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Abstract

A central question in knowledge representation is the follow-
ing: given some knowledge representation formalism, is it
possible, and if so how, to simplify parts of a knowledge base
without affecting its meaning, even in the light of additional
information? The term strong equivalence was coined in the
literature, i.e. strongly equivalent knowledge bases can be loc-
ally replaced by each other in a bigger theory without changing
the semantics of the latter. In contrast to classical (monotone)
logics where standard and strong equivalence coincide, it is
possible to find ordinary but not strongly equivalent objects
for any nonmonotonic formalism available in the literature.
This paper addresses these questions in the context of abstract
argumentation theory. Much effort has been spent to charac-
terize several argumentation tailored equivalence notions w.r.t.
extension-based semantics. In recent times labelling-based
semantics have received increasing attention, for example in
connection with algorithms computing extensions, proof pro-
cedures, dialogue games, dynamics in argumentation as well
as belief revision in general. Of course, equivalence notions al-
lowing for replacements are of high interest for the mentioned
topics. In this paper we provide kernel-based characterization
theorems for semantics based on complete labellings as well as
admissible labellings w.r.t. eight different equivalence notions
including the aforementioned most prominent one, namely
strong equivalence.

Introduction

In the last 20 years formal argumentation has become a
popular research area in AI. One main reason for this is its
numerous fields of application ranging from nonmonotonic
reasoning, multi-agent systems to analysis tool for debates
or dialogues in general (see (Bench-Capon and Dunne 2007;
Rahwan and Simari 2009) for excellent overviews). Dung’s
well-studied abstract argumentation frameworks (AFs) play
a dominant role in this field (Dung 1995). Here, arguments
as well as attacks between them are treated as undefined
primitives, i.e. the internal structure of arguments is not
considered. This allows one to represent AFs as directed
graphs. The major focus in abstract argumentation is on
resolving conflicts, or more precisely, on the question of
how to determine acceptable sets of arguments. To this end
a variety of semantics have been introduced, each of them
specifying different criteria for being acceptable. There are
two main approaches to argumentation semantics, namely

extension-based and labelling-based semantics (cf. (Baroni,
Caminada, and Giacomin 2011) for an in-depth overview).
In contrast to the latter, extension-based semantics have been
studied in detail including central questions like intertrans-
latability (Dvorák and Woltran 2014), realizability (Dunne
et al. 2015) as well as replaceability (Oikarinen and Woltran
2011), among others. In this paper we consider replaceability
for labelling-based semantics. More precisely, we studied the
following research question:

Is it possible, and if so, under which conditions, to loc-
ally replace parts of a given AF, s.t. the modified version
and the initial framework cannot be semantically distin-
guished, even in the light of additional information?

For this task w.r.t. other formalisms the term strong equi-
valence was coined in the literature, i.e. strongly equivalent
theories can be replaced by each other within a bigger the-
ory without changing the meaning of the latter. In contrast
to classical (monotone) logics where standard and strong
equivalence coincide, it is possible to find ordinarily but not
strongly equivalent theories for any nonmonotonic formal-
ism available in the literature. Consequently, much effort
has been devoted to characterizing strong equivalence for
nonmonotonic formalisms, such as logic programs (Lifschitz,
Pearce, and Valverde 2001), causal theories (Turner 2004),
default logic (Turner 2001) and nonmonotonic logics in gen-
eral (Truszczynski 2006; Baumann and Strass 2016).

The characterization theorems in case of abstract argu-
mentation (Oikarinen and Woltran 2011) are quite different
from those for the aforementioned formalisms since being
strongly equivalent can be decided syntactically in abstract
argumentation. More precisely, the authors introduced the no-
tion of a kernel of an AF F , which is (informally speaking) a
subgraph of F where certain attacks are deleted, and showed
that syntactical identity of suitably chosen kernels character-
izes strong equivalence w.r.t. the considered semantics. Later
it was pointed out that in many argumentation scenarios the
potentially occurring type of modification can be anticipated
and, more importantly, does not range over arbitrary expan-
sions as required for strong equivalence (Baumann 2012;
2014a). This applies, for instance, if we use argument-
ation theory for the purpose of nonmonotonic entailment,
so-called instantiation-based argumentation (Caminada and
Amgoud 2007), where AFs are built from an underlying
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knowledge base. For instance, so-called normal and local
expansions (deletions) correspond to re-instantiations if
a new piece of information is added (deleted) or if we
change to a less (more) restrictive notion of attack. It
turned out that many of the corresponding equivalence no-
tions can be decided syntactically, as well (Baumann 2012;
2014a).

As already mentioned (and to the best of our knowledge)
all existing characterization theorems are stated in terms of
extension-based semantics. Studying equivalence notions
w.r.t. labelling-based semantics has both theoretical as well
as practical motivations. Among others we can mention,

• Extension-based vs. Labelling-based Semantics: It is
already known that many semantics establish a one-to-
one correspondence between their extension-based and
labelling-based versions. This means, any labelling is as-
sociated with exactly one extension and vice versa. It is
not immediately apparent whether this property guaran-
tees that there is a coincidence of the extension-based and
labelling-based equivalence notions. In this paper we give
a negative answer which makes characterizing labelling-
based equivalence notions a non-trivial task.

• Labelling-based Algorithms: As a matter of course, char-
acterization theorems can be used to refine existing al-
gorithms via applying a preprocessing simplification step.
Furthermore, the obtained insights may even give rise to
new computational procedures.

• Implicit vs. Explicit Information: Analogously to other
nonmonotonic formalisms we have that possessing the
same labellings (explicit information) is not sufficient for
semantical indistinguishability w.r.t. further evaluations. It
is an interesting theoretical task to precisely determine the
gap between implicit and explicit information.

The structure and the main contributions of this paper are
as follows. We start by reviewing the necessary background
in abstract argumentation frameworks, including extension-
based and labelling-based semantics, the whole landscape of
notions of equivalence and kernels as well as already existing
characterization results for extension-based semantics. In
particular, we consider 8 different equivalence notions w.r.t.
8 prominent labelling-based semantics. In total, we provide
61 kernel-based characterization results distributed over three
sections. In effect, similarly to extension-based semantics,
almost all labelling-based equivalence notions can be decided
syntactically. We start with some preliminary results showing
that update, deletion as well as local deletion equivalence col-
lapse to identity for any considered labelling-based semantics.
Then we turn to the two main as well as considerably more
difficult parts of the paper.

