
Encoding Large RCC8 Scenarios Using Rectangular Pseudo-Solutions

Zhiguo Long∗
QCIS, FEIT

University of Technology Sydney
Australia

Zhiguo.Long@student.uts.edu.au

Steven Schockaert
School of Computer Science & Informatics

Cardiff University
United Kingdom

SchockaertS1@cardiff.ac.uk

Sanjiang Li
QCIS, FEIT

University of Technology Sydney
Australia

Sanjiang.Li@uts.edu.au

Abstract

Most approaches in the field of qualitative spatial reasoning
(QSR) use constraint networks to encode spatial scenarios.
The size of these networks is quadratic in the number
of variables, which has severely limited the real-world
application of QSR. In this paper, we propose another
representation of spatial scenarios, in which each variable is
associated with one or more rectangles. Instead of requiring
these rectangles to define a solution of the corresponding
constraint network, we construct sequences of rectangles that
define partial solutions to progressively weaker constraint
networks. We present experimental results that illustrate the
effectiveness of this strategy.

Introduction

Qualitative spatial relations (e.g., part of, adjacent to, and
overlapping with) offer a convenient interface between
geometric representation and natural language, and as such
form the corner stone of most spatial query languages.
The vast majority of existing methods for representing and
reasoning about qualitative spatial relations, however, do not
readily scale to large datasets with e.g. tens of thousands
of regions. The main culprit is that these methods typically
represent spatial scenarios as a constraint network, whose
size is quadratic in the number of regions. A constraint
network is a tuple N = (V,D, C), where V is a set of
variables, D is their domain, and C is a set of spatial or
temporal constraints between the variables. In this paper,
we are interested in the topological relations between pairs
of geographical regions. This kind of information can be
encoded in the popular RCC8 calculus, which is a fragment
of the Region Connection Calculus (Randell, Cui, and
Cohn 1992) supporting the definition of relations such as
disjoint, touch, and partially overlap. To represent the RCC8
relations that hold between n regions a1, · · · , an, in general
we need an RCC8 constraint for every pair of regions ai and
aj with i �= j.

On the other hand, Geographical Information Systems
(GISs) typically rely on a geometric representation of spatial
scenarios, where each region is represented as a complex
polygon which may have holes and/or multiple components.

∗Corresponding author.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This geometric representation scales linearly with the
number of regions. However, the online computation of
spatial relationships between polygons can nonetheless
be computationally expensive. In particular, it requires a
computation time that is proportional to the number of
vertices, which can be quite large (e.g. in our test data we
have encountered polygons with more than 30,000 vertices
for encoding administrative areas). Moreover, for some
regions, we may only know how they qualitatively relate to
other regions, without having access to precise boundaries.
For example, this is often the case with vernacular places
(Vögele, Schlieder, and Visser 2003; Vasardani, Winter,
and Richter 2013), as well as in applications that rely
on extracting spatial information from natural language
(Schockaert et al. 2008).

Therefore, the question arises: is there any representation
from which the RCC8 relation between any two regions
can be determined more efficiently than by direct geometric
computation, while only requiring an amount of space which
is linear in the number of regions, and which can handle
geometric and qualitative representations (or a combination
of both) as input?

The solution we propose in this paper is to construct
a sequence of axis-aligned rectangles which define
partial solutions of progressively weaker RCC8 constraint
networks. Here we say that a rectangle in the plane is
axis-aligned if each of its edges is parallel to either the x-
or y-axis.

Example 1. Consider the regions shown in Figure 1(a).
Clearly it is not possible to find a rectangular solution
for the set N of all the RCC8 constraints induced by
these regions. However, we can easily find a mapping S0

defining rectangles for the regions in V0 = {o1, . . . , o5}
such that the constraints N |V0

among these regions are
satisfied (see Figure 1(b)). We then weaken the RCC8
network for the regions by removing the constraints in N |V0 .
Now we can consider the mapping S1 from the regions
in V1 = {o1, . . . , o6} to a second set of rectangles that
satisfy all the remaining RCC8 constraints N \ (N |V0

)
(see Figure 1(c)). Note that any of the RCC8 constraints
in N is satisfied by either S0 or S1. In a similar way,
for any spatial configuration we can find a sequence of
mappings 〈S0, . . . , Sk〉, such that the rectangles given by
Si satisfy the RCC8 constraints between regions in Vi,

Proceedings, Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016)

463

(a)

(b) (c)

Figure 1: (a) Geometric representation of a spatial scenario
with six regions. (b) The set of rectangles assigned by S0

to regions in V0 = {o1, . . . , o5}. (c) The set of rectangles
assigned by S1 to regions in V1 = {o1, . . . , o6}.

which is a subnetwork of N \ (
⋃i−1

j=0 N |Vj), and moreover

N \ (⋃k
j=0 N |Vj

) = ∅.

We call the sequence of mappings 〈S0, . . . , Sk〉 a
rectangular pseudo-solution of N . With pseudo-solutions,
we can determine the RCC8 relation between any two
regions in N , by using a method that is different from the
traditional way of retrieving the relation from a constraint
network or calculating it from the polygons. For example,
for o1 and o6, by finding out the first mapping that covers
both o1 and o6, which is S1 in Example 1, we will use
the two rectangles (r′1 and r′6) defined by S1 to calculate
the RCC8 relation. When starting from large geometric
representations, however, it might not be feasible to even
consider the initial RCC8 network, due to its quadratic size.
We address this issue by first partitioning the geometric
dataset and then looking for rectangular pseudo-solutions
of the RCC8 subnetworks induced by each partition.
In the experiments, we show that the pseudo-solution
representation allows for a more compact representation
than existing baseline methods and can be used to encode
RCC8 networks with over 100,000 regions. Moreover,
since the construction is based on rectangles, retrieving the
RCC8 relation from the rectangular pseudo-solution remains
efficient.

The remainder of the paper is organized as follows. First,
we provide an overview of related work in the next section,
after which we recall some preliminaries from qualitative
spatial reasoning. Then, we describe our algorithm for
constructing the proposed representations. Subsequently, we
present several improvements of our method. Finally, we
empirically demonstrate the effectiveness of our approach.

