through events, as traditional event-driven sim-
ulators do. This decreases the computational complexity 
and achieves scalability. When an activity needs to be per-
formed, an activity playback algorithm dynamically instan-
tiates the activity. The dynamic modeling method increases 
simulation realism and supports automatic generation of 
activity scenarios. 

However, it is difficult for users to define contexts be-
cause they are not only conceptually abstracted from state 
spaces but also recognized differently. Therefore, it is im-
portant to derive contexts from activities algorithmically. 
This will reduce the burden on human efforts and errors in 
manually designing contexts.  

It is also important to solve the problem of deriving con-
texts from activities outside our Persim 3D simulation 
framework. One key application that could help solve this 
is the enabling of context-aware programming of human-
centered systems that rely heavily on activity recognition. 
By deriving contexts that correspond to activities, it be-
comes much easier for developers to code the system in the 
context domain rather than in the sensor domain. Deriving 
contexts of activities can also help provide additional 
means to double check recognition, which would raise the 
accuracy of the overall system. 

In this paper, we propose to derive contexts from simu-
lation models of activities. All state spaces obtained by 
simulating each activity are classified into clusters of rele-
vant state spaces using k-means clustering. The centroid in 
each cluster is defined as a context, which is meaningful 
and representative of other state spaces in the cluster. Each 
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context is also built with potential conditions to define it 
via Principal Component Analysis (PCA). Finally, a con-
text graph including all the contexts is formed and provid-
ed for simulation. 
This paper is organized as follows. In the next section, we 
describe existing work related to activity modeling, simula-
tion of human activities, and cluster-based classification 
that can be used for derivation of contexts. Then, we pre-
sent the overall approach of derivation and explain detailed 
steps of the proposed approach. Finally, we discuss compu-
tational analysis and experimental validation. 

Related Work 
There are multiple studies available about modeling human 
activity from sensor data, and simulating such models have 
been carried out using various approaches. Sierhuis et al. 
(2000) argued that elements such as “fact” and “belief” are 
an integral part of a model for human astronauts’ activities 
in outer space. Simulation was performed based on real 
data collected from space experiments in a NASA project. 
Stepanov et al. (2005) presented a simulation tool used to 
model common behaviors of human subjects in outdoor 
environments. The goal of the tool was to study how best 
to route ad hoc traffic based on humans’ mobility. 
Sundarmoorhi et al. (2006) focused more on activities of 
nurses caring for patients in a hospital setting with the goal 
of maximizing scheduling efficiency and minimizing 
downtime to patients. In such simulations, computation 
was intensive, and classification-based reduction tech-
niques were used to improve simulation scalability. Alt-
hough these approaches are useful for dangerous and dy-
namic situations, they may impose unnecessary complexity 
and require excessive computation in simulating simple 
activities of daily life, such as having breakfast.  

In the context-driven approach (Lee et al. 2013), abstract 
and representative state spaces are defined as contexts, 
which facilitate the automated generation of indoor activity 
scenarios. By specifying related and possible activities in 
each context, different activities are dynamically scheduled 
and generated during simulation, leading to automated 
generation of multiple scenarios using fixed human efforts. 
There is also research in activity recognition available on 
deriving meaningful high-level information from low-level 
information. The goal of that research is to classify clusters 
from collected sensor datasets. In CBARS (Abdallah et al. 
2012), a supervised learning model was built first, and 
unsupervised learning for new data was applied for new 
activity recognition. The challenge was that CBARS 
needed a supervised learning model. AALO (Hoque and 
Stankovic 2012) addressed that challenge. AALO is an 
active recognization system that can accurately classify 
specified activities according to locations and times in 
which the activities are performed. CBCE (Jurek et al. 

2014) proposed a method for combing multiple classifiers 
including Naïve Bayes (NB) models, hidden Markov 
models (HMMs), and conditional random fields (CRFs). 
This ensemble of classifiers can recognize activities in 
given sensor datasets, however, they do not provide a 
method to define abstract information of context to 
represent the other state spaces in a cluster. 