In the first one it is shown that many of the already existing
characterization results can be transferred to labelling-based
semantics. For instance, for all complete-based semantics
we have that the labelling-based as well as extension-based
versions of strong equivalence coincide. The second main
part provides examples showing the non-coincidence of the
remaining equivalence notions. Furthermore, we present
kernel-based characterizations. For example, we show that

strong equivalence w.r.t. admissible labellings is character-
ized by the complete (instead of the admissible) kernel. Fur-
thermore, the more sophisticated σ-*-kernels are not needed
to characterize strong expansion as well as normal deletion
equivalence in their labelling-based versions. In the penultim-
ate section we summarize the achieved results and compare
them with their extension-based versions. Finally, we discuss
related work and present our conclusions. Due to the limited
space we omit many proofs. Nevertheless, in almost all cases
we included some short comments indicating how to prove
the statement in question.

Formal Preliminaries

We start with the necessary background on abstract argu-
mentation. An argumentation framework (AF) is a pair
F = (A,R) where A, the set of arguments, is a finite sub-
set of a fixed infinite background set U , and R ⊆ A × A.
The set of all finite AFs is denoted by Afin. We say a at-
tacks b, or b is defeated by a in F whenever (a, b) ∈ R.
Furthermore, an argument a ∈ A is defended by a set
A′ ⊆ A in F if for each b ∈ A with (b, a) ∈ R, b is
attacked by some a′ ∈ A′ in F . For a set E ⊆ A we
use R+

F (E ) or simply, E+ for {b | (a, b) ∈ R, a ∈ E}. If
G = (B,S), we use A(G) as well as R(G) to refer to the
first or second component of G , i.e. B or S, respectively.
The set L(G) = {a ∈ A(G) | (a, a) ∈ R(G)} contains all
self-defeating arguments. A set E is said to be conflict-free
w.r.t. F = (A,R) if there are no a, b ∈ A, s.t. (a, b) ∈ R.
We denote the set of all conflict-free sets by cf (F ). In the
following we introduce the two main versions of argument-
ation semantics, namely the extension-based approach and
the labelling-based approach (cf. (Baroni, Caminada, and
Giacomin 2011) for an excellent overview).

Extension-based Semantics

An extension-based semantics Eσ : Afin → 22
U

is a func-
tion which assigns to any AF F = (A,R) a set of sets of
arguments denoted by Eσ(F ) ⊆ 2A. Each one of them,
a so-called σ-extension E , is considered to be acceptable
with respect to F . We consider eight prominent semantics,
namely admissible, complete, preferred, semi-stable, stable,
stage, grounded, ideal and eager semantics (abbreviated by
ad , co, pr , ss, stb, gr , il and eg respectively). From now on
we use Φ for the set of all eight semantics mentioned in this
paragraph.

Definition 1. Let F = (A,R) be an AF and E ∈ 2A.

1. E ∈ Ead(F ) iff E ∈ cf (F ) and E defends all its
elements,

2. E ∈ Eco(F ) iff E ∈ Ead(F ) and for any a ∈ A defended
by E in F , a ∈ E ,

3. E ∈ Epr (F ) iff E ∈ Eco(F ) and there is no E ′ ∈ Ead(F ),
s.t. E ⊂ E ′,

4. E ∈ Ess(F ) iff E ∈ Eco(F ) and there is no E ′ ∈ Eco(F ),
s.t. E ∪ E+ ⊂ E ′ ∪ E ′+,

5. E ∈ Estb(F ) iff E ∈ Eco(F ) and E ∪ E+ = A,
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6. E ∈ Egr (F ) iff E ∈ Eco(F ) and there is no E ′ ∈ Eco(F ),
s.t. E ′ ⊂ E ,

7. E ∈ Eil(F ) iff E ∈ Eco(F ), E ⊆ ⋂ Epr (F ) and there is
no E ′ ∈ Eco(F ) satisfying E ′ ⊆ ⋂ Epr (F ) s.t. E ⊂ E ′,

8. E ∈ Eeg(F ) iff E ∈ Eco(F ), E ⊆ ⋂ Ess(F ) and there is
no E ′ ∈ Eco(F ) satisfying E ′ ⊆ ⋂ Ess(F ) s.t. E ⊂ E ′.
♦
The following AFs exemplify the different extension-based

semantics introduce above and serve as running examples in
this paper.

Example 1. Consider the AFs F , G and H .

aF : b aG : b aH : b

For all σ ∈ Φ, τ ∈ Φ \ {stb} we find Eσ(F ) = Eσ(G) =
Eτ (H ). Furthermore, Ead(F ) = {∅, {a}} and for any
σ ∈ Φ \ {ad}, Eσ(F ) = {{a}}. Finally, and importantly,
Estb(H ) = ∅. ♦

Labelling-based Semantics

A labelling-based semantics Lσ : Afin → 2(2
U)

3

is a function
which assigns to any AF F = (A,R) a set of triples of sets of
arguments denoted by Lσ(F ) ⊆ (

2A
)3. Each one of them, a

so-called σ-labelling L = (I,O, U) indicates that arguments
in I,O or U are considered to be accepted (in), rejected (out)
or undecided with respect to F . We use LI (or LI(a)) to refer
to (a is an element of) the first component of the labelling L.
Analogously for LO and LU. Furthermore, for two labellings
L1, L2 we write L1 � L2 iff LI

1 ⊆ LI
2 and LO

1 ⊆ LO
2 , and as

usual L1 � L2 iff L1 � L2 and L1 	= L2. Finally, given a set
of labellings S we define


S =

(⋂
L∈S

LI,
⋂
L∈S

LO, A \
(⋂

L∈S
LI ∪

⋂
L∈S

LO

))
.

We proceed with the central notions of admissible as well as
complete labellings.

Definition 2. A labelling L of an AF F = (A,R) is an
admissible labelling iff for any a ∈ A,

1. LI(a) → (∀b : (b, a) ∈ R → LO(b)) and
2. LO(a) → (∃b : (b, a) ∈ R ∧ LI(b)).

If it additionally satisfies

3. LI(a) ← (∀b : (b, a) ∈ R → LO(b)) and
4. LO(a) ← (∃b : (b, a) ∈ R ∧ LI(b))

we call it a complete labelling. ♦
We introduce the labelling-based counterparts to the

extension-based semantics presented in Definition 1.

Definition 3. Let F = (A,R) be an AF and L ∈ (
2A

)3.