Related Work

Dozens of relation models (also known as qualitative
calculi) have been proposed for representing qualitative
spatial and temporal information. Well-known examples
include Point Algebra (PA) (Vilain and Kautz 1986), Interval
Algebra (IA) (Allen 1983), Region Connection Calculus
(Randell, Cui, and Cohn 1992), Cardinal Direction Calculus
(CDC) (Goyal and Egenhofer 1997), and Rectangle Algebra
(RA) (Guesgen 1989; Balbiani, Condotta, and Fariñas del
Cerro 1999). In the past decades, significant research efforts
have been spent on the central reasoning problem, viz.
the consistency problem. For example, van Beek (1992)
proposed an efficient O(n2) algorithm for deciding the
consistency of a PA constraint network, Gerevini (2005)
proposed an O(n3) time Incremental Path Consistency
algorithm (IPC), and Balbiani et al. (1999) found a large
tractable subclass of RA. We refer the reader to Cohn and
Renz (2008) for more information.

Most of these works assume that a qualitative constraint
network has been explicitly given in advance. In practice,
this is rarely the case. Suppose there are one hundred
thousand regions in a geometric dataset. Then a complete
constraint network would involve billions of constraints.

Recently, several authors have started addressing the
challenging problem of compactly encoding the qualitative
relations that hold in a large geometric dataset S. For
example, Fogliaroni (2012) introduced a framework called
spatial clustering index that exploits the property of
clustering relations to compactly encode the RCC8 scenario
extracted from S. A relation R is a clustering relation if for
any pair of objects (a, b) ∈ R and any objects a′ ⊆ a, b′ ⊆ b
we have (a′, b′) ∈ R. To reduce the number of stored
constraints in the representation, it organizes variables into
clusters and then omits the constraints between individual
variables belonging to two clusters whose corresponding
geometric shapes (e.g., rectangles) are in a clustering
relation. Fogliaroni discussed two implementations of the
framework: one in which the clusters correspond to the
cells of a grid, and one in which the clusters are obtained
using an R-tree. Both implementations can be applied to
RCC8 and CDC relations. However, for RCC8, the only
clustering relation is the relation for disconnectedness (DC)
and therefore the omitted constraints are all DC constraints.
Al-Salman (2014) proposed another implementation, which
works well for CDC constraints but whose effectiveness for
RCC8 is unclear.

Long et al. (2015) developed an algorithm, called the
MBR-based approach, which uses the minimal bounding
rectangles (MBRs) to compactly represent RCC8 and CDC
constraints between regions. For RCC8 (resp. CDC), it only
stores constraints between regions whose MBRs have no
common points (resp. common interior points). It was shown
that the representation thus obtained consistently leads to
more compact representations for both RCC8 and CDC than
the two implementations proposed by Fogliaroni.

The above methods start from a geometric dataset and
sometimes still need to store a large number of constraints.
In fact, for RCC8, there is a naive method called Non-DC
which simply removes all the DC constraints. Despite its

464

Figure 2: Illustration of basic RCC8 relations.

simplicity, this method is often surprisingly effective, since
in many real-world datasets the majority of region pairs are
indeed disconnected. It is also easy to see that the resulting
representation is at least as compact as the results of all
the aforementioned approaches (which are, however, not
restricted to RCC8). In this paper, we will therefore use the
Non-DC method as our main baseline.

Li et al. (2015) proposed the prime subnetwork approach
which starts from a constraint network and derives a
subnetwork that has no redundant constraints and is
equivalent to the original network. For any consistent RCC8
network N defined over a distributive subalgebra (Long and
Li 2015), they proved that N has a unique prime subnetwork
and proposed an O(n3) algorithm for identifying the prime
subnetwork. However, the only method which is available
for retrieving the removed constraints is to use qualitative
reasoning (e.g. enforcing path-consistency), which does not
scale to large networks. Therefore, in our evaluation, we
will not compare our approach with the prime subnetwork
approach.

Preliminaries

We first recall some general notions about qualitative calculi,
after which we briefly discuss a number of particular calculi
that will be used in this paper.

Suppose U is a domain of spatial or temporal entities.
A set of relations on U is jointly exhaustive and pairwise
disjoint (JEPD) if any pair of entities from U is contained in
exactly one of these relations. A qualitative calculus M on
U is a finite Boolean subalgebra of (binary) relations on U
such that the atom set of M, written as BM, is JEPD, closed
under converse, and contains the identity relation idU . We
call each relation in BM a basic relation and denote by � the
universal relation U × U . Since BM is JEPD, � is the union
of all basic relations of M.

RCC8 is a fragment of the Region Connection Calculus
(Randell, Cui, and Cohn 1992). It is widely used for
representing topological relations between regions. A region
in this context is a bounded non-empty regular closed
set in the plane, where a set is regular closed if it is
identical to the closure of its interior. RCC8 has eight
basic relations, i.e. DC (disconnected), EC (touch), PO
(partially overlap), NTPP (non-tangential proper part) and
its converse NTPPi, TPP (tangential proper part) and
its converse TPPi, and EQ (equal). Figure 2 illustrates
these relations. The same set of relations has also been
identified for simple regions (i.e. regions without holes)
in geographic information science (Egenhofer and Herring
1991; Egenhofer and Franzosa 1991; Smith and Park 1992).

PA (Vilain and Kautz 1986) models qualitative temporal
relations between points on the real line. It uses the natural
orderings of real numbers as basic relations, i.e. <, >,
and =. IA (Allen 1983) represents the temporal relation
between two events I1, I2 (represented as closed intervals on
the real line) by considering the four PA relations between
the endpoints of I1 and I2. RA (Guesgen 1989; Balbiani,
Condotta, and Fariñas del Cerro 1999) characterizes the
relation between two axis-aligned rectangles a and b
by considering the IA relations between their x- and
y-projections. A basic RA relation can then be represented
as α⊗β, where α, β are two basic IA relations. In this paper,
rectangles are always assumed to be axis-aligned.