Overall Approach 
Our basic concept was to start with a set of given activities, 
simulate them to generate a sequence of states that repre-
sent their effects, and then utilize clustering and PCA tech-
niques over the state space to infer a set of contexts that 
correspond to activities, along with their context graphs. 
We first find all possible state spaces by applying the activ-
ity playback algorithm (Liu et al. 2015), which plays all 
activities defined using the activity playback model. The 
proper state spaces are generated and then formed into a 
state space graph SG. That is converted to a context graph 
CG, which consists of only contexts. CG illustrates causali-
ties of all contexts and hence is capable of generating ac-
tivity scenarios. Once contexts are identified, context con-
ditions, which govern how to transition between contexts 
in the graph, are also derived. This is done through a PCA 
to find all potential context conditions for each context. 
 Before we dive further into the details of our approach, 
it would first be helpful to define context. It is an abstract-
ed state space envelope that represents consecutively oc-
curring state spaces (Lee et al. 2013). A context is intended 
to represent an important state space in the group of rele-
vant state spaces with respect to activities. Figure 1 shows 
the process of deriving such contexts by building clusters 
of state spaces, finding the important state space in each 
cluster using a k-means clustering technique, and declaring 
the centroid of each cluster as context. 

�
Figure 1. Clustering state spaces to capture seven contexts. The 

centroid of each cluster is defined as context (red spots). 

Activity-Context Interplay 
In context-driven simulation, the correlation between activ-
ities and contexts is important. In a given context, certain 
activities that are related to that context can be selected and 
scheduled (Lee et al. 2013). When the scheduled activities 
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are performed (played back), they can change the state 
space and eventually transition into the next context.  

The characteristics of correlation between contexts and 
activities are used in designing context-driven simulation 
scenarios and in generating contexts from activities. The 
remainder of this section introduces the necessary 
modeling and structures for activities, contexts, and their 
interplay. 
Context modeling 
Context is defined by three properties: context conditions, 
which express conditions to enter the context, context ac-
tivities, which are activities available in the context (for 
play back of some of them), and next contexts, which can 
be transitioned to after activities are performed.  
Activity modeling 
To run context-driven simulation properly, a specialized 
activity model is needed to focus on the realism of visually 
simulating the activity. It must be cognizant of the inter-
play between activities and their corresponding contexts. 
The activity playback model (Liu et al. 2015) is designed 
to generate dynamically varying and more realistic activi-
ties while reflecting the effect of the playback on the space 
states, hence assisting in navigation between contexts. As 
we will see, activity playback enables the generation of 
state spaces, which we use to create the context graph. �
Context graph 
All defined contexts can be formed into a context graph 
CG, in which a node presents a context, and an edge speci-
fies a transition condition between two contexts. The tran-
sition may occur when an activity is executed in one con-
text, and therefore, an edge condition must contain the ac-
tivity that would go to another context. Multiple activities 
may be required in a single transition condition. 
State space graph 
The state space graph SG is an intermediate structure to 
obtain the desired CG. It consists of all available state spac-
es, whereas CG is formed by only meaningful state spaces 
(contexts). Thus, a node in SG is a state space. In SG, an 
edge contains only one activity performed, and activity 
execution immediately moves to the next node (state 
space) that it is connected to. However, an edge in CG can 
contain multiple activities, and transitioning between nodes 
(contexts) may not happen after execution of an activity. 
For instance, at the moment a resident walks to the bath-
room after a meal, there is no explicit change of context of 
breakfast. When the resident starts brushing teeth or use 
bathroom, it is said that the new context of personal hy-
giene begins. Lee et al. (2013) showed that transitioning 
could happen anytime while activities are being performed 
if activities change the state space to become similar 
enough to another context. 

Despite these differences, SG is related to CG because a 
context is a substitute for a meaningful state space. 
Therefore, SG could be converted into CG by finding the 

meaningful state spaces and pruning other state spaces. 
Such state spaces can be discovered through k-means 
clustering: the mean of each cluster is the most meaningful 
state space, which is the context. The next section will 
describe all the phases to build CG using k-means 
clusterting and PCA. 