1. L ∈ Lad(F ) iff L is a admissible labelling of F ,
2. L ∈ Lco(F ) iff L is a complete labelling of F ,
3. L ∈ Lpr (F ) iff L ∈ Lco(F ) and there is no M ∈ Lco(F ),

s.t. LI⊂M I,

4. L ∈ Lss(F ) iff L ∈ Lco(F ) and there is no M ∈ Lco(F ),
s.t. M U⊂LU,

5. L ∈ Lstb(F ) iff L ∈ Lco(F ) and LU = ∅,
6. L ∈ Lgr (F ) iff L ∈ Lco(F ) and there is no M ∈ Lco(F ),

s.t. M I⊂LI,
7. L ∈ Lil(F ) iff L ∈ Lco(F ), L � 
Lpr (F ) and there is

no M ∈ Lco(F ), s.t. M � 
Lpr (F ) and L � M ,
8. L ∈ Leg(F ) iff L ∈ Lco(F ), L � 
Lss(F ) and there is

no M ∈ Lco(F ), s.t. M � 
Lss(F ) and L � M . ♦
Example 2 (Example 1 cont.). In case of labelling-
based semantics we observe certain differ-
ences. More precisely, Lσ(F ) = Lσ(G) but
Lσ(F ) 	= Lσ(H ) for any σ ∈ Φ. Furthermore,
Lad(F ) = {(∅, ∅, {a, b}), ({a}, ∅, {b}), ({a}, {b}, ∅)}
and Lad(H ) = {(∅, ∅, {a, b}), ({a}, ∅, {b})}. For the re-
maining σ ∈ Φ \ {ad} we obtain Lσ(F ) = {({a}, {b}, ∅)}
and for τ ∈ Φ \ {ad , stb}, Lτ (H ) = {({a}, ∅, {b})}.
Finally, Lstb(H ) = ∅. ♦

Basic Properties and Relations

In the following we list well known properties and rela-
tions between semantics which are frequently used in the
proofs. For more details and explanations confer (Dung 1995;
Caminada and Gabbay 2009; Caminada 2011; Caminada and
Pigozzi 2011; Baumann and Spanring 2015).
Fact 1. Let X ∈ {L, E}. For any AF F we have

1. Xσ(F ) ⊆ Xco(F ) for all σ ∈ Φ \ {ad},
2. |Xσ(F )| ≥ 1 for all σ ∈ Φ \ {stb} and
3. |Xgr (F )| = |Xil(F )| = |Xeg(F )| = 1.

Fact 2. Given an AF F = (A,R) and E ⊆ A. We write EL
for (E,E+, A \ (E ∪ E+)). For all σ ∈ Φ we have,
1. If L ∈ Lσ(F ), then LI ∈ Eσ(F ),
2. If E ∈ Eσ(F ), then EL ∈ Lσ(F ) and
3. Obviously, (EL)I = E.

We point out that the properties mentioned in Fact 2 do
not ensure that there is a one-to-one correspondence between
σ-labellings and σ-extensions. This desirable feature (which
would indeed justify the terms σ-labellings and σ-extensions)
is given if additionally, labellings are uniquely determined by
their in-labelled arguments.
Fact 3. Given an AF F = (A,R) and a set E ⊆ A. Let
σ ∈ Φ \ {ad}. We have,

1. For any L,M ∈ Lσ(F ),LI = M I iff L = M ,
2. Given L ∈ Lσ(F ), then (LI)L = L and
3. |Lσ(F )| = |Eσ(F )|.

Please note that admissible labellings are excluded from
Fact 3. The AF F handled in Examples 1 and 2 shows that
this is no coincidence.

Replaceability and Characterization Theorems

In this section we review typical dynamic scenarios and in-
troduce their corresponding equivalence notions. Further-
more, we present already existing characterization results for
extension-based semantics.
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Dynamic Scenarios and Equivalence Notions

There are two main classes of dynamic scenarios, namely
expansions and deletions (see Figure 1). Both of them can be
further divided in normal and local versions. These scen-
arios are motivated by real-world argumentation as well
as instantiation-based argumentation (cf. (Caminada and
Amgoud 2007; Baumann and Brewka 2010; Baumann 2014a)
as well as (Baumann 2014b, Section 2.1.4) for more explana-
tions).
Definition 4. Given an AF F = (A,R), a set of arguments
B and a set of attacks S as well as a further AF H . The AF

G = (F \ [B,S]) ∪H =
(
(A,R \ S)|A\B

) ∪H

is called an update of F (for short, F �U G). An update is
called a

1. deletion (F �D G) iff H = ∅,
2. normal deletion (F �ND G) iff F �D G and S = ∅,
3. local deletion (F �LD G) iff F �D G and B = ∅,
4. expansion (F �E G) iff B = S = ∅,
5. normal expansion (F �N G) iff F �E G = (C, T ) and

∀ab ((a, b) ∈ T \R → a ∈ C \A ∨ b ∈ C \A),
6. strong expansion (F �S G) iff F �N G = (C, T ) and

∀ab ((a, b) ∈ T \R → ¬(a ∈ C \A ∧ b ∈ A)),
7. local expansion (F �L G) iff F �E G = (C, T ) and

A = C. ♦
Consider again Example 1. The AF G is a local expansion

of F and H is a local deletion of G .

Notions of Equivalence

We now introduce the corresponding equivalence notions (cf.
(Baumann and Strass 2015, Section 3.8) for chronological
order). If two (possibly syntactically different) AFs are equi-
valent, then they share the same implicit information w.r.t.
further expansions or deletions, respectively. This means,
they cannot be semantically distinguished in any suitable fu-
ture scenario and thus, can be replaced by each other without
loss of (semantical) information. The first paper in this line
of work was (Oikarinen and Woltran 2011) engaged with
characterizing strong equivalence. For the sake of clarity and
comprehensibility we use the term expansion equivalence to
indicate that arbitrary expansions are allowed.
Definition 5. Given a semantics σ and let X ∈ {L, E}. Two
AFs F and G are

1. standard equivalent w.r.t. Xσ (F ≡Xσ G) iff Xσ(F ) =
Xσ(G),

2. update equivalent w.r.t. Xσ (F ≡Xσ

U G) iff for any pair
[B,S] and any AF H we have: (F \ [B,S]) ∪ H ≡Xσ

(G \ [B,S]) ∪H ,
3. deletion equivalent w.r.t. Xσ (F ≡Xσ

D G) iff for any pair
[B,S] we have: F \ [B,S] ≡Xσ G \ [B,S],

4. normal deletion equivalent w.r.t. Xσ (F ≡Xσ

ND G) iff for
any set of arguments B we have: F \[B, ∅] ≡Xσ G\[B, ∅],

5. local deletion equivalent w.r.t. Xσ (F ≡Xσ

LD G) iff for any
set of attacks S we have: F \ [∅, S] ≡Xσ G \ [∅, S],

6. expansion equivalent w.r.t. Xσ (F ≡Xσ

E G) iff for each
AF H we have: F ∪H ≡Xσ G ∪H ,

7. normal expansion equivalent w.r.t. Xσ (F ≡Xσ

N G) iff for
each AF H , such that F �N F ∪ H and G �N G ∪ H
we have: F ∪ H ≡Xσ G ∪H ,