Many qualitative reasoning tasks operate on qualitative
constraint networks. Let M be a qualitative calculus. A
qualitative constraint over M has the form (xRy), where
R is a relation from M. A qualitative constraint network
(QCN or simply network) over M is a tuple N = (V,D, C),
where V is a set of variables, D is the domain of M, and C
is a set of spatial or temporal constraints defined over M.
We say that a network N over M is a scenario if every
relation in N is a basic relation from M. A solution of a
network N = (V,D, C) is an instantiation of the variables
in V to entities in D such that every constraint in C is
satisfied. A partial solution of a network N is a solution
of the subnetwork N |V0

of N for some V0 ⊂ V , where

N |V0
= {(uRv) | (uRv) ∈ N and u, v ∈ V0}.

We say that a solution of an RCC8 network is rectangular if
all variables are assigned to axis-aligned rectangles.

PA Representations of Basic RCC8 Relations

When restricted to the set of axis-aligned rectangles, each
basic RCC8 relation is the union of one or more basic
RA relations (cf. (Papadias et al. 1995, Figure 4) and (Li
and Cohn 2012, Figure 7)). For example, NTPP, when
restricted to rectangles, is identical to the basic RA relation
d ⊗ d (see Figure 3(a) for an illustration), where d is the
basic IA relation which specifies that one interval is during
the other. For NTPPi and EQ, we similarly find that they
correspond to a unique basic RA relation, but each of the
other five basic RCC8 relations contains more than one
basic RA relations. In fact, the union of these basic RA
relations contained in each of DC, EC, PO, and TPP/TPPi
is a non-basic RA relation which is outside the largest
known tractable subclass of RA. This suggests that it might
be NP-hard to determine if a basic RCC8 network has a
rectangular solution.

In this paper, we decompose each of DC, EC, PO, and
TPP/TPPi into RA relations that are PA representable.
Recall that an interval relation ρ is PA representable or
pointisable (Ladkin and Maddux 1988; van Beek and Cohen
1990) if there exists a PA network N over {x−1 , x+

1 , x
−
2 , x

+
2 }

such that (x−1 < x+
1) and (x−2 < x+

2) are in N and ρ is
identical to the solution set sol(N) of N , i.e.

ρ = {([a−, a+], [b−, b+]) | 〈a−, a+, b−, b+〉 ∈ sol(N)}.
We say that an RA relation is PA representable if it is the
product of two IA relations that are PA representable.

465

(a) (b)

Figure 3: (a) Two rectangles in a basic RA relation d ⊗ d.
(b) The corresponding PA relations for the endpoints.

Definition 1. Let R be a basic RCC8 relation. Suppose N is
a PA network over V = {x−1 , x+

1 , x
−
2 , x

+
2 , y

−
1 , y

+
1 , y

−
2 , y

+
2 }

such that (x−i < x+
i) and (y−i < y+i) are in N for i = 1, 2.

We say that N is a PA representation of R if there is an RA
relation contained in R that is PA representable by N , i.e.
identical to the solution set of N .

In the algorithm we will present in the next section,
each of NTPP/NTPPi and EQ has exactly one
PA representation (Figure 3(b) shows the one for
NTPP); DC, EC, and TPP/TPPi each have four
PA representations; and PO has 16 PA representations.
These PA representations correspond to maximal RA
relations which are PA representable and contained in the
corresponding basic RCC8 relation.

Pseudo-Solutions

A network N can be weakened by removing one or several
constraints from N .
Definition 2. Given an RCC8 scenario N over V , a
pseudo-solution of N is a sequence L = 〈S0, . . . , Sk〉
of assignments to V0, . . . , Vk ⊆ V such that there exists
a sequence of progressively weakened networks N =
〈N0, . . . , Nk+1〉 which satisfy:

• N0 = N , Nk+1 = ∅, and Ni = N \ (
⋃i−1

j=0 N |Vj
) (1 ≤

i ≤ k + 1);
• Si is a partial solution of Ni satisfying the constraints in
Ni|Vi for every 0 ≤ i ≤ k.
Note that if L is a pseudo-solution, then every constraint

in N is satisfied by at least one of the partial solutions in
L. However, a pseudo-solution is not necessarily a solution
of N , and the scenario N might not even be consistent.
Nevertheless, a pseudo-solution L allows us to retrieve the
basic RCC8 relation between any two variables a and b
from N , by determining the basic RCC8 relation between
the corresponding objects for a and b defined by the first
partial solution in L which involves both. In this paper, we
are particularly interested in rectangular pseudo-solutions
of RCC8 networks, which consist of partial solutions that
assign axis-aligned rectangles to variables.

Constructing Pseudo-Solutions

In this section, we present the algorithm for representing any
RCC8 scenario N by a rectangular pseudo-solution of N .

While our method could either deal with an RCC8 scenario
directly or with a scenario that is implicitly induced by a set
of regions, we will mainly consider the latter, since we are
mostly interested in the cases where the number of regions is
too large to be explicitly represented as an RCC8 scenario.

Recall that, when restricted to rectangles, each basic
RCC8 relation is the union of several PA representable
RA relations as defined in last section. Therefore, we can
incrementally build a PA network in a greedy fashion as
follows. We consider the RCC8 constraints one at a time.
For each RCC8 constraint, we select a corresponding RA
relation which is compatible with the PA network being
constructed. If such an RA relation exists, the corresponding
PA constraints are added to the PA network. From this
PA network, we can easily construct a partial rectangular
solution of the RCC8 network using topological sort. We
then weaken the RCC8 network by removing the RCC8
constraints between the variables that are included in this
partial solution. By repeating this process several times for
the progressively weakened RCC8 networks, all the RCC8
constraints in the scenario will be satisfied and we obtain
a rectangular pseudo-solution of the RCC8 scenario. The
details of this process are presented in Algorithms 1 and 2.

Algorithm 1: ExtractPseudoSol(N)

Input: N , an RCC8 scenario with variables V .
Output: L, a pseudo-solution of N (initially empty).

1 while N �= ∅ do
2 (S,N ′) ← ConstructPartialSol(N);
3 L.add(S);
4 N ← N ′;

Algorithm 2: ConstructPartialSol(N)

Input: N , an RCC8 network with variables V .
Output: A pair (S,N ′) where S is a rectangular partial

solution S of N and N ′ is a correspondingly
weakened network.