Derivation Phases 

Phase 1: Constructing a State Space Graph 
In our approach, which is based on activity-context inter-
play, the first phase is to construct an SG from given activi-
ties. To obtain all the state spaces S, we must simulate all 
activities. When an activity is simulated, the state space 
changes, and all possible state spaces are discovered. Sk is 
the state space after activity At is performed; e.g., S12 is the 
state space after activity A1 and A2.   

When available state spaces can be derived, the same 
state spaces can be derived from different activities. This 
causes a potential redundancy problem. To avoid 
duplication of state spaces, we can run the following rule:  

Rule 1:  �������� �	� 
�� 
�  �� � � � 
�  �	 � �
������������ ��� �� �

Figure 2 shows Rule 1 merging S32 into S2. After the 
merge, the edge from S3 to S32 is connected to S2. 

�
Figure 2. Merging redundant state spaces. Edge from S3 to S32 is 

not moved to head to S2 (red arrow not included).  

An example of a complete SG is illustrated in Figure 3a. 
SG is created by 10 activities commonly performed in the 
morning, for instance eating breakfast and using a 
bathroom. Note that every edge contains only one activity, 
which differs from the edges in CG. 

Phase 2: Conversion to Context Graph 
Once SG is constructed, it should be converted to CG. The 
first step in the conversion is to find meaningful state 
spaces, which evetually will be declared contexts. By our 
observation, a meaningful state space is sufficiently distant 
from other meaningful state spaces, but could be close to 
other relevant yet non-meaningful state spaces. To find 
which state spaces are meaningful, all are partitioned into k 
clusters, in which each state space belongs to the cluster 
with the nearest mean. Therefore, SG = {S1, …, Si, …, Sω} 
is divided into {Ŝ1, …, Ŝj, … Ŝk}, where Si is a state space 
and Ŝj is a cluster of state spaces. Each cluster Ŝj minimizes 
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the sum of distances between the within-state space and the 
mean according to the following formula: 

����� 
!"

�# �$ %&
'

!(���)*

�
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where St means a state space in cluster Ŝj. After SG is 
classified into k clusters, cluster centroids are considered 
meaningful state spaces and are candidates for contexts. 

The main procedure of conversion is as follows: declare 
meaningful state spates as context, prune non-meaningful 
state spaces in SG, merge all activities included in every 
edge between contexts, and declare as scheduled activities 
what will be performed in a context. Note that the merged 
activities are executed in order.  

Figure 3 illustrates the conversion from SG to CG, which 
consists of 7 contexts such as breakfast and personal hy-
giene. Nodes highlighted in blue are meaningful state 
spaces and contexts. An edge in CG describes how a 
context can transition to the next context in terms of 
activities. In C1 (see Figure 3b), for instance, two activities 
{A1, A4} are executed in order, and then, the next context 
C2 is reached. Some edges may have multiple sets of 
activities. For instsance,  the edge from C1 to C5 contains 
{A1, A5, A7}, {A1, A6, A7}, and {A1, A5, A6, A7}. This 
illustrates that there could be multiple choices available for 
scheduling activities. 

Phase 3: Building Context Conditions�
To define contexts and CG fully, context conditions must 

be built for each context. Context conditions allow for 
contexts’ evaluation and transition to the next context. We 
find state spaces that are meaningful and similar to the 
context and build proper context conditions using their 
status information. To find important state spaces, we need 
to investigate individual sensors. Each sensor’s effect is 
unique and has different meanings according to the 
context. So, we need a filter to identify relvant sensors. In 
order to do this, we propose an algorithm that utilizes PCA 
to find the sensors’ principal components (Lawrence 
2005). Once we find the relevant sensors via a stochastic 

analysis of sensors’ high-dimensional data, the original 
dataset can be projected onto lower-dimensional data. This 
method returns less data and decreases computational 
complexity. The remaining data is used to build context 
conditions. The algorithm then repeats the whole process 
for each cluster to find the relevant sensors. 
How to find principal components 
Principal components are sensors that show definite 
variance patterns that explicitly express the change of 
states. We want to know in which pattern the dataset is 
scattered. For this, a matrix of covariances (cov) is 
calculated first. In a ξ-dimensional dataset, covariance cov 
is calculated as   