8. strong expansion equivalent w.r.t. Xσ (F ≡Xσ

S G) iff for
each AF H , such that F �S F ∪H and G �S G ∪H we
have: F ∪H ≡Xσ G ∪H ,

9. local expansion equivalent1 w.r.t. Xσ (F ≡Xσ

L G) iff for
each AF H , such that A(H ) ⊆ A(F ∪G) we have: F ∪
H ≡Xσ G ∪H . ♦
From now on we use M as a shorthand for

{L,E,N, S,ND,D,LD,U}. Furthermore, we use M -
equivalent as a placeholder for any equivalence notion
defined above. The following figure gives a preliminary
overview about interrelations (arising from the definitions)
between the introduced equivalence notions. For two equival-
ence notion Φ and Ψ we have Φ ⊆ Ψ iff there is a link from
Φ to Ψ.

update

expansion

deletion
local

deletion

normal
deletion

local
expansion

normal
expansion

strong
expansion

Figure 1: Preliminary Relations

Example 3 (Examples 1, 2 cont.). We mention only a few
(non-)relations. We already observed that F and G are
standard equivalent w.r.t. all semantics considered in this
paper. Furthermore, they can not be distinguished w.r.t. the
grounded semantics and local expansion. In contrast, the
AF I = ({a, b}, {(b, a)}) shows that they are not local equi-
valent w.r.t. all considered semantics except the grounded
one.

aF ∪ I : b aG ∪ I : b

Extension-based Semantics are Characterizable
through Kernels

A kernel is a function k : Afin → Afin where each k(F ) = F k

is obtained from F by deleting certain (redundant) informa-
tion. A relation ≡ is characterizable through kernels if there
is a kernel k , s.t. F ≡ G iff F k = Gk . We also say k char-
acterizes ≡ or k is the characterizing kernel of ≡. It was the
main result in (Oikarinen and Woltran 2011) that expansion
equivalence is characterizable through kernels.

1Note that a suitable AF H is not necessarily a local expansion
of F and G in the sense of Definition 4. Nevertheless, we may
loosely speak about local expansions.
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Later it was shown that almost all extension-based equi-
valence notions presented in Definition 5 are characterizable
through kernels (Baumann 2012; 2014a). In the following
we list all relevant kernel definitions.
Definition 6. Given an AF F = (A,R) and a semantics σ.
We define σ-kernels F k(σ) =

(
A,Rk(σ)

)
as well as σ-*-

kernels F k∗(σ) =
(
A,Rk∗(σ)

)
whereby

Rk(stb) = R \ {(a, b) | a �= b, (a, a) ∈ R},
Rk(ad) = R \ {(a, b) | a �= b, (a, a) ∈ R,

{(b, a), (b, b)} ∩R �= ∅},
Rk(gr) = R \ {(a, b) | a �= b, (b, b) ∈ R,

{(a, a), (b, a)} ∩R �= ∅},
Rk(co) = R \ {(a, b) | a �= b, (a, a), (b, b) ∈ R},

Rk∗(ad) = R \ {(a, b) | a �= b, ((a, a) ∈ R ∧ {(b, a), (b, b)}
∩ R �= ∅) ∨ ((b, b) ∈ R ∧ ∀c ((b, c) ∈ R →
{(a, c), (c, a), (c, c), (c, b)} ∩R �= ∅))},

Rk∗(gr) = R \ {(a, b) | a �= b, ((b, b) ∈ R ∧ {(a, a), (b, a)}
∩ R �= ∅) ∨ ((b, b) ∈ R ∧ ∀c ((b, c) ∈ R →
{(a, c), (c, a), (c, c)} ∩R �= ∅))},

Rk∗(co) = R \ {(a, b) | a �= b, ((a, a), (b, b) ∈ R)

∨ ((b, b) ∈ R ∧ (b, a) /∈ R ∧ ∀c ((b, c) ∈ R →
{(a, c), (c, a), (c, c), (c, b)} ∩R �= ∅))}. ♦

Example 4 (Example 1 cont.). Let σ ∈ {ad , gr , co}. We
have Gk(σ) = G 	= H = H k(σ). On the other hand, (a, b)
has to be deleted in G if we apply σ-*-kernels since all
second disjuncts are satisfied. More precisely, Gk∗(σ) =
H k∗(σ) = H . ♦

From now on we use K as a shorthand for the set of all
kernels introduced in Definition 6. The following figure
gives a comprehensive overview over characterization results
(see (Baumann and Woltran 2014; Baumann and Brewka
2015) for recent overviews). The entry k in row M and
column σ indicates that ≡Eσ

M is characterizable through k .
The abbreviation id stands for identity map and the question
mark represents an open problem. Furthermore, [1]m ([2]m)
means that the characterization theorem m in (Oikarinen and
Woltran 2011) ((Baumann 2014a)) is not purely kernel-based.
Example 5 (Examples 1, 4 cont.). Given a semantics σ ∈
{ad , pr , il , gr , co}. In consideration of Figure 2 we deduce
that G and H are semantically distinguishable via arbitrary
expansions. In contrast, this endeavour is impossible if we
restrict ourselves to strong expansions. Formally, G ≡Eσ

S H

and G 	≡Eσ

E H . ♦
Finally, we list useful properties of the introduced kernels.