1 Ps ← ∅;
2 Vs ← ∅;
3 for each variable v0 ∈ V do
4 v0.feasible ← true;
5 P ′s ← Ps;
6 for each variable vi ∈ Vs do
7 if ∃PAv0Rvi

consistent with P ′s then
8 P ′s.add(PAv0Rvi

);
9 else

10 v0.feasible ← false;
11 break;
12 if v0.feasible then
13 Vs.add(v0);
14 Ps ← P ′s;
15 S ← solution(Ps);
16 N ′ ← N \N |Vs

;

466

In particular, on Line 2, Algorithm 1 repeatedly calls
Algorithm 2 to construct partial solutions of progressively
weakened RCC8 networks. When all constraints have been
removed from N , we know that any constraint from the
original scenario is satisfied by some partial solution, and
hence that L is a pseudo-solution of the original scenario.
To construct a rectangular partial solution (Algorithm 2) of a
(weakened) RCC8 network N , we repeat the following steps
for each variable v0:
• Line 4: For each basic RCC8 constraint (v0Rvi) between

v0 and the variables Vs that have already been considered:
– Line 5: choose a PA representation PAv0Rvi for
(v0Rvi) that is consistent with the current PA network
P ′s being built (P ′s is a copy of Ps);

– Line 8: if no such choice is possible, then move to the
next variable.

• Lines 9 and 10: If no inconsistencies have occurred,
update the PA network Ps with P ′s to which all the chosen
PA representations have been added.

After this process, we obtain a consistent PA network Ps

corresponding to a subnetwork of the RCC8 network N .
By using topological sort (van Beek 1992), we can obtain
a solution of Ps, from which a rectangular partial solution
S of the RCC8 network N can easily be constructed. On
Line 13, we then weaken the network N to N ′ by removing
all the constraints between variables in Vs. Note that these
constraints are satisfied by S. In fact, it is easy to see that
the following conclusion holds.
Proposition 1. Let Si be the partial solution that is
constructed in the i-th iteration of the while loop in
Algorithm 1 and let Vi be the corresponding set of variables.
It holds that any constraint (uRv) from the original RCC8
network N is satisfied by the partial solution Si0 , where i0
is the smallest index for which u, v ∈ Vi0 .

After each iteration of the while loop in Algorithm 1,
at least one constraint is removed. Therefore the algorithm
will terminate after at most O(n2) iterations, where |V | =
n. A larger number of constraints would typically be
removed in each iteration, hence we can expect the required
number of iterations to be much smaller in practice. The
number of operations taken by Algorithm 2 is polynomial
in the number of variables, because we add PA constraints
corresponding to at most O(n2) RCC constraints. By using
the consistency checking algorithm by van Beek (1992),
which is quadratic in the number of variables, the total
number of the operations is bounded by O(n4).

Clustering

When the number of variables becomes very large, it
would not be feasible to directly apply our algorithm to
the complete RCC8 scenario, and we may not even be
able to represent the corresponding constraint network. To
address this, we propose to cluster the variables and apply
Algorithm 1 to each of these clusters. Note that this is
different from the use of clusters by Fogliaroni (2012),
where the idea is to remove constraints between variables
in different clusters which are in a clustering relation. In

contrast, we use clusters to decompose the large scenario
into smaller subnetworks, so that Algorithms 1 and 2 can
be efficiently applied to compactly encode the constraints
between the variables in each cluster.

When the RCC8 scenario is implicitly induced from a set
of regions, we use the idea of Quadtree (Finkel and Bentley
1974) to obtain a suitable clustering. In particular, the space
of the regions is first split into N×N grid cells of equal size,
where N is called the initial grid size. A region is assigned
to a grid cell if it has a common point with that cell. If the
number of regions assigned to a single grid cell exceeds a
given limit K, then we split that cell into four cells of equal
size, and repeat the procedure until either all grid cells are
associated with less than K regions or the maximum number
of splits M has been arrived at. Note that there might be
points that belong to more than K of the regions, in which
case the resulting clusters will always contain more than K
regions. Furthermore note that if two regions are connected,
there is at least one cluster to which they both belong.

We then use Algorithm 1 to generate a sequence of
rectangular pseudo-solutions for all the clusters. Moreover,
assuming the clusters are ordered in some way, we only
consider an RCC8 constraint (uRv) in the first cluster that
contains both u and v, i.e. we remove this constraint from
the RCC8 networks of all succeeding clusters.

Answering Queries

To retrieve the RCC8 relation between vi and vj , we first
need to determine the first cluster that contains both vi and
vj . In the pseudo-solution corresponding to this cluster, we
then need to find the first partial solution that covers both vi
and vj . If there are no clusters which contain both variables,
it means that the RCC8 relation between them is DC.

To allow for efficient query answering, we store the
information about each variable vi as follows.

• An array with the indices of the clusters that contain vi,
sorted in ascending order. We call this array the cluster
array of vi.

• With each entry in the cluster array of vi, corresponding
to a cluster Ck, we associate an array with the indices
of the partial solutions (for cluster Ck) which contain a
rectangle for vi, sorted in ascending order. We call the
array a partial solution array of vi w.r.t. the cluster Ck.

The total storage size will then be proportional to the total
number of rectangles. To reduce the storage size, in the next
section we will discuss how we can (i) reduce the average
number of clusters in which a given variable appears and (ii)
reduce the average number of rectangles that is constructed
for a variable in a pseudo-solution. We now discuss in more
detail how the proposed encoding can be used to answer
questions efficiently.

The relevant cluster for a given pair of regions (vi, vj) can
be found, using the corresponding cluster arrays Ai and Aj ,
in at most O(|Ai|+ |Aj |) steps. Let us write |Ai| = ai. The

467

average number of comparisons is given by:

O(
1

n(n− 1)

n∑

i=1

∑

i �=j

(ai + aj)) = O(
1

n

∑

i

ai),

= O(
1

n

∑

k

|Ck|),

where n is the number of clusters and |Ck| is the number
of regions in cluster Ck. In other words, the average number
of comparisons is proportional to the total cardinality of the
clusters.

