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Abstract

This paper is set to study the applicability of AGM-like
operations to probabilistic bases. We focus on the prob-
lem of consistency restoration, also called consolidation
or contraction by falsity. We aim to identify the rea-
sons why the set of AGM postulates based on discrete
operations of deletions and accretions is too coarse to
treat finely adjustable probabilistic formulas. We pro-
pose new principles that allow one to deal with the con-
solidation of inconsistent probabilistic bases, presenting
a finer method called liftable contraction. Furthermore,
we show that existing methods for probabilistic consol-
idation via distance minimization are particular cases of
the methods proposed.

1 Introduction

This paper studies the problem of restoring the consistency
of probabilistic bases. We start by analyzing the inadequacy
of the existing AGM paradigm, which was conceived within
a discrete framework allowing only for the operations of in-
sertion and deletion. But the continuous nature of probabil-
ities demand for finer control if the goal is to obtain a min-
imal change when restoring the consistency of an inconsis-
tent probabilistic base.

A probabilistic knowledge base may be inconsistent due
to several reasons. For instance, the probabilities may have
come from different sources or experts, and even a single
source may fail to infer its own inconsistency with respect
to the axioms of probability. Inconsistency undermines clas-
sical inference, calling for the consolidation of the proba-
bilistic base, as in the following.
Problem 1.1 (Rain City). An agent has to decide whether to
take an umbrella to a one-day trip to “Rain City”. Gathering
all the information available to her, she comes across two
assessments:
• A website states the probability of raining as at least 60%.
• A friend estimates that probability as at most 30%.
Neither taking the umbrella nor getting wet is cost free, so
the agent needs a probability bound to take her rational de-
cision. How does she consolidate these statements into con-
sistent probability bounds?
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In this work we focus on the consolidation of condi-
tional probabilities assigned to propositions of the form
P (ϕ|ψ) ≥ q, called probabilistic conditional, which reads
“the probability of ϕ being true given that ψ is true is
at least q”. This is a generalization of the precise prob-
abilities approach (P (ϕ|ψ) = q) of many logical sys-
tems, as the probabilistic conditional logic (Rödder 2000;
Thimm 2013).

This formal system had its origins with Boole (1854),
and was rediscovered several times (e.g. (de Finetti 1930;
Hailperin 1965)) until Nilsson (1986) introduced it into the
AI community under the name of probabilistic logic. Hansen
et al. (2000) extended the language to embed conditional
probabilities; an alternative semantics based on the maxi-
mum entropy principle was investigated by Kern-Isberner
and Lucasiewicz (2004). The problem of handling incon-
sistent probabilities in propositional probabilistic logics has
been approached via distance minimization methods by sev-
eral authors (Jaumard, Hansen, and Poggi de Aragao 1991;
Muiño 2011; Potyka and Thimm 2014; De Bona and Finger
2015), which is our focus.

The task of restoring consistency among propositions
within a classical setting was formally tackled within the
AGM framework (introduced by Alchourrón, Gärdenfors
and Mankinson (1985)) as a contraction by the contradic-
tion (Hansson 1997). That is, to consolidate a set of beliefs
is to give up — i.e., contract by — the belief in the contradic-
tion. In this setting, consolidation is formalized via formulas
discarding; however, in probabilistic logic it is usually the
case that probability bounds are changed instead of being
ruled out (Muiño 2011). An inconsistent belief of the form
of P (ϕ|ψ) ≥ q may be weakened to P (ϕ|ψ) ≥ q′, for some
q′ < q, to achieve consistency without losing all information
conveyed by it. One way to minimize this information loss is
to minimize the distance between the original, inconsistent
probability bounds, and the new, consistent ones, within a
vector space. This difference in approach, discarding versus
changing formulas, makes the AGM paradigm unsuitable for
the probabilistic consolidation through distance minimiza-
tion to be grounded in. The main difficulty is that AGM
contractions of a set of beliefs (a base) are constrained by
rationality postulates that require, among other things, that
the contracted base be a subset of the original one; but when
a probability bound is changed, this requirement is violated.
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Indeed, the AGM paradigm has room for weakening for-
mulas while giving up beliefs, in what Hansson (1999)
called pseudo-contractions. The idea is that a base being
contracted by a proposition may receive new beliefs implied
by the old ones. But until recently there was little clue on
how to choose the consequences of the original formulas
to include in the pseudo-contracted base. When contract-
ing by the contradiction, this issue becomes even more evi-
dent, since the classical consequences of an inconsistent set
of formulas is the whole logical language. It follows that
any base can be a pseudo-contraction by the contradiction
of any other base. Recently, Santos, Ribeiro and Wasser-
mann (2015) have put forward a formal method to construct
pseudo-contractions that can avoid this problem by using
an arbitrary subclassical consequence operation. With such
weaker consequence, it is not the case that any classical con-
sequence of the original base may appear in the contraction,
but just some of them.