Fact 4. Let k ∈ K and given two AFs F and G .
1. cf (F ) = cf (F k ), A(F ) = A(F k ) and L(F ) = L(F k ),
2. Eσ(F ) = Eσ

(
F k(σ)

)
where σ ∈ {stb, gr , co},

3. Eσ(F ) = Eσ
(
F k(ad)

)
where σ ∈ {ss, eg , ad , pr , il},

4. F k = Gk ⇒ for any AF H , (F ∪H )k = (G ∪H )k ,
5. F k = Gk ⇒ for any set B, (F \ [B, ∅])k = (G \ [B, ∅])k .

dstbp dssp degp dadp dprp dilp dgrp dcop

[1]9 k(ad) k(ad) k(ad) k(ad) k(ad) [1]10 [1]11

k(stb) k(ad) k(ad) k(ad) k(ad) k(ad) k(gr) k(co)

k(stb) k(ad) k(ad) k(ad) k(ad) k(ad) k(gr) k(co)

k(stb) k(ad) k(ad) k∗(ad) k∗(ad) k∗(ad) k∗(gr) k∗(co)

[2]10 ? ? [2]16 ? ? [2]16 [2]16

id id id id id id id id

id id id id id id id id

id id id id id id id id

L

E

N

S

ND

D

LD

U

Figure 2: Extension-based Characterizations

Preliminary Results

The basic properties listed in Facts 1 and 2 are concerned with
single AFs. In this section we compare the set of extensions
as well as labellings of different AFs. This will lead to the
general insight that being M -equivalent w.r.t. labelling-based
semantics implies being M -equivalent w.r.t. extension-based
semantics. As a by-product of this analysis we obtain first
characterization results for labelling-based semantics. More
precisely, analogously to extension-based semantics we have
that deletion, local deletion as well as update equivalence
w.r.t. Lσ collapse to identity. The following lemma can be
shown by combining the assertions listed in Fact 2.
Lemma 5. Given two AFs F and G . For any σ ∈ Φ,

Lσ(F ) = Lσ(G) ⇒ Eσ(F ) = Eσ(G).

Observe that the converse direction of Lemma 5 does not
hold in general. The main reason for the invalidity is that
AFs may possess the same σ-extensions without sharing the
same arguments. This is impossible in case of labelling-based
semantics since labellings assign a label to any argument of
the considered AF implying that labellings are necessarily
different if the frameworks in question possess different argu-
ments. Furthermore, even sharing the same arguments does
not ensure the validity of the converse direction. Consider
therefore the running examples F and H (Example 1). Al-
though they possess the same complete extensions they yield
different complete labellings (cf. Example 2).

Having Lemma 5 at hand we may state (and one may easily
prove) the fundamental relation between labelling-based and
extension-based equivalence notion.
Theorem 6. Let σ ∈ Φ and M ∈ M. For any AFs F ,G ,

F ≡Lσ

M G ⇒ F ≡Eσ

M G .

In the rest of the paper we will study in detail in which
cases the converse direction holds. We point out, that it
is a misconception to expect that the extension-based and
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labelling-based version of a certain equivalence notion co-
incide if the considered σ-labellings and σ-extensions are
in one-to-one correspondence. This does not hold in gen-
eral and makes characterizing labelling-based equivalence
notions a non-trivial task.

We proceed with the first characterization theorem. Re-
member that identity is the finest equivalence relation. Fur-
thermore, it is already shown that deletion, local deletion as
well as update equivalence w.r.t. Eσ collapse to identity (see
Figure 2). Consequently, applying the fundamental relation
stated in Theorem 6 we obtain the identical characterization
results w.r.t. labelling-based semantics.
Theorem 7. Let M ∈ {D,LD,U} and σ ∈ Φ. For any two
AFs F and G ,

F ≡Lσ

M G ⇔ F = G .

Example 6 (Examples 1,2 cont.). Obviously, F 	= G .
Hence, F 	≡Lσ

LD G for any σ ∈ Φ (Theorem 7). The follow-
ing local deletions exemplify the predicted non-equivalence.
Let S = {(a, b)}. Consequently, F \ [∅, S] = ({a, b}, ∅)
and G \ [∅, S] = ({a, b}, {(a, b)}) = H . For any σ ∈ Φ,
({a, b}, ∅, ∅) ∈ Lσ(F \ [∅, S]) \ Lσ(G \ [∅, S]) since b is
self-defeating in H .

Coincidence of Extension-based and

Labelling-based Equivalence Notions
Two labellings of the same AF are identical if they share the
same accepted as well as rejected arguments. If considering
labellings of different AFs this assertion remains true as long
as they share the same arguments. Due to the definition of
complete labellings we may state an even weaker condition
for equality.
Proposition 8. Given two AFs F and G as well as L ∈
Lco(F ) and M ∈ Lco(G). We have L = M if simultan-
eously A(F ) = A(G), LI = M I and R+

F (L
I) = R+

G(M I).
The assertion does not hold in case of admissible labellings.

Consider therefore the following counterexample.
Example 7 (Examples 1, 3 cont.). Consider the AFs G and
G ∪ I as well as the the labellings L = ({a}, ∅, {b}) ∈
Lad(G) and M = ({a}, {b}, ∅) ∈ Lad(G ∪ I ). Obviously,
A(G) = A(G∪I ) = {a, b}, LI = M I = {a} and R+

G(LI) =

R+
G∪I (M

I) = {b} but L 	= M . ♦
The following proposition states that some kernels possess

the property that the range of a conflict-free set remains the
same even if we apply them to the considered framework.
The proof requires Definition 6 and Fact 4-1. only.
Proposition 9. Let k ∈ {k(stb), k(ad), k(co)}. For any
AF F and E ⊆ cf (F ) we have, R+

F (E) = R+
Fk (E).

The assertion is not valid for the remaining kernels con-
sidered in this paper.
Example 8 (Examples 1, 3, 4 cont.). We already observed
that for any σ ∈ {ad , gr , co}, Gk∗(σ) = H . Moreover,
although {a} ∈ cf (G) = cf

(
Gk∗(σ)

)
we observe

R+
G({a}) = {b} 	= ∅ = R+

Gk∗(σ)({a}). Similarly, one may
check that the AF G ∪ I serves as a counter-example in case
of the grounded kernel. ♦

Similarly to Fact 4-2./3. we will show that there are com-
binations of kernels and semantics σ, s.t. the application of a
kernel does not change the set of σ-labellings.
Lemma 10. For any AF F ,

1. Lσ(F ) = Lσ

(
F k(σ)

)
for σ ∈ {co, stb, gr} and

2. Lτ (F ) = Lτ

(
F k(ad)

)
for τ ∈ {ss, eg , pr , il}.