After determining the index of the first common cluster,
we need to determine the first partial solution in the
corresponding pseudo-solution which specifies a rectangle
for both variables. Let bi be the number of partial solutions
in the pseudo-solution corresponding to Ck, which specify
bi rectangles for vi. Similar as for the cluster index, we find
that on average we need O(1t

∑
i bi) comparisons to find the

first partial solution which is common to two variables vi
and vj , where t is the number of variables in the considered
cluster. In other words, the average number of comparisons
for determining the relevant partial solutions is proportional
to the total number of specified rectangles in the considered
pseudo-solution.

Implementation Details

In this section, we discuss some implementation details,
and improvements of the main algorithm, which affect the
overall performance.

For clustering variables, we restrict K, the (soft) limit of
the number of regions in each cluster, to be 100. In practice,
this limit should be chosen as large as possible to reduce the
total cardinality of clusters and hence the total number of
rectangles. For each dataset, we cluster the variables with
several different values of the initial split size N , to see
which value gives smaller total cardinality of clusters. Note
that N = 1 is not always optimal. In fact, for some datasets
used in our experiments, the optimal value of N would be
larger values such as 11. For each of the clusters obtained
from the optimal value of N , we generate a sequence of
rectangular partial solutions.

Let us now consider the algorithm for generating
partial solutions. First, note that some variables in Vs, in
Algorithm 2, might not have constraints with any of the
other variables in Vs, as these constraints might already have
been satisfied by earlier partial solutions. In such a case, it
is not necessary to include a rectangle for these variables in
the new partial solution. Therefore, before determining the
partial solution for Vs, we can remove these variables from
Vs. This will always reduce the total number of rectangles
without affecting the correctness of the algorithm. We call
this operation REMOVE.

Furthermore, there are three critical steps in Algorithm 2
that affect the number of rectangles:

1. Line 2: How to choose v0?
2. Line 4: How to choose vi?
3. Line 5: How to choose a PA representation of (v0Rvi)?

In a naive implementation of the algorithm, which we will
refer to as NAIVE, we simply consider a random ordering
of the variables, and choose the first PA representation
according to a static ordering.

However the constraints between a variable v and the
variables for which a PA representation has already been
chosen will affect the likelihood that a rectangle for v can be
found in the current partial solution. For example, suppose
v0 has EC constraints with variables v1, . . . , v4 which are
pairwise DC. If we first choose and add PA representations
to the PA network for v1, . . . , v4, it might be impossible
to find a rectangle for v0 such that all the EC constraints
are satisfied. This is because the rectangle of v0 should
touch the rectangles of v1, . . . , v4, but some specific relative
positions of the disjoint rectangles of v1, . . . , v4 will make
it impossible to find such a rectangle. The case for PO
constraints is similar. This suggests that we should order
variables based on the type of constraints in which they
are involved. For example, a good strategy seems to be to
consider NTPP and TPP constraints before others, as the
relative position of one rectangle involved in an NTPP or
TPP constraint has a great influence on the relative position
of the other. On the other hand, it is usually trivial to find a
rectangle that satisfies a given DC constraint.

Based on this intuition, we propose the following
improvement. For every variable, we count the number of
times it is involved in each of the basic RCC8 relations.
We then order the variables as follows. For variable v, let
the vector (nv

NTPP(i), n
v
TPP(i), n

v
PO, nv

EC, n
v
DC) contain

the number of NTPP/NTPPi, TPP/TPPi, PO, EC,
and DC constraints for v. To order variables, we use
the lexicographic order between these vectors. In other
words, we first order the variables according to the number
of NTPP/NTPPi. To break ties, we first consider
the number of TPP/TPPi, etc. We will refer to this
improvement as LABEL.

We also consider the following alternative. With each
variable v we associate a score sv defined as:

sv = 10nv
NTPP(i) + 5nv

TPP(i) + 2nv
PO + 1nv

EC,

where the numbers in the formula were determined based
on results of some random test sets. We can then order the
variables according to these scores. This improvement will
be referred to as WEIGHT.

Finally, consider the third point, i.e. how to choose
a PA representation, for RCC8 relations that do not
correspond to a unique PA representation. Recall that we
are primarily interested in applications where the input is a
geographical dataset. As a heuristic approach to choosing
a PA representation, we consider the minimum bounding
rectangles (MBRs) of the geometric representations of each
region. In particular, note that a PA representation of an RA
relation corresponds to some configurations of rectangles,
and these rectangles have relative positions such as left,
right, up or down. We then determine the relative position
of the MBRs. When the MBRs are in the same relation
as the regions, this can readily be determined; otherwise
we look at the relative position of their centre points. The
PA representations that have the same relative position as

468

the MBRs will be considered first. We will refer to this
improvement as TYPE.

Experimental Results

In the experiments, we use the Non-DC method (cf. the
related work section) as our main baseline, since it leads
to more compact representations than the spatial clustering
index and MBR based approaches mentioned in the section
on related work. Given a set of n regions, let N c =
{viRijvj : Rij �= DC, 1 ≤ i < j ≤ n} be the
set of non-DC constraints. Note that on average, each
region intersects with 2|N c|/n regions in the dataset. In
the following, we will refer to |N c|/n as the Intersection
Measurement Index (IMI), and we will compare the storage
size of our method against this value. The storage size
of our algorithm is measured by the average number of
rectangles which are stored for each variable. Note that
applying REMOVE will always yield better performance,
and hence in all the cases we will only show the results of
implementations of our algorithm with REMOVE applied.

In the following, we first compare the performance of
different optimizations of our algorithm, which shows that
LABEL performs best; then we compare the performance of
LABEL and some of the state-of-the-art techniques, where
LABEL outperforms them significantly in most cases; finally
we have a look at the performance of LABEL to answer
queries, which turns out to be much faster than direct
computation from polygons.