In this work, we propose a method for the probabilis-
tic consolidation via distance minimization founded on the
AGM theory, starting with Santos, Ribeiro and Wasser-
mann’s (2015) approach. The concept of liftable contrac-
tion is introduced as a generalization of both contraction and
pseudo-contraction; then the probabilistic consolidation via
probability bound changing can be characterized as a liftable
contraction by the contradiction. Thus we obtain a method
for probabilistic contraction and consolidation. Even though
the probabilistic consolidation methods via distance min-
imization are well-known in the literature (Thimm 2011;
Muiño 2011), they are shown to be particular cases of our
general probabilistic contraction methods, which are them-
selves original to the best of our knowledge.

The rest of the paper is organized as follows: in Section 2,
we introduce the classical propositional and the probabilis-
tic logics in order to fix notation; the approach to consoli-
date probabilistic knowledge bases via distance minimiza-
tion is presented in Section 3; the postulates and procedures
of AGM contraction and consolidation are summarized in
Section 4; in Section 5, we relate the probabilistic consoli-
dation via probability bound changing to the AGM consoli-
dation through discarding formulas, using partial meet con-
structions and a weak consequence operation; the liftable
contraction (and consolidation) operator is defined in Sec-
tion 6 together with the postulates that characterize it, and
probabilistic consolidation through probabilistic changing is
shown to be a liftable consolidation; in Section 7, we dis-
cuss when and how the probabilistic consolidation can be
extended to a contraction; finally, Section 8 brings conclu-
sions and future work.

2 Preliminaries
In this work we deal mainly with knowledge bases formed
by (imprecise) conditional probabilities on propositions
from classical logic. A propositional logical language is a
set of formulas formed by atomic propositions combined
with logical connectives, possibly with punctuation ele-
ments (parentheses). We assume a finite set of symbols
Xn = {x1, x2, x3, . . . , xn} corresponding to atomic propo-
sitions (atoms). Formulas are constructed inductively with

connectives (¬,∧,∨,→) and atomic propositions as usual.
The set of all these well-formed formulas is the propositional
language overXn, denoted by LXn

. Additionally, � denotes
xi ∨ ¬xi for some xi ∈ Xn, and ⊥ denotes ¬�.

Given a signatureXn, a possible world w is a conjunction
of |Xn| = n atoms containing either xi or ¬xi for each
xi ∈ Xn. We denote by WXn = {w1, . . . , w2n} the set of
all possible worlds over Xn and say a w ∈ WXn entails a
xi ∈ Xn (w |= xi) iff xi is not negated inw. This entailment
relation is extended to all ϕ ∈ LXn

as usual. A set B ⊆
LXn

, a belief base, is said to be consistent (or satisfiable)
iff there is a w ∈ WXn

such that w |= ϕ for all ϕ ∈ B.
Given a baseB ⊆ LXn

, the classical consequence operation
CnCl(.) can be defined as: ϕ ∈ CnCl(B) iff B ∪ {¬ϕ} is
inconsistent.

A probabilistic conditional (or simply conditional) is a
statement of the form P (ϕ|ψ) ≥ q, with the underlying
meaning “the probability that ϕ is true given that ψ is true
is at least q”, where ϕ, ψ ∈ LXn

are propositional formulas
and q is a real number in [0, 1]. If ψ is a tautology, a con-
ditional like P (ϕ|ψ) ≥ q is called an unconditional prob-
abilistic assessment, usually denoted by P (ϕ) ≥ q. We
denote by LP

Xn
the set of all conditionals over LXn

, and
P (ϕ|ψ) ≤ q abbreviates P (¬ϕ|ψ) ≥ 1− q.