Proof. 1. Due to the limited space we exclude a proof
for grounded semantics since it is structurally different.
Given σ ∈ {co, stb}. (⊆) Let L ∈ Lσ(F ). Hence,
LI ∈ Eσ(F ) (Fact 2-1.). Furthermore, LI ∈ Eσ(F k(σ))

(Fact 4-2.). Consequently, (LI)
L ∈ Lσ

(
F k(σ)

)
(Fact 2-2.). Note that

Ä
(LI)

LäI
= LI and moreover

Ä
(LI)

LäO
= R+

Fk(σ)(L
I) = R+

F (L
I) (Proposition 9). This

means, L = (LI)
L ∈ Lσ

(
F k(σ)

)
(Proposition 8). (⊇) Given

L ∈ Lσ(F
k(σ)). Thus, LI ∈ Eσ(F k(σ)) (Fact 2-1.). Again,

LI ∈ Eσ(F ) (Fact 4-2.). Consequently, (LI)
L ∈ Lσ (F )

(Fact 2-2.). Note that
Ä
(LI)

LäI
= LI and moreover

Ä
(LI)

LäO
= R+

F (L
I) = R+

Fk(σ)(L
I) (Proposition 9). Finally,

L = (LI)
L ∈ Lσ (F ) (Proposition 8) concluding the proof.

2. Similarly. Use Fact 4-3. instead of Fact 4-2. Furthermore,
Proposition 8 is applicable since all considered semantics are
complete ones.

Now we are prepared for the main theorem of this section. It
stipulates that several expansion equivalence relations as well
as weaker notions do not distinguish between their labelling-
based and extension-based version. This means, kernel-based
characterization results (depicted in Figure 1) carry over to
labelling-based semantics. In order to save space we formal-
ize the theorem in terms of extension-based/labelling-based
equivalence notions. An overview of characterizing kernels
is presented in Figure 3, Section Summary and Comparison.
Theorem 11. Given two AFs F and G . We have,

1. F ≡Eσ

M G ⇔ F ≡Lσ

M G for σ ∈ Φ \ {ad},M ∈ {E,N},

2. F ≡Eσ

L G ⇔ F ≡Lσ

L G for σ ∈ {ss, eg , pr , il} and

3. F ≡Eσ

S G ⇔ F ≡Lσ

S G for σ ∈ {stb, ss, eg}.

Proof. (⇐) Apply Theorem 6.
(⇒) For the proof we use σ and M as a placeholder for a
combination mentioned above. Given an AF H , s.t. F ∪H
and G ∪H are (normal, strong, local) expansions of F and
G as required in Definition 5. Since F ≡Eσ

M G is assumed
we deduce F k = Gk for the associated kernel k (compare
Figure 1). Thus, (F ∪ H )k = (G ∪ H )k (Fact 4-4.). Due
to Lemma 10 we obtain Lσ(F ∪ H ) = Lσ

(
(F ∪H )k

)
=

Lσ

(
(G ∪ H )k

)
= Lσ(G ∪H ). Hence, F ≡Lσ

M G .

Non-Coincidence of Extension-based and

Labelling-based Equivalence Notions

We now leave the realm of uniformity of extension-based
and labelling-based characterizations. In particular, we show
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that the admissible kernel (originally introduced to charac-
terize equivalence notions w.r.t. admissible extension-based
semantics) does not serve as characterizing kernel for admiss-
ible labellings. Furthermore, we will see that the more soph-
isticated σ-*-kernels are not needed to characterize strong
expansion equivalence. Finally, normal deletion equivalence
w.r.t. labelling-based semantics can be decided via traditional
kernels in contrast to the extension-based versions.

Expansion Equivalence w.r.t. Admissible Labellings

Expansion equivalence as well as its local, normal and
strong versions w.r.t. admissible extensions are character-
izable through the admissible kernel. The following example
shows that this assertion does not hold in case of admissible
labellings.

Example 9. Consider the following AFs.

aI : b aJ : b

Observe that I k(ad) = J k(ad) = J . Consequently,
I ≡Ead

M J for M ∈ {L,E,N} (cf. Figure 1). On the other
hand, ({b}, ∅, {a}) ∈ Lad(J ) \ Lad(I ) because the argu-
ment a cannot be undecided in I since it attacks the in-
labelled argument b (compare Definition 2). Thus I 	≡Lad

M J
for M ∈ {L,E,N, S}. ♦

One of the most surprising results for ourselves is that
expansion equivalence as well as its local, normal and strong
variant w.r.t. admissible labellings are characterizable through
the complete kernel as stated by the following theorem.

Theorem 12. Given two AFs F and G . We have,

F ≡Lad

M G ⇔ F k(co) = Gk(co) for M ∈ {L,E,N, S}.
The proof of the theorem includes a long case distinction
similar to the proof of Theorem 15.

Example 10 (Example 9 cont.). Remember that the com-
plete kernel deletes an attack (a, b) if and only if a and b
are self-defeating. Consequently, I k(co) = I 	= J = J k(co)

as predicted in Theorem 12. ♦

Strong Expansion Equivalence for Preferred, Ideal,
Grounded and Complete Labellings

In this subsection we will see that σ-*-kernels are not needed
to characterize strong expansion equivalence w.r.t. labelling-
based preferred, ideal, grounded and complete semantics.
Interestingly, we observe a certain symmetry, namely the
labelling-based version is characterizable through a σ-kernel
if and only if the extension-based version is characterizable
through the corresponding σ-*-kernel.

Example 11 (Examples 1, 4 cont.). We already observed
that Gk∗(σ) = H k∗(σ) = H for any σ ∈ {ad , gr , co}.
In consideration of Figure 1 we deduce G ≡Eσ

S H
for σ ∈ {pr , il , gr , co}. On the other hand,
({a}, {b}, ∅) ∈ Lσ(G) \ Lσ(H ) because b cannot be out-
labelled in H since it is not attacked by an in-labelled ar-
gument (compare Definition 2). Therefore, G 	≡Lσ

S H for
σ ∈ {pr , il , gr , co}. ♦

We proceed with a theorem stating that possessing the
same σ-kernels is necessary and sufficient for being strong
expansion equivalent w.r.t. certain labelling-based semantics.

Theorem 13. Given two AFs F and G . We have,

1. F ≡Lσ

S G ⇔ F k(ad) = Gk(ad) for σ ∈ {pr , il},

2. F ≡Lgr

S G ⇔ F k(gr) = Gk(gr) and

3. F ≡Lco

S G ⇔ F k(co) = Gk(co).

Example 12 (Example 9 cont.). We already observed that
the AFs I and J possess the same admissible kernel.
Consequently, in accordance with Theorem 13 we obtain,
I ≡Lpr

S J . We encourage the reader to verify this assertion
for some strong expansions. ♦

Normal Deletion Equivalence

Characterizing normal deletion equivalence in case of
extension-based semantics is exceptional in several regards.
Remember that normal deletions retract arguments and their
corresponding attacks. Firstly, only a few characterization
results are achieved, namely in case of stable, admissible,
complete and grounded semantics (see (Baumann and Strass
2015, Open Problem 13) for a summary of open problems).
Secondly, none of the characterization results is purely kernel-
based, i.e. beside the equality of kernels on certain parts of
the frameworks further loop- as well as attack-conditions
have to be satisfied. Furthermore, quite surprisingly, nor-
mal deletion equivalent AFs do not even have to share the
same arguments and finally, equivalence classes may have an
infinite number of elements.

