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Abstract

In many scenarios where the integration of information into a
knowledge base (KB) leads to inconsistencies there is a need
to change the KB minimally. In belief revision, relevance
postulates meet the minimality requirement by restricting the
elimination of KB elements to those that are relevant for the
incoming information. This paper focuses on two minimality
postulates in an ontology revision scenario in which conflicts
are caused by ambiguous use of symbols: a relevance pos-
tulate and a generalized inclusion postulate which limits the
creativity of the operators. Both postulates exploit the (sat-
isfiably) equivalent representation of a first-order logic KB
by its prime implicates, which, intuitively, represent the most
atomic logical components of the KB. The paper shows that
reinterpretation operators (which are ontology revision oper-
ators) fulfill both postulates.

Introduction

Not long after the seminal papers of Alchourrón, Gärdenfors
and Makinson (AGM) (Alchourrón, Gärdenfors, and Makin-
son 1985) it was realized that belief-revision (BR) tech-
niques could be fruitfully applied to different types of on-
tology change (OC) (Flouris et al. 2008) such as ontol-
ogy evolution (Kharlamov, Zheleznyakov, and Calvanese
2013), ontology merge, ontology debugging etc. Most of
the work exploiting BR for OC (Meyer, Lee, and Booth
2005; Flouris et al. 2006; Ribeiro and Wassermann 2009;
Eschenbach and Özçep 2010; Özçep 2008) follows the dual
approach of classical BR of, on the one hand, defining ax-
iomatic specifications in the form of postulates and, on the
other hand, constructing operators fulfilling them.

In this paper, I propose postulates that are intended to
specify a minimal change of a knowledge base (or more
concretely an ontology) and show that so-called reinterpre-
tation operators fulfill them. The intended revision scenario
of this paper for which the minimality postulates are going to
be developed can be described as follows. A receiver agent
holds an ontology which is formally described by a knowl-
edge base (KB) in an expressive formal language such as
first-order logic (FOL). In particular, a KB is a finite set of
sentences in FOL (or a fragment of it). She receives infor-
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mation from a sender agent with possibly different ontology
and she wants to integrate the information into her ontology.

I assume that both the sender’s KB and the receiver’s KB
are well developed ontologies over the same application do-
main (e.g., ontologies for an online library system in univer-
sities, see examples below). Further it is assumed that the
semantics of the same symbols in ontologies are strongly re-
lated. Nonetheless, there may be symbols that are used in
differently by the sender and the receiver (ambiguity). The
receiver is assumed to give priority to the sender’s meanings
so the integration result will contain the trigger and result in
a revision of the receiver’s ontology to preserve consistency.
But, as the ontology of the receiver is assumed to be well
developed, she is interested in changing her ontology only
minimally, i.e., se wants to delete sentences of his KB and
add additional sentences to it only as much as needed.

In belief revision the theme of minimality is mainly dis-
cussed within the context of relevance postulates (Hansson
1993; Parikh 1999). But also inclusion postulates can be
seen as contributions to a minimal-change specification as
they limit the operators’s “creativity” by prescribing an up-
per bound to the result. In this paper, I start from these
postulates for classical BR, argue why they are not proper
minimality specifications for the intended revision scenario
and formulate radically adapted versions that exploit the fine
grained structure of ontologies by the notion of prime im-
plicates. An extended version of this paper can be found at
https://www.dropbox.com/s/5mjcasv5fus90q1/
oezcep16minimality.pdf?dl=0.

Logical Preliminaries

A first-order logic (FOL) vocabulary V consists of constants,
predicate symbols and function symbols. For a FOL formula
or set of formulas X let V(X) be the set of non-logical sym-
bols occurring in X . I use the usual notions from Tarskian
semantics based on FOL interpretations I. The set of sen-
tences containing only non-logical symbols in the vocabu-
lary V is denoted Sent(V). The set of sentences in Sent(V)
following from a set of sentences X (over a perhaps larger
vocabulary) is denoted by CnV(X). If two sets of FOL sen-
tences X1, X2 are equivalent, I write X1 ≡ X2.