A probabilistic interpretation π : WXn
→ [0, 1], with∑

j π(wj) = 1, is a probability mass over the set of possible
worlds, which induces a probability measure Pπ : LXn

→
[0, 1] given by Pπ(ϕ) =

∑{π(wj)|wj |= ϕ}. A conditional
P (ϕ|ψ) ≥ q is satisfied by π iff Pπ(ϕ ∧ ψ) ≥ qPπ(ψ).
Note that when Pπ(ψ) > 0, a probabilistic conditional
P (ϕ|ψ) ≥ q is constraining the conditional probability of
ϕ given ψ; but any π with Pπ(ψ) = 0 trivially satisfies that
conditional (this semantics is adopted by Halpern (1990),
Frisch and Haddawy (1994) and Lukasiewicz (1999), for in-
stance). A probabilistic knowledge base (or simply a base)
is a set of probabilistic conditionals Γ ⊆ LP

Xn
. We denote

by K the set of all probabilistic knowledge bases. A base Γ
is consistent (or satisfiable) if there is a probability interpre-
tation satisfying all conditionals P (ϕ|ψ) ≥ q ∈ Γ. For a
probabilistic base Γ, we denote by CnPr(Γ) the set of all
conditionals α ∈ LP

Xn
such that, if π satisfies Γ, then π sat-

isfies α — this is known as the standard semantics (Haenni
et al. 2011). 1

A finite base Γ ∈ K is said to be canonical if it is such
that, if P (ϕ|ψ) ≥ q, P (ϕ|ψ) ≥ q′ ∈ Γ, then q = q′.
That is, for each pair ϕ, ψ, only one probability lower bound
can be assigned to P (ϕ|ψ). We denote by Kc the set of all
canonical probabilistic knowledge bases. Any base Γ ∈ K
is equivalent to a canonical base — one can simply pick the
highest probability lower bound of each set of conditionals
P (ϕ|ψ) ≥ q on the same pair ϕ, ψ; if the resulting base is
not finite, one can additionally repeat this procedure modulo
equivalence on LXn

.2

1An alternative semantics for probabilistic entailment defines
that a base Γ entails a conditional α if the probabilistic interpreta-
tion π that maximizes entropy while satisfying Γ also satisfies α.
Nevertheless, the consolidation problem is the same.

2In the literature, instead of using canonical bases, probabilistic
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3 Consolidation via Probability Bounds

Adjustment

When a probabilistic knowledge base is inconsistent, clas-
sical inference trivializes, in the sense that everything log-
ically follows from that base. This calls for inconsistency
handling in bases in order to restore consistency. The pro-
cedure of restoring the consistency of a knowledge base is
called consolidation. We call a consolidation operator any
function ! : K → K (or ! : Kc → Kc) that takes (canoni-
cal) probabilistic knowledge bases Γ and returns consistent
ones !(Γ) = Γ!. Several approaches to implement this oper-
ation have been proposed in the literature, mainly focusing
on changing the probabilities’ numeric values (Muiño 2011;
Potyka and Thimm 2014). When a probabilistic base is in-
consistent, it is more intuitive to fix it by adjusting the nu-
meric values instead of the propositions to which the prob-
abilities are assigned, due to the notions of order and dis-
tance naturally held by numbers. Since changes to consoli-
date bases are usually required to be minimal in some sense,
numbers provide straightforward ways to define such mini-
mality. We present this approach of consolidation via prob-
abilities adjustment focusing on canonical bases, as it is the
commonest form, adapting the work from Muiño’s (2011).

When probabilistic knowledge bases are defined as sets
of precise probability assessments, consolidations are ex-
pected (and forced) to be precise as well (Muiño 2011;
Potyka and Thimm 2014). We adopt a slightly different ap-
proach, allowing probability lower bounds only to be low-
ered — equivalently, upper bounds can only be increased
—, as Hansen et. al (2000) proposed. A precise probabil-
ity assessment, like P (ϕ) = q, could be represented in
our language via the pair P (ϕ) ≥ q, P (¬ϕ) ≥ 1 − q.
While the precise probability approach conceives consoli-
dation operators that modify P (ϕ) = q to P (ϕ) = q′, for
instance for a q′ < q, the method here described would re-
turn the pair P (ϕ) ≥ q′, P (¬ϕ) ≥ 1− q. That is, the upper
bound would not be strengthened, and the consolidated base
would have imprecise probabilities. When these probability
changes are minimal in some sense, both approaches yield
logically equivalent bases, but allowing imprecise probabil-
ities fits better the AGM paradigm, as we will show.