-./� 0&� 01 2
0�
& $ �%& 0�

1 $ �%1
3
�+,

4 $ 5
��

where ŝi and ŝj are the set of sensor values in dimensions i 
and j, repsectively; i and j are the sensor values in each 
dimension. The total covariances establish a ξ × ξ 
covaraince matrix R:  

6� ) 2 �
-./�70,� 0,8 9 -./�70,� 038

: ; :
-./�703� 0,8 9 -./�703� 038

��

After the covariance matrix is created, we calculate the 
eigenvectors, each of which can conduct linear 
transformations of sensor data and characterize its 
variance; the eigenvalues then measure how well the 
sensor data is scattered. We choose the eigenvectors that 
show the most variant spread of data as principal 
components. If data is evenly scattered with an axis 
transformed by an eigenvector (i.e., the data pattern is 
reconized explicitly), it is an important eigenvector, which 
means it’s the desired principal component. However, if 
data is narrowly spread around the axis and doesn’t show 
any clear pattern, the corresponding eigenvector should not 
be considered in building context conditions. 

Eigenvectors that are evenly scattered have high 
eigenvalues. Eigenvalues determine how the corresponding 
eigenvectors scatter data—higher eigenvalues spread more 

 
Figure 3. Converting a state space graph (a) to a context graph (b). Skm is the state space after executing multiple activities Ak and 
Am. Meaningful state spaces (highlighted in blue) are converted to contexts. Edges between meaningful state spaces are merged. 
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evenly. The challenge is in determining the threshold for 
which eigenvalues are high enough to be acceptable. We 
propose threshold Өe for total eigenvalues of selected 
eigenvectors. In our approach, first the eigenvectors are 
sorted by eigenvalues in descending order; then, 
eigenvectors with higher values are chosen until the sum of 
corresponding eigenvalues exceeds Өe. Eigenvectors 
satisfying this condition establish a feature matrix. 
How to create context conditions 
The original high-dimentional dataset is transformed into a 
low-dimensional dataset through the feature matrix, as 
shown in Figure 4. It descreases not only the amount of 
data but also reduces the size of the state space. 

To create context conditions, all sensor values are 
collected to form a range. Suppose that there are three 
different values of 1, 4, and 2.5 for sensor s1 in the 
transformed dataset. Then, the expected condition for s1 is 
1 ≤ s1 ≤ 4, which covers all the values. 

�
Figure 4. Projecting 3D dataset of (s1, s2, s3) to 2D dataset of 

(PC1, PC2). 

Complexity Analysis 
We evaluate the computational complexity of the 

derivation approach in three parts—the construction of 
state space graph SG, the conversion to context graph CG, 
and the building of context conditions.  

The complexity of constructing SG depends on the 
number of rooms and activities in the space. When there 
are ζ number of activity and h areas, there are ζ/h nodes. 
Then, hζ edges are inserted onto the graph. Therefore, the 
complexity is  

-.�<=�>?@A� 2 B C D E F GC ���
In our research, we followed the activity models of 

Lawton and Brody (1969), which identify activities of 
daily living (ADLs) and instrumental activites of daily 
living (IADLs). ADLs are basic, physical activities such as 
feeding, dressing, bathing, walking, toileting, and 
grooming. IADLs include social behaviors such as 
shopping, communicating, transporting, transacting, taking 
medications, housekeeping, and doing laundry. Lawton 
and Brody provided broad categories of activities with 30 
ADL activities and 31 IADL activities. Therefore, the 
maximum ζ��H 61.  