A non-logical symbol s ∈ V properly occurs in a sen-
tence α ∈ Sent(V) iff there are I1, I2 ∈ Int(V), s.t.: I1
and I2 differ only in the denotation of s and αI1 �= αI2 . Let
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P ∈ V be an n-ary predicate symbol in V . It occurs syntacti-
cally positive (negative) in a FOL formula iff it occurs in the
scope of an even (uneven) number of negations—assuming
that only the propositional truth functions ∧,∨,¬ are used.
For P ∈ V(α) we say that P occurs semantically positive
in sentence α, pos(P, α) for short, iff: For all I = (ΔI , ·I)
and for subsets D1, D2 ⊆ (ΔI)n one has: If D1 ⊆ D2

and I[P �→D1] |= α, then also I[P �→D2] |= α. P occurs se-
mantically negative in sentence α, neg(P, α) for short, iff
pos(P,¬α). P occurs mixed in α, mix(P, α) for short, iff
it properly occurs in α but neither pos(P, α) nor neg(P, α).
We write pos0(P, α) (resp. neg0(P, α)) iff pos(P, α) (resp.
neg(P, α)) or P does not occur syntactically in α.

The dual remainder sets modulo α, B

�

α, consists of in-
clusion maximal subsets X of B that are consistent with α,
i.e., X ∈ B

�

α iff X ⊆ B, X ∪ {α} is consistent and for
all X̄ ⊆ B with X ⊂ X̄ the set X̄ ∪ {α} is not consistent.
The notion of dual remainders is extended to arbitrary KBs
B1 as second argument by defining B

�

B1 as B

� ∧
B1.

Minimality in Belief Revision
The AGM (Alchourrón, Gärdenfors, and Makinson 1985)
postulates do not constrain the revision result in the interest-
ing case of conflict between KB and trigger. In fact, the am-
nesic operator defined by B ∗α = Cn(α) fulfills all AGM
postulates though it is not minimal. The relevance postulates
of Hansson (Hansson 1993) and of Parikh (Parikh 1999) are
two different possibilities that remedy the unwanted prop-
erty of amnesic revision. These kinds of postulates constrain
the revision result by an approximation from below in the
sense that they say which set of sentences X have to be in the
(set of consequences of the) revision result: X ⊆ Cn(B∗α).

The relevance postulate of Hansson (Hansson 1993) is
formulated for arbitrary, i.e. not necessarily logically closed,
sets of sentences B called belief bases.
(Rel-H) If β ∈ B and β /∈ B ∗ α, then there is a set B′,

such that: 1. B ∗ α ⊆ B′ ⊆ B ∪ {α}; 2. B′ is consistent;
3. B′ ∪ {β} is not consistent.
(Rel-H) it is not an adequate postulate for the intended

revision scenario. In this scenario, it is not individual sen-
tences that cause a conflict but different uses of symbols in
B and β. And indeed, the reinterpretation based operators
defined below do not fulfill this postulate.
Example 1 Let B be a KB according to which media p1, p2,
which are published in some proceedings, are articles: B =
{Article(p1), Article(p2)}. The trigger α = ¬Article(p1)
stems from an agent with a different understanding of ‘ar-
ticle’ according to which only publications in journals are
articles. An appropriate revision result B ∗α would not only
delete Article(p1) but also Article(p2); because the next
time the sender sends a trigger containing Article nega-
tively, namely ¬Article(p2), a conflict will occur. But this
operator ∗ does not fulfill (Rel-H).
A different relevance postulate called (Rel-P), which is more
symbol-oriented, was formulated by Parikh (Parikh 1999).
Criterion (Rel-P) is formulated for propositional KBs and
so cannot be used directly for FOL KBs as assumed in this
paper. Hence we define a different relevance postulate.

The relevance postulates cover only one aspect of mini-
mality, but completely miss the other aspect of minimality
which is to constrain the (consequences of the) revision re-
sult from above. That is, one has to prescribe a set X such
that Cn(B ∗ α) ⊆ X . In belief base revision this aspect is
handled by the so-called inclusion postulate.

(Incl) B∗α ⊆ B ∪ α.

But for the revision scenario of this paper, belief base revi-
sion is not the means of choice as its results depend on the
syntactic representation of the belief bases.