Given a canonical base Γ ∈ Kc, we define its charac-
teristic function ΛΓ : [0, 1]|Γ| → K such that, if Γ =
{P (ϕi|ψi) ≥ qi|1 ≤ i ≤ m} and q′ = 〈q′1, . . . , q′m〉 is
a vector in [0, 1]m, then ΛΓ(q

′) = {P (ϕi|ψi) ≥ q′i|1 ≤
i ≤ m}. In other words, the function ΛΓ just changes the
lower bounds in Γ. Consolidation operators can then be im-
plemented through characteristic functions: !(Γ) = ΛΓ(q

′)
for some q′ ∈ [0, 1]|Γ|.

Every inconsistent canonical base Γ can be vacu-
ously consolidated by substituting 0 for all its probabil-
ity lower bounds, through an operator ! such that !(Γ) =
ΛΓ(〈0, . . . , 0〉) is consistent for all Γ. Nevertheless, this
drastic procedure misses all the point of minimal informa-
tion loss, or minimal change in the base. A natural idea to

knowledge bases have been defined as ordered sets, allowing for
repeated formulas; but this loosens the link to the belief revision
approach, which operates on non-ordered sets.

consolidate a canonical base Γ is then to take the consistent
probability lower bounds that are in some sense maximally
closer to the bounds in Γ; i.e., to make minimal changes in
the probability bounds. To make this notion precise, we de-
fine an element-wise relation ≤⊂ Rm×Rm between vectors
q, q′ ∈ Rm: q ≤ q′ iff qi ≤ q′i for all 1 ≤ i ≤ m. Analo-
gously, we define q ≥ q′ iff q′ ≤ q; and q < q′ iff q ≤ q′ and
q �= q′. Now we can define when a consolidation is maximal
in terms of information — introduced as dominant consoli-
dations in (De Bona and Finger 2015):

Definition 3.1. Given a canonical base Γ = {P (ϕi|ψi) ≥
qi|1 ≤ i ≤ m} in Kc and a vector q′ ∈ [0, 1]m, the base
ΛΓ(q

′) is a maximal consolidation of Γ if it is consistent
and, for every q′′ ∈ [0, 1]m such that q′ < q′′ ≤ q, ΛΓ(q

′′)
is inconsistent.

Note that maximal consolidations are always canonical,
for only the probability bounds are changed. Intuitively,
a maximal consolidation is such that, if some probability
lower bound were less relaxed, the base would still be in-
consistent. For instance, consider the example below:

Example 3.2 (Rain City Revisited). Consider the canoni-
cal base Γ = {P (ϕ) ≥ 0.6, P (ϕ) ≤ 0.3}. An adjust-
ment in the probability bounds that makes the base con-
sistent is Γ′ = {P (ϕ) ≥ 0.3, P (ϕ) ≤ 0.6}. Nonethe-
less, another adjustment conserves strictly more informa-
tion, Γ′′ = {P (ϕ) ≥ 0.3, P (ϕ) ≤ 0.3}, so that Γ′ is not
a maximal consolidation of Γ. The reader can note that Γ′′
is a maximal consolidation, for the probability assessment
P (ϕ) ≥ 0.3 could not be consistently less relaxed.

Typically, an inconsistent canonical base has several (of-
ten infinite) maximal consolidations, corresponding to a
Pareto frontier. In the example above, any Ψ = {P (ϕ) ≥
q1, P (ϕ) ≤ q2} such that q1 ∈ [0.3, 0.6] and q1 = q2 would
be a maximal consolidation of Γ. However, some maximal
consolidations of Γ can be said to be closer to Γ than oth-
ers, if one considers probability bounds in a vector space. To
construct a consolidation operator that returns some closer
maximal consolidation, one can employ methods that mini-
mize distances between these vectors of probability bounds,
plus some criterion to guarantee uniqueness. To review the
commonest set of distances applied to this end in the lit-
erature (Muiño 2011), we define the p-norm of a vector
〈q1, . . . , qm〉 ∈ Rm, for any positive integer p, as being:

‖q‖p = p

√√√√
m∑
i=1

|qi|p

Taking the limit p → ∞, we also define ‖q‖∞ = maxi |qi|.
Now the p-norm distance between two vectors q, q′ ∈ Rm

can be defined as:

dp(q, q
′) = ‖q − q′‖p

For instance, d1 is the Manhattan (or absolute) distance, d2
is the Euclidean distance and d∞ is the Chebyshev distance.