Comparison of Optimizations

To compare the performance of the different variants of
our algorithm, we have generated a number of synthetic
datasets of convex polygons, with cardinalities of 30, 30,
50, 50, 100, and 100, and IMIs of 5, 9, 9, 14, 10, and 25. To
generate a convex polygon in the dataset, we sample some
elements from a set of points with integer coordinates, say
{(i, j) : 0 ≤ i, j ≤ d}, and calculate the convex hull of
the selected points. To sample the points, we first randomly
select a “feed” point, which induces a Gaussian distribution
on the integer points around it, and then we randomly sample
the other points from this Gaussian. For these datasets, we
did not cluster the variables as they are small in number.

Table 1 shows the average number of rectangles for each
variant of our algorithm. We can see from the table that
WEIGHT and LABEL perform similarly, and substantially
outperform NAIVE. In most cases, TYPE alone is not as
effective as WEIGHT and LABEL, while the combination
of LABEL/WEIGHT and TYPE usually leads to the best
performance.

We also compared the implementations on five small
real-world datasets containing habitat distribution regions,
with cardinalities of 600, 610, 605, 611, and 604, and IMIs
of 12, 30, 46, 52, and 74. These datasets were also used by
Long et al. (2015). We clustered the variables by setting the
limit size of a cluster as 100.

Table 2 shows the average number of rectangles for each
implementation of our algorithm. In contrast to the results
from Table 1, LABEL consistently outperforms WEIGHT

#var IMI N W L T W+T L+T
30 5 6.20 2.57 2.60 3.40 2.47 2.67
30 9 5.90 2.67 2.00 2.00 2.00 2.00
50 9 8.12 3.08 3.58 4.40 3.24 2.66
50 14 6.92 3.56 3.54 3.62 3.34 3.38

100 10 15.32 4.46 4.47 7.51 4.97 4.17
100 25 15.44 5.23 5.05 8.23 4.84 4.78

Table 1: Comparison on synthetic datasets of the average
number of rectangles needed for different implementations,
where “N” stands for NAIVE, “W” for WEIGHT, “L” for
LABEL, and “T” for TYPE.

#var IMI N W L T W+T L+T
600 12 10.76 6.01 5.95 12.67 7.71 7.11
610 30 17.98 10.64 10.17 20.79 11.99 11.95
605 46 19.91 12.29 12.15 24.68 14.67 14.65
611 52 30.04 18.35 17.51 36.48 21.88 21.48
604 74 35.30 23.79 23.63 40.61 27.64 27.07

Table 2: Comparison on small real-world datasets of
the average number of rectangles needed for different
implementations.

in this case, while surprisingly, TYPE leads to results that
are even worse than NAIVE. Also, LABEL+TYPE and
WEIGHT+TYPE did not improve LABEL and WEIGHT.
Note that in this case many regions consist of multiple
connected components, where the MBRs or centre points
of MBRs seems less effective to reflect the correct relative
positions and hence TYPE would be likely to order
PA representations in a wrong way. Note that all these
implementations outperform the Non-DC method in all
cases, in the sense that the number of required rectangles
is smaller than the number of relations that need to be stored
by the Non-DC method, with the latter being equal to the
IMI value. In the following experiments, we will use the
implementation LABEL.

Comparison With Baseline Methods

To test the performance of our method on large real-world
datasets, we have used four datasets about species
distribution and habitat from the European Environment
Agency (EEA)1, as well as a dataset with county
subdivisions of the USA2, a dataset of school catchment
areas in the USA3, and the combination of the last two.
The four datasets from EEA contain 5,322, 6,258, 10,061
and 11,613 regions (after removing duplicates), with an
IMI of respectively 63.92, 61.83, 121.54, and 119.91. We
will denote these four datasets by HEU, HMS, SEU and
SMS. The dataset of county subdivisions, denoted by CS,
contains 36,702 regions, with an IMI of 3.10. The dataset
of school catchment areas, denoted by SC, contains 65,192
regions (after removing duplicates), with an IMI of 9.36.
The combination of the last two (CS+SC) contains 101,894
regions resulting in an IMI of 7.11. As the number of
variables in these datasets is very large, we will cluster the

1http://www.eea.europa.eu/
2http://www.census.gov/
3http://nces.ed.gov/surveys/sdds/sabs/

469

HEU HMS SEU SMS CS SC CS+SC
LABEL 20.75 21.05 34.68 34.20 3.41 6.27 5.23

Non-DC 63.92 61.83 121.54 119.91 3.10 9.36 7.11
MBR-C 118.10 113.93 205.82 205.27 4.37 9.03 7.35

MBR-DC 74.22 69.94 127.32 122.79 4.50 9.04 7.41

Table 3: Comparison of storage sizes of LABEL, Non-DC,
MBR-C, and MBR-DC for large real-world datasets.

variables by setting the limit size of a cluster as 100.
In addition to comparing our results against the Non-DC

method, we also present results of the two improvements
of the MBR-based approach, i.e. MBR-C and MBR-DC
from Long et al. (2015). Note that in general, the Non-DC
method is not guaranteed to outperform these two methods.
Compared to the original MBR-based approach, MBR-C
further removes any constraints such that the relation
between the variables is the same as the relation between
the corresponding MBRs. Based on the result of MBR-C,
MBR-DC tests if the MBRs of the connected components
in a region are all disjoint with those of another region, and
it removes all constraints for such regions. Both of them
need to store the MBRs of regions besides the constraints,
and MBR-DC also needs to store the MBRs of connected
components of the regions. Therefore, we measure the
storage size of both methods by calculating the average
number of stored MBRs and constraints for each variable.

It is worth noting that we did not include the prime
subnetwork technique (Li et al. 2015) as a baseline here.
The reason is that, to find out the relation between two
variables in a prime subnetwork, sometimes we need to
do qualitative reasoning on the whole network, which
can be very inefficient when the number of variables
becomes large. For example, an experiment on the datasets
involved in Table 2 shows that even for prime subnetworks
with about 600 variables, it takes 107ns to calculate the
relation between two variables whose constraint has been
characterized as redundant and removed in the prime
subnetwork. Therefore, we do not consider this method as
a competitive representation that supports efficient query
answering.