In converting SG to CG, complexity will mostly depend 
on k-means clustering. The complexity of conversion to CG 

is calculated by the number of state spaces (t), the number 
of sensors (ξ), and the number of clusters (k): 

-.�<=�>?@A 2 I7CG JKL, M � NO� CG8� 

The complexity involved in building context conditions 
mostly depends on the complexity of the PCA. In the 
previous section, we described PCA algorithms for only 
one context. For the complete configuration of the 
simulation, we must perform PCA per context. With k as 
the number of contexts, and τ as the number of principal 
components, complexity can be expressed as follows: 

-.�<=�>?@A 2 I P'QR F �QSR �  

All variables are bounded during scenario design. 
However, the number of activities and contexts increases 
as we seek higher accuracy in the simulation, which 
increases complexity. Therefore, there is a trade-off 
between complexity and accuracy. 

Experimental Validation 
To evaluate the performance of the proposed approach, 

we conducted a few experiments. We focused on evaluat-
ing the fidelity of CG derived from activities, which pro-
duces all possible schedules of activities that are feasible in 
the real world. Therefore, our validation goal was to com-
pare the generated schedules with real-world data. We col-
lected schedule datasets for 10 days and used them for val-
idation. (The scenario description and datasets are availa-
ble online.1) However, it is hard to find comparable gener-
ated schedules of activities because there is no efficient 
way of filtering the large number of schedules to find those 
that are representative of the data we’re studying. Instead 
of searching for such schedules, we therefore use statistic 
analysis of the schedules to validate CG feasibility. 

For this purpose, we built statistic models of schedules 
that apply a Bayesian network. First, we created the Bayes-
ian network from schedules of activities and populate con-
ditional probability table (CPT), which consists of occur-
rence probabilities for a pair of activities.  

We calculate the joint probability distribution on the en-
tire scheduled scenario after the CPT has been applied to 
all possible pairs of activities. If the occurrence probability 
is not high enough, it says that the scenario did not occur, 
even if the scenario actually happened. Thus, the probabil-
ity must be high enough to correct this contradiction. For 
validation, we created and compared two CPTs, one from 
actual schedules and one from CG, shown in Figure 5.  

If they have a high degree of similarity, then the CPT 
based on CG can be considered identical to the actual, and 
we can say that CG has high actuality. Note that the CPT 
based on CG is enhanced because CG contains all possible 
schedules, which makes each conditional probability lower 
                                                

1 http://www.icta.ufl.edu/persim/datasets/. 
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than those in the CPT based on the actual schedules. For 
comparison, we applied actual schedules to each CPT and 
found the similarity of each occurrence probability (P and 
P′). We also created three different iterations of CG by 
changing the number of contexts (k). Figure 6 shows the 
occurrence probabilities of each schedule.  

�
Figure 5. Validation based on Bayesian Network. 

�
Figure 6. Occurrence probability of actual scenarios based on 

the derived context graph. The probability when k = 5 shows the 
best performance. 

The actual schedules show very low probability on days 
3, 4, and 8, because the schedules contain certain activities 
which rarely happen. The generated schedules similarly 
follow this pattern. When k = 4, it has a slightly different 
pattern, which is why day 3 has a higher probability than 
day 2, as well as a lower overall probability. When k = 6, 
most of the probabilities are too low and minor variances 
indicate too great of an effect. When k = 5, all probabilities 
are relatively high, and CG also follows the pattern of actu-
al schedules. Probabilities on days 3 and 4 show different 
patterns than those of actual schedules, but this could be 
because there were too few actual schedules available 
when the CPT was created. On the other hand, CG is a 
complete model that includes all scheduled scenarios. 
Hence, we suggest that users modify CG as derived through 
our approach to meet their own needs and specifications. 

Conclusion 
A context, or a high-level simulation entity, enables scala-
ble simulation with high realism. However, it is hard for 
users to configure such high-level conceptual models. The 
user is required to specify a lot of information and many 
parameters about contexts, which could burden and de-
crease simulation performance. This shows a need for 
more user-friendly initiated models. 

In this paper, we proposed an approach to derive con-
texts and context graphs from given activities without addi-
tional specifications. Derivation of contexts from activities 
can reduce user efforts and make simulation easy. Consid-
ering the performance of our approach, we can conclude 
that it is a good alternative to manual specifications of ac-
tivity scenarios and simulation configurations. 
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