Adapted Minimality Postulates

For the following I will assume that B is a predicate logical
KB without the identity and function symbols. The new rel-
evance postulate adapts Hansson’s relevance postulate (Rel-
H). The main technical tool for the adaptation is the con-
cept of a prime implicate, which roughly represents a most
atomic component of the KB. While the notion of prime im-
plicate is omnipresent for propositional logic (Armstrong et
al. 1998) and has been exploited for the definitions of propo-
sitional revision operators (Bienvenu, Herzig, and Qi 2008;
Zhuang, Pagnucco, and Meyer 2007), there is no real seman-
tic notion of prime implicate for FOL and there is no ap-
proach that uses prime implicates in the postulates—except
for (Özçep 2012) for propositional logic.

The core idea of the new relevance theorem is this: A sen-
tence β entailed by B may be eliminated from the revision
result if there is a related sentence ε of the normal form of B
that together with other formulas of the normal form leads
to a contradiction. The kind of relatedness between β and ε
is explicated technically as follows.

Definition 1 β and ε are called related w.r.t. P iff a) either
mix(P, ε) or mix(P, β); or b) pos(P, ε) and pos(P, β); or
c) neg(P, ε) and neg(P, β).

For the normal form representation I use prime impli-
cates. A FOL formula α is universal iff α is equivalent to
a formula in prenex form containing only all-quantifiers ∀.
A universal formula of the form ∀x1 . . . ∀xn(li1∨· · ·∨lim),
where the lij are literals with variables in {x1, . . . , xn},
is a FOL clause. A FOL clause α1 = ∀x1 . . . ∀xnβ is a
(proper) subclause of a FOL clause α2 iff α2 is of the form
α2 = ∀y1 . . . ∀ynδ, where all xi are among the yj and the
set of literals in β is a (proper) subset of the literals in δ.

Let X be a set of universal formulas. The set of FOL
clauses of X w.r.t. a vocabulary V , ClV(X), is the set of all
FOL clauses in Sent(V) entailed by X . If X is an arbitrary
set of FOL sentences, let X∗ be the result of skolemizing
every sentence in X . Let Vsk be the set of used skolem sym-
bols and let V̂ = V ∪ Vsk. The set of FOL clause of X w.r.t.
V and skolem symbols Vsk is defined by ClV̂(X∗).

The set of FOL prime implicates of a set of universal for-
mula X w.r.t. V consists of non-tautological clauses of X
for which there is no proper subclause in ClV(X).

PIV(X) = {pr ∈ ClV(X) | pr is non-tautological and
has no proper subclauses in ClV(X)}
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This notion leads to a logically equivalent characterisation
of sets X containing only universal formulas.
Proposition 1 For every set X of universal formulas with
V(X) ⊆ V: X ≡ PIV(X).

The postulate of reinterpretation relevance (Rel-R) reads
as follows:
(Rel-R) Let be given a vocabulary V , a FOL KB B over V ,

an FOL sentence α over V and a FOL clause β over V .
Let B∗ be a skolemization of

∧
B with skolem constants

from Vsk and again V̂ = V ∪ Vsk.
If B |= β and B ∗α �|= β, then there is a set X and a
sentence ε ∈ X s.t.: 1. X ⊆ PIV̂(B∗); 2. X ∪ {α} is
inconsistent; 3. (X \ {ε}) ∪ {α} is consistent and 4. ε is
related with β w.r.t. a predicate symbol P .

Example 2 Consider the following KB B and trigger α:
B = {Article(p1), Article(p2),¬Article(bo1)} and α =

¬Article(p1). Clearly PIV̂(B∗) = B∗ = B. Let β =
¬Article(bo1). Then B |= β and B ∗ α �|= β. But for
Article there is no X ⊆ PIV̂(B∗) that fulfills the condi-
tions of (Rel-R) because the only β-related prime implicate
is ¬Article(bo1) which is not involved in a conflict.