We will see that characterizing normal deletion equival-
ence in case of labelling-based semantics is quite different
from their extension-based versions. Any labelling-based
semantics considered in this paper is characterizable through
traditional kernels and thus, do not share any of the features
mentioned above. We proceed with a lemma paving the way
for the main theorem.

Lemma 14. Given two AFs F and G . We have

1. F k(stb) = Gk(stb) ⇒ F ≡Lstb

ND G ,

2. F k(ad) = Gk(ad) ⇒ F ≡Lσ

ND G for σ ∈ {ss, eg , pr , il},

3. F k(co) = Gk(co) ⇒ F ≡Lσ

ND G for σ ∈ {ad , co} and

4. F k(gr) = Gk(gr) ⇒ F ≡Lgr

ND G ,

Proof. For the proof we use Lσ and k as a placeholder for
a combination mentioned above. Given F k = Gk . Con-
sequently, for any set B, (F \[B, ∅])k = (G\[B, ∅])k (Fact 4-
5.) Remember that Lσ (F \ [B, ∅]) = Lσ

Ä
(F \ [B, ∅])k

ä
as

well as Lσ (G \ [B, ∅]) = Lσ

Ä
(G \ [B, ∅])k

ä
(Lemmata 10

and 12). Consequently, we derive F ≡Lσ

ND G since we put
no restrictions on B. �
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We now present the main theorem of this section.

Theorem 15. Given two AFs F and G . We have

1. F ≡Lstb

ND G ⇔ F k(stb) = Gk(stb),

2. F ≡Lσ

NDG ⇔ F k(ad) = Gk(ad) for σ ∈ {ss, eg , pr , il},

3. F ≡Lσ

NDG ⇔ F k(co) = Gk(co) for σ ∈ {ad , co} and

4. F ≡Lgr

NDG ⇔ F k(gr) = Gk(gr),

Proof. (⇐) Apply Lemma 14.
(⇒) We show the contrapositive. Assume A

(
F k(σ)

) 	=
A
(
Gk(σ)

)
for τ ∈ {stb, ad , co, gr}. Hence, A(F ) 	= A(G)

(Fact 4-1.). Since any semantics σ ∈ Φ \ {stb} possesses at
least one σ-labelling (Fact1-3.) we derive Lσ(F ) 	= Lσ(G).
Consider now stable labellings. W.l.o.g. let a ∈ A(F )\A(G).
Define B = (A(F ) ∪A(G)) \ {a}. We have G \ [B, ∅] =
(∅, ∅) 	= F \[B, ∅]. Obviously, {(∅, ∅, ∅)} = Lstb(G\[B, ∅]).
Since A (F \ [B, ∅]) = {a} we derive F 	≡Lσ

ND G for any
σ ∈ Φ. From now on we assume A(F ) = A(G). Sup-
pose now L

(
F k(τ)

) 	= L
(
Gk(τ)

)
for τ ∈ {stb, ad , co, gr}.

Without loss of generality let a ∈ L
(
F k(τ)

) \ L (
Gk(τ)

)
=

L(F ) \ L(G) (Fact 4-1.). Define B = A(F ) \ {a}. Obvi-
ously, ({a}, ∅, ∅) ∈ Lσ(G \ [B, ∅]) \ Lσ(F \ [B, ∅]) show-
ing F 	≡Lσ

ND G for any semantics σ ∈ Φ. From now
on we assume L

(
F k(τ)

)
= L

(
Gk(τ)

)
and furthermore,

(a, b) ∈ R
(
F k(τ)

) \R (
Gk(τ)

)
for τ ∈ {stb, ad , co, gr}.

1. Assuming a, b /∈ L
(
F k(τ)

)
implies (a, b) ∈ R (F ) \

R (G) for τ ∈ {stb, ad , gr , co} since any τ -kernel require
at least one loop for a potential deletion. The following
set B will be used throughout the proof and is defined as
B = A(F ) \ {a, b}. Consider the AFs F \ [B, ∅] as well
as G \ [B, ∅] abbreviated by F \B or G \B, respectively.
We list now all possible scenarios.

aF2 \B: b aG2 \B : b

aF1 \B : b aG1 \B : b

It can be easily checked that for any i, j ∈ {1, 2},
Lσ(Fi \B) 	= Lσ(Gj \B) for any σ ∈ Φ. Consequently,
F 	≡Lσ

ND G for σ ∈ Φ.

2. Assume a ∈ L
(
F k(τ)

)
, b /∈ L

(
F k(τ)

)
.

(a) In case of τ = stb we have nothing to show since
(a, b) ∈ R

(
F k(stb)

)
and a ∈ L

(
F k(stb)

)
is impossible.

(b) Consider now τ = ad . Let σ ∈ {ss, eg , pr , il}. In
accordance with the admissible kernel we find the fol-
lowing possibilities.

aG2 \B : b aG3 \B : b

aF \B : b aG1 \B : b

Obviously, for any σ ∈ {ss, eg , pr , il},
{(∅, ∅, {a, b})} = Lσ(F \ B). Further-
more, Lσ(G1 \ B) = {({b}, ∅, {a})} and

Lσ(G2 \ B) = Lσ(G3 \ B) = {({b}, {a}, ∅)}.
Consequently, F 	≡Lσ

ND G for σ ∈ {ss, eg , pr , il}.

(c) Let τ ∈ {gr , co}. In consideration of the grounded and
complete kernel we find the following possibilities.

aF2 \B : b aG2 \B : b

aF1 \B : b aG1 \B : b

Let i ∈ {1, 2}. We have Lgr (Fi \ B) =
{(∅, ∅, {a, b})} ⊆ Lco(Fi \B) (Fact 1-1.). On the other
hand, for any complete labelling M ∈ Lco(Gi \B) we
necessarily have M I(b) since it is unattacked in Gi \B.
Hence, F 	≡Lσ

ND G for σ ∈ {gr , co}. Finally, one may
easily verify that ({b}, ∅, {a}) ∈ Lad(Gi\B)\Lad(Fi\
B). Consequently, F 	≡Lad

ND G .

3. Assume a /∈ L
(
F k(τ)

)
, b ∈ L

(
F k(τ)

)
.