Table 3 shows the results on these datasets. We can
see that for all datasets apart from CS, LABEL generates
pseudo-solutions with fewer rectangles than there are
non-DC constraints, which is also smaller than the storage
size required by MBR-C and MBR-DC. Note that for CS,
the number of rectangles generated by LABEL is slightly
larger than the number of non-DC constraints, which is what
we may expect in cases where the IMI is small and the
number of regions is large. On the other hand, when the IMI
becomes larger the differences become more pronounced.
For example, for each of the SEU and SMS datasets, the total
number of non-DC constraints is about 1,300,000, while
the total number of rectangles generated by LABEL is only
about 370,000.

Note that the average number of rectangles generated by
LABEL grows as the IMI grows. To analyse the relationship
between IMI and the number of rectangles generated
by LABEL, we performed an additional experiment on

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

St
or

ag
e

Si
ze

IMI

 Non-DC
 Label

Figure 4: Illustration of the growth rate of LABEL when IMI
increases.

synthetic data. For each IMI value from 10 to 140 with a step
size of 5, we generated 10 datasets of 1000 convex polygons.
When clustering, since the largest IMI is 140, there are many
cases where more than 100 regions have a common point
and need to be clustered into the same cluster. If we set the
limit size of a cluster to be 100, some clusters have to be
split many times which will make clustering less efficient.
Therefore we set the limit size of a cluster as 120. Figure 4
illustrates the number of rectangles generated by LABEL,
in relation to the IMI of the dataset. Note that each data
point is the average over 10 datasets. We can see that until
the IMI reaches about 80, the growth rate for the number of
rectangles is sub-linear. However, as IMI reaches the cluster
size limit, the growth rate increases, which is due to the fact
that an increasing number of variables will then be included
in several clusters.

IMI (Non-DC) 24 34 44 54 64 74 84
LABEL 19.1 21.73 23.56 25.45 26.71 28.13 29.30

Table 4: Comparison of storage sizes of LABEL and
Non-DC for networks generated using the BA model.

We also tested on some randomly generated RCC8
constraint networks by using the Barabási-Albert (BA)
model which is proposed by Barabási and Albert (1999) and
first exploited in QSR by Sioutis, Condotta, and Koubarakis
(2015). In particular, for each IMI from 24 to 84, with a step
size of 10, we extracted 10 complete basic RCC8 networks
of 200 variables from the scale-free structured networks
generated by the BA model (with preferential attachment
of 2). The results are shown in Table 4. We can easily see
that, although the average number of rectangles generated by
LABEL grows when the IMI grows, it grows much slower,
in accordance with our earlier results.

Answering Queries

Next we consider the computation time which is needed to
determine the RCC8 relation between two given variables.
This corresponds to the evaluation of queries such as
“does species A live in an area where species B is also
present” or “is neighbourhood X is the catchment area of

470

Direct Label Non-DC
100

101

102

103

104

105

106

107

Q
ue

ry
 T

im
e

(n
s)

(a)

Direct Label Non-DC
100

101

102

103

104

105

106

107

Q
ue

ry
 T

im
e

(n
s)

(b)

Figure 5: (a) Query times on SEU dataset. (b) Query times
on CS+SC dataset.

school Y ”. The queries considered here are fundamental
ones, and more complex queries can be answered by
integrating our approach with other techniques, such as
using the pseudo-solution representation as a compact
back-end representation of the R-tree method in (Papadias et
al. 1995). In the following, we will compare the performance
of three methods: (i) determining the relation by comparing
the geometric representation of the boundaries of the regions
by using JTS4 (Direct), (ii) using the pseudo-solution
produced by the method LABEL, and (iii) using an RCC8
network without DC constraints (Non-DC). We assume
that all the information, including geometries of regions,
MBRs, constraints, and rectangles are stored in memory.
Specifically, the constraints are stored in a hash table
indexed by the identifiers of variables, and the rectangles are
stored as explained before. The experiment was conducted
on a computer with Intel R© XeonTM E5-2450L 1.8 GHz CPU
and 128 GB RAM.

Figure 5 presents the results of 10,000 random queries for
the following two datasets: SEU (which has the largest IMI)
and CS+SC (which has the largest number of variables).
The queries only involve pairs of variables whose MBRs
intersect, and the 10,000 pairs are chosen by randomly

4http://www.vividsolutions.com/jts/JTSHome.htm

sampling in the set of all such pairs. This is motivated by the
observation that when geometric information is available, it
is easy to apply a pretest for intersection of the MBRs by all
methods. For these two datasets, LABEL exhibits a clearly
better performance than Direct and is reasonably efficient
compared to Non-DC, which simply needs to retrieve the
constraint from a hash table. The median query time for
LABEL is about 3,300ns for SEU and about 1,700ns for
CS+SC, while for Direct it is around 470,000ns for both
datasets and 500ns for Non-DC. In fact, in both datasets
there are about 3000 queries for which the Direct method
needs more than 106ns. Note that the fact that LABEL

generates more rectangles for the SEU dataset than for
the CS+SC dataset translates into a higher query time
for the former dataset. Finally, we should note that when
information is stored on disk rather than in memory, the
performance of all methods would be affected.

Conclusion
In this paper, we proposed an encoding for large RCC8
scenarios. The main novelty of our approach is the use of
pseudo-solutions, which correspond to sequences of partial
solutions from which the correct RCC8 relation between
any two variables can be derived. Such pseudo-solutions
are easier to obtain than actual solutions, and because
they are less constrained they allow for more compact
representations. Our experimental results have shown that
this approach is indeed effective in practice. For example,
the pseudo-solution of an RCC8 network with 10,000
variables and 1,300,000 non-DC relations only required 35
rectangles per variable.

There are some cases where the representation might still
be quadratic in the number of variables. For example, when
all pairs of regions are EC, the current algorithm would
result in a representation with O(n2) number of rectangles.
How to modify our approach to deal with these cases would
then be one of our future work.