Prime implicates can be further exploited to define a pos-
tulate that captures the other aspect of minimal revision
where one constrains the result from above. The idea is to
enrich the given KB B to an equivalent set Enr(B) that
contains enough consequences of B in order to identify the
real potential culprits in the revision process. The general
schema of the extended inclusion axiom is the following:
(Incl-ES) For all α there is X ⊆ Enr(B) s.t. X∪{α} �|= ⊥,

and for all β: If B ∗α |= β, then X ∪ {α} |= β.
This schema says: There is a subset of the enrichment of
B such that all sentences β entailed by the revision result
follow from a subset X of the enrichment together with the
trigger α. The enrichment operator Enr that I use in the fol-
lowing is defined as: Enr(B) = B ∪ PIV̂(B∗).

In fact, though the enriched KB Enr(B) is not equivalent
to B, it is at least equivalent w.r.t. the non-skolem symbols.

Proposition 2 CnV(B) = CnV(Enr(B))

I call the postulate that results from (Incl-ES) by instanti-
ating the parameter Enr by Enr(B) = B ∪ PIV̂(B∗) the
extended inclusion postulate (Incl-E).

Reinterpretation Operators

The extended relevance postulate and inclusion postulate are
intended to specify minimal changes of operators which are
used in a particular semantic integration scenario described
in the introduction. In this section, we recapitulate the defini-
tion of operators of this kind (Eschenbach and Özçep 2010;
Özçep 2008) and show that they fulfill the new postulates.
(For other postulates see (Özçep 2008)). The construction of
the operators mimics the construction of the propositional
revision operators of (Delgrande and Schaub 2003).

The revision operator defined in the following is denoted
by ◦ and is called a reinterpretation operator. ◦ is a binary

operator with a finite FOL KB as left and a FOL sentence α
as right argument. Before giving the technical definition, the
main construction idea will be illustrated with an example.

Example 3 Define the knwoledge base B as

B = {Article(p1), Article(p2),¬Article(bo1)}
and the trigger α = ¬Article(p1). The reinterpretation op-
erator ◦ results in the following KB:

B ◦ α = {Article′(p1), Article′(p2),¬Article′(bo1),
¬Article(p1), ∀x(Article(x) → Article′(x))}

The conflict between B and α is traced back to ambigu-
ous use of symbols. As I assume that only predicate sym-
bols (and not constants) may be used ambiguously, the con-
flict can only be caused by different uses of the unary predi-
cate Article. The receiver (holder of B) gives priority to the
sender’s use of Article over her use of Article, and hence
puts ¬Article(p1) in B ◦ α. Her own use of Article is in-
ternalized, i.e., all occurrences of Article in B are substi-
tuted by a new symbol Article′. The receiver adds hypothe-
ses on the semantical relatedness (bridging axioms) of his
and the sender’s use of Article. The hypothesis in this case
is ∀x(Article(x) → Article′(x)) which says that articles
in the sender’s sense are also articles in the receiver’s sense.
Note that because of this hypothesis the result B ◦ α entails
the assertion ¬Article(bo1) from the initial KB B.

Technically the disambiguation is realized by uniform sub-
stitutions called ambiguity compliant resolution substitu-
tions, AR(V,V ′) for short. Here, V ∩V ′ = ∅ where V ′ is the
set of symbols used for internalization. The substitutions in
AR(V,V ′) get as input a non-logical symbol in V and map
it either to itself or to a new non-logical symbol (of the same
type) in V ′. I only consider the substitution of predicate sym-
bols. supp(σ) ={s ∈ V | σ(s) �= s} is called the support of
σ. A substitution with support S is also denoted by σS . For
σ1, σ2 ∈ AR(V,V ′) let σ1 ≤ σ2 iff supp(σ1) ⊆ supp(σ2).
A disambiguation schema Φ picks for every S a substitution
Φ(S) ∈ AR(V,V ′) with support S.