(a) We start with τ ∈ {stb, ad , co}. In accordance with the
stable, admissible as well as complete kernel we find
the following possibilities.

aF2 \B : b aG2 \B : b

aF1 \B : b aG1 \B : b

For any i ∈ {1, 2} and σ ∈ {stb, ss, eg , pr , il , ad}
we have, ({a}, {b}, ∅) ∈ Lσ(Fi \ B) ⊆ Lco(Fi \ B).
Obviously, Lstb(Gi \ B) = ∅. Furthermore, for any
other complete as well as admissible labelling M of
Gi \ B we necessarily have M U(b) since it cannot
be in-labelled because it is self-defeating and further-
more, an out-labelling is impossible too because it
lacks an attack from an in-labelled argument. Con-
sequently, using Fact1-1. as well as Fact1-3. we derive,
Lσ(Fi \B) 	= Lσ(Gi \B) yielding F 	≡Lσ

ND G for any
σ ∈ {stb, ss, eg , ad , pr , il , co}.

(b) Consider now τ ∈ {gr}. We find the following pos-
sibilities. Note that there is only one possibility for
F .

aG2 \B : b aG3 \B : b

aF \B : b aG1 \B : b

We have Lgr (F \ B) = {({a}, {b}, ∅)}. On the other
hand, for any grounded labelling M ∈ Lgr (Gi \ B)
we find M U(b) since b is not attacked by an in-labelled
argument. This means, F 	≡Lgr

ND G .

4. Assuming a, b ∈ L
(
F k(τ)

)
yields a contradiction since

for any τ ∈ {stb, ad , gr , co}, (a, b) ∈ R
(
F k(τ)

)
is im-

possible.
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Summary and Comparison

The attentive reader may have noticed that we provided only
61 kernel-based characterizations out of 64 defined relations.
More precisely, we do not have characterized local expan-
sion equivalence w.r.t. stable, grounded as well as complete
labelling-based semantics. Similarly to their extension-based
versions it can be checked that none of the existing kernels
serve as a characterizing kernel in case of labelling-based
semantics. A detailed study will be part of future work.

The following figure provides an overview over all char-
acterization results proven in this paper. Analogously to
Figure 2 the entry k in row M and column σ indicates that
k characterizes ≡Lσ

M . A red-highlighted entry reflects the
situation that extension-based and labelling-based version do
not coincide.

dstbp dssp degp dadp dprp dilp dgrp dcop

? k(ad) k(ad) k(co) k(ad) k(ad) ? ?

k(stb) k(ad) k(ad) k(co) k(ad) k(ad) k(gr) k(co)

k(stb) k(ad) k(ad) k(co) k(ad) k(ad) k(gr) k(co)

k(stb) k(ad) k(ad) k(co) k(ad) k(ad) k(gr) k(co)

k(stb) k(ad) k(ad) k(co) k(ad) k(ad) k(gr) k(co)

id id id id id id id id

id id id id id id id id

id id id id id id id id

L

E

N

S

ND

D

LD

U

Figure 3: Labelling-based Characterizations

In contrast to extension-based semantics we observe a
much more homogeneous picture. Firstly, there is no need
for the more sophisticated σ-*-kernels. Secondly, normal
deletion equivalence w.r.t. labelling-based semantics is nat-
urally incorporated in the overall picture in the sense that
it coincides with its corresponding expansion, normal ex-
pansion and strong expansion equivalence notions. Finally,
somehow surprisingly, expansion equivalence as well as its
local, normal and strong variant w.r.t. admissible labellings
are characterizable through the complete (instead of the ad-
missible) kernel.

Conclusions and Related Work

In this paper we studied the problem of characterizing
equivalence notions for labelling-based semantics of ab-
stract argumentation frameworks. The labelling-based ap-
proach can be traced back to the 1990s (Pollock 1995;
Jakobovits and Vermeir 1999). Later on and due to (Cam-
inada 2006) complete labellings were introduced. These
labellings play a central role in abstract argumentation, since

almost all main-stream extension-based semantics can be
reformulated in terms of complete labellings. In recent
times the labelling-based approach has received more and
more attention. including labelling-based algorithms as
well as proof procedures (Caminada 2007; Verheij 2007;
Thang, Dung, and Hung 2009; Modgil and Caminada 2009;
Caminada 2010; Nofal, Atkinson, and Dunne 2014) and
dynamics in argumentation (Boella et al. 2011; Booth et
al. 2013; Coste-Marquis et al. 2014; Rienstra, Sakama, and
van der Torre 2015). We expect that the results we have
obtained will be useful for the aforementioned topics. The
main reason for this is that the presented characterization
theorems show that there is redundant information even in
dynamic scenarios which thus give rise for simplification.

One work which must be mentioned in the context of re-
placement and labellings is (Baroni et al. 2014). The authors
studied the so-called Input/Output behaviour of argument-
ation frameworks. Roughly speaking, the main idea is to
consider an argumentation framework as a kind of black box,
which receives some input from the external world (i.e, a set
of external arguments) via incoming attacks and produces
an output to the external world via outgoing attacks. Such
an interacting module is called an argumentation multipole.
Two multipoles connected with the same external world are
considered as Input/Output equivalent if the effects, i.e. the
produced labellings for external arguments are the same for
any reasonable input-labelling. This notion yields the pos-
sibility of replacing a multipole with another one embedded
in a larger framework without affecting the labellings of the
unmodified part of the initial framework. Input/Output equi-
valence is obviously a less demanding notion than strong
equivalence since it requires equal labellings for the external
connected part only.

In (Oikarinen and Woltran 2011) the authors said: “An-
other direction of future work is to consider strong equival-
ence with respect to labellings rather than with respect to
extensions. This would lead to an even more careful notion
of equivalence, since labeling – roughly speaking – indic-
ate different reasons why an argument is not contained in
an extension. However, since our characterizations based
on extensions already provide very strict requirements for
the argumentation frameworks under comparison, we do not
expect significant further insight from such notions of strong
equivalence”. As we have seen in Figure 3, there is a majority
of equivalence relations where labelling-based and extension-
based versions coincide. However, we also observed some
exemptions. For instance, the labelling-based versions of nor-
mal deletion equivalence behave completely different since
they exclude the possibility of possessing different arguments.
Furthermore, quite surprisingly, expansion equivalence w.r.t.
admissible labellings as well as its local, normal and strong
variant are characterizable through the complete kernel. It
will be part of future work to study how the labelling versions
of conflict-free-based semantics will integrate in the overall
picture (Gaggl and Woltran 2011).
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