Besides its advantages and limitations, the idea of
using pseudo-solutions for representing qualitative spatial
information opens up several promising areas for future
work. For example, while we have focused on RCC8,
it seems likely that good results can be achieved in a
similar way for other qualitative calculi. It would also be
interesting to generalize our method to RCC8 networks that
contain non-basic relations. While it would be difficult to
handle arbitrary RCC8 relations, it seems that most of the
non-basic RCC8 relations that are likely to be encountered
in practical applications could be encoded by associating
with every variable a nested pair of rectangles, denoting an
upper and lower approximation of the unknown boundaries,
as in the Egg-Yolk calculus (Cohn and Gotts 1996). For
example, to encode the constraint (u{EC,PO}v), we
can assign to u the rectangles r1 and r2 and to v the
rectangle r3 such that r1NTPPr2, r1ECr3, and r2POr3.
This shows the potential of extending this method for
indefinite information. Another example would be that we
can extend the idea of using rectangles to intervals or
higher-dimensional hyper-rectangles, which could possibly
further improve the representation. Finally, it will be

471

very interesting to investigate the possibility of using our
concept of pseudo-solution in the inconsistency handling of
qualitative constraint networks.

Acknowledgements

We thank the anonymous reviewers for their helpful
suggestions. This work was supported by the ARC grants
DP120104159 and FT0990811, and an ERC Starting Grant
(637277). The work was completed during the visit of
Zhiguo Long to Dr Steven Schockaert at Cardiff University,
which was supported by the FEIT HDR International
Experience Program of University of Technology Sydney.

References

Al-Salman, R. 2014. Qualitative Spatial Query Processing
: Towards Cognitive Geographic Information Systems. Ph.D.
Dissertation, Universität Bremen.
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM 26(11):832–843.
Balbiani, P.; Condotta, J.-F.; and Fariñas del Cerro, L. 1999. A
new tractable subclass of the rectangle algebra. In IJCAI-99,
442–447.
Barabási, A.-L., and Albert, R. 1999. Emergence of scaling in
random networks. Science 286(5439):509–512.
Cohn, A. G., and Gotts, N. M. 1996. The ‘egg-yolk’
representation of regions with indeterminate boundaries.
Geographic objects with indeterminate boundaries 2:171–187.
Cohn, A. G., and Renz, J. 2008. Qualitative spatial
representation and reasoning. In Handbook of Knowledge
Representation. Elsevier, Amsterdam, Netherlands. 551–596.
Egenhofer, M. J., and Franzosa, R. D. 1991. Point-set
topological spatial relations. International Journal of
Geographical Information System 5(2):161–174.
Egenhofer, M. J., and Herring, J. 1991. Categorizing
binary topological relations between regions, lines, and points
in geographic databases. Technical report, Department of
Surveying Engineering, University of Maine.
Finkel, R. A., and Bentley, J. L. 1974. Quad trees a data
structure for retrieval on composite keys. Acta Informatica
4(1):1–9.
Fogliaroni, P. 2012. Qualitative spatial configuration queries
– Towards next generation access methods for GIS. Ph.D.
Dissertation, University of Bremen.
Gerevini, A. 2005. Incremental qualitative temporal reasoning:
Algorithms for the Point Algebra and the ORD-Horn class.
Artificial Intelligence 166(1-2):37–80.
Goyal, R. K., and Egenhofer, M. J. 1997. The direction-relation
matrix: A representation for directions relations between
extended spatial objects. In The Annual Assembly and the
Summer Retreat of University Consortium for Geographic
Information Systems Science, 22–81.
Guesgen, H. W. 1989. Spatial reasoning based on Allen’s
temporal logic. Technical report, International Computer
Science Institute, Berkeley, USA.
Ladkin, P. B., and Maddux, R. D. 1988. On binary constraint
networks. Technical report, Kestrel Institute, Palo Alto, Calif.

Li, S., and Cohn, A. G. 2012. Reasoning with topological
and directional spatial information. Computational Intelligence
28(4):579–616.
Li, S.; Long, Z.; Liu, W.; Duckham, M.; and Both, A. 2015.
On redundant topological constraints. Artificial Intelligence
225:51–78.
Long, Z., and Li, S. 2015. On distributive subalgebras
of qualitative spatial and temporal calculi. In COSIT-2015,
354–374.
Long, Z.; Duckham, M.; Li, S.; and Schockaert, S.
2015. Indexing large geographic datasets with compact
qualitative representation. International Journal of
Geographical Information Science (Available Online, DOI:
10.1080/13658816.2015.1104535).
Papadias, D.; Theodoridis, Y.; Sellis, T. K.; and Egenhofer,
M. J. 1995. Topological relations in the world of minimum
bounding rectangles: A study with R-trees. In SIGMOD-95,
92–103.
Randell, D. A.; Cui, Z.; and Cohn, A. G. 1992. A spatial logic
based on regions and connection. In KR-92, 165–176.
Schockaert, S.; Smart, P. D.; Abdelmoty, A. I.; and Jones,
C. B. 2008. Mining topological relations from the web. In
DEXA-2008, 652–656.
Sioutis, M.; Condotta, J.-F.; and Koubarakis, M. 2015. An
efficient approach for tackling large real world qualitative
spatial networks. International Journal on Artificial
Intelligence Tools (In press).
Smith, T. R., and Park, K. K. 1992. Algebraic approach
to spatial reasoning. International Journal of Geographical
Information Systems 6(3):177–192.
van Beek, P., and Cohen, R. 1990. Exact and approximate
reasoning about temporal relations. Computational Intelligence
6(3):132–147.
van Beek, P. 1992. Reasoning about qualitative temporal
information. Artificial Intelligence 58:297–326.
Vasardani, M.; Winter, S.; and Richter, K.-F. 2013. Locating
place names from place descriptions. International Journal of
Geographical Information Science 27(12):2509–2532.
Vilain, M. B., and Kautz, H. A. 1986. Constraint propagation
algorithms for temporal reasoning. In AAAI-86, 377–382.
Vögele, T.; Schlieder, C.; and Visser, U. 2003. Intuitive
modelling of place name regions for spatial information
retrieval. In Spatial Information Theory. Foundations of
Geographic Information Science, volume 2825. Springer,
Berlin-Heidelberg, Germany. 239–252.

472