In general, there may be more than one predicate symbol
which has to be disambiguated; and there may be many dif-
ferent sets of symbols for which a disambiguation leads to
consistency. So I define the minimal conflict symbol sets:

Definition 2 Let B be a FOL KB over V and α a FOL sen-
tence over V . The set of minimal conflicting symbols sets,
MCS(B,α), is defined by:

MCS(B,α) = { S ⊆ V | There is σS ∈ AR(V,V ′), s.t.
BσS ∪ {α} is consistent, and for
all σR ∈ AR(V,V ′) with σR < σS

BσR ∪ {α} is not consistent. }
As no symbol set in MCS(B,α) is a better candidate than
the other, we assume that a selection function γ1 selects the
good candidates: γ1(MCS(B,α)) ⊆ MCS(B,α). In the
end, the symbol set S# =

⋃
γ1(MCS(B,α)) is the set of

symbols which will be internalized.
In the second step, the disambiguated symbols of S#

are related by bridging axioms. Depending on what kind of
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bridging axioms are chosen, different integration operators
result. Here, I consider so-called simple bridging axioms.
(For other types of bridging axioms see (Özçep 2008).) Let
σ = σS ∈ AR(V,V ′) be a substitution with support S ⊆ V .
Let P be an n-ary predicate symbol in S, σ(P ) = P ′ and let
�x = x1, . . . , xn. Then define

−→
P = ∀�x(P (�x) → P ′(�x)) and←−

P = ∀�x(P ′(�x) → P (�x)).
Definition 3 For σ = σS ∈ AR(V,V ′) for S ⊆ V the sim-
ple bridging axioms w.r.t. σ are BA(σ) = {−→P ,

←−
P | P ∈ S}

In case of conflict, not all bridging axioms of BA(S#) can
be added to the revision result. Again a selection function
(γ2) is used.
Definition 4 Let V ∩ V ′ = ∅; Φ be a disambiguation
scheme; γ = (γ1, γ2) be a pair of selection functions. For
any FOL KB B and FOL sentence α over V let S# =⋃

γ1(MCS(B,α)) and σ = Φ(S#). Then the reinterpre-
tation operator ◦ = ◦γ is defined by

B ◦ α = σ(B) ∪ {α} ∪
⋂

γ2
(
BA(σ)

�

(σ(B) ∪ {α}))

It can easily be checked that this definition of ◦ gives the
results in Ex. 3 (for any pair of selection functions γ1, γ2).

Minimality of Reinterpretation

Reinterpretation operators fulfill the reinterpretation rele-
vance postulate and the extended inclusion postulate.
Theorem 1 The reinterpretation operators fulfill the postu-
lates (Rel-R) and (Incl-ES).
The main proof idea is to explicate the interaction of the in-
ternalization and of the bridging axioms with the prime im-
plicates entailed by B as done by the following propositions.
Proposition 3 Let V and V ′ be disjoint vocabularies; B be
a set of universal formula in FOL (without identity and func-
tion symbols) over V; σ be a substitution of predicate sym-
bols P by new symbols σ(P ) ∈ V ′ and PI(·) = PIV∪V′

(·).
Then: CnV(PI(Bσ)) = CnV(PI(Bσ) ∩ Sent(V))
The proposition says that in order to discover losses of V-
consequences of B one can stick to its prime implicates.

While this proposition hints to the interaction of prime
implicates with the internalization, the following one talks
about their interaction with simple bridging axioms. Let
B∗ = ∀x̃1 . . . ∀x̃mB̃ be a skolemization of B with skolem
constants not in V(B∪Bσ). Then B∗σ = ∀x̃1 . . . ∀x̃mB̃σ is
a skolemization of Bσ. Let ∀zb̃a be a prenex form of some
set of bridging axioms ba ⊆ BA(σ). Then (Bσ ∪ ba)∗ is
called an B∗-admissible skolemization of Bσ ∪ ba iff it has
the form (Bσ ∪ ba)∗ = ∀z∀x̃1 . . . ∀x̃m(B̃σ ∧ b̃a).

Proposition 4 Let V , V ′, Vsk be pairwise disjoint vocabu-
laries. Let B be a KB over V and σ be a substitution of
predicate symbols P by new predicate symbols σ(P ) ∈ V ′;
ba ⊆ BA(σ) be a subset of bridging axioms; and (Bσ∪ba)∗
be a B∗-admissible skolemization of Bσ ∪ ba with skolem
constants from Vsk; then:

PIV̂∪V′
((Bσ ∪ ba)∗) ∩ Sent(V ∪ V(B∗)) ⊆ PIV̂(B∗)
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