Given a canonical base Γ = ΛΓ(q), each p-norm distance
defines a set of consistent probability lower bounds vectors
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that are closest to q — each defining a “closest” consoli-
dation. Let Dp : Kc → 2Kc be a function that returns the
closest consolidations according to a p-norm distance:

Dp(Γ) = {ΛΓ(q
′)|Γ = ΛΓ(q) , ΛΓ(q

′) is consistent
and dp(q, q′)is minimum}

If Γ has only unconditional probability assessments, any
finite p > 1 yields a unique closest vector of probability
bounds and Dp(Γ) is a singleton, but in the general case
this does not hold, due to non-convexity. Hence, further con-
straints must be used to choose a single maximal consolida-
tion in order to specify a consolidation operator as a func-
tion. For instance, one can consider the closest base with
maximum entropy, the closest base that is the most preferred
according to some relation, or even the first closest base
found by some implementation that computes the distance
minimisation. For any positive p in N ∪ {∞}, we define the
consolidation operator !p : Kc → Kc as a function that takes
an arbitrary base Γ = ΛΓ(q) and returns a base ΛΓ(q

′) that
minimizes dp(q, q′), employing arbitrary criteria to select a
single q′. That is, for each Γ ∈ Kc:

!p(Γ) ∈ Dp(Γ)

We point out that a myriad of different consolidation oper-
ators can implement a !p, depending on how a single natural
consolidation is chosen when there are several closest ones.
Henceforth, we investigate general consolidation operators
that return a maximal consolidation for canonical bases, no
matter how it is chosen. We define a maximal consolidation
operator as a consolidation operator ! : Kc → Kc such that,
for all canonical bases Γ ∈ Kc, !(Γ) is a maximal consolida-
tion operator.

4 Consolidation and Contraction in AGM

Theory

The AGM paradigm is a theory that models changes in the
belief state of a rational agent (see, for instance, (Hansson
1999)). A belief base is a way to model a belief state via a set
of formulas from some logical language, in which the agent
believes in the logical consequences of this set. Probabilis-
tic knowledge bases can be understood as belief bases, if we
consider a hypothetical underlying agent, which might for
instance be implemented in an autonomous system. Three
main belief change operations in the AGM paradigm are:
expansion, contraction and revision. The second one han-
dles the giving up of beliefs, through which consolidation is
defined as the contraction by the contradiction; i.e., to con-
solidate a belief state is to give up the belief on the contra-
diction. To see how belief contraction relates to the consoli-
dation operators we presented, we quickly review the AGM
approach to giving up beliefs on bases.

The whole AGM theory is grounded in a set of rationality
postulates for belief change operations, which have a cor-
respondence with procedures that implement these opera-
tions. Even though the original constructions and rationality
postulates were introduced by Alchourrón, Gärdenfors and
Mankinson (1985) for (logically closed) belief sets, Hans-
son (1992) generalized them to belief bases, which are sets

of logical formulas. Consider a general language L contain-
ing ⊥ and a consequence operation Cn(.) over it. A belief
base is any set B ⊆ L. A contraction operator for a base B
is formalized as a function − : L → 2L that takes a formula
α ∈ L as argument and returns a base −(α) = B − α ∈ 2L
— the contraction of B by α. For a function to be called a
contraction operator for B, it must satisfy the following two
rationality postulates, for any α ∈ Li:

(Inclusion) B − α ⊆ B.

(Success) If α /∈ Cn(∅), α /∈ Cn(B − α).

In words, the contraction of B by α should introduce no
new beliefs in the base, and the resulting base should not
imply α, as long as α is not a tautology. A weaker form of
inclusion is (Hansson 1999):

(Logical Inclusion) Cn(B − α) ⊆ Cn(B).

An operator satisfying (Success) and (Logical Inclusion)
is called a pseudo-contraction (Hansson 1999).

The next postulate deals with the notion of minimal
changes or the idea of maximal information preservation.
While contracting a base by a belief α, it is sensible not to
discard beliefs that are not involved in the derivation of α,
which is enforced by a postulate called (Relevance):

(Relevance) If β ∈ B \ B − α, there is a B′ such that
B − α ⊆ B′ ⊆ B, α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}).

A final postulate states that contractingB by formulas that
are equivalent (modulo B) should yield the same result:

(Uniformity) If it is the case that, for all B ⊆ B, we have
α ∈ Cn(B) iff β ∈ Cn(B), then B − α = B − β.

Hansson (1999) proved, for classical propositional logic,
that any contraction on a belief base satisfying (Success),
(Inclusion), (Relevance) and (Uniformity) can be expressed
in a specific form. To present it, we need some definitions:
Definition 4.1. Given a base B ⊆ L and a formula α ∈ L,
the remainder set B⊥α is such that X ∈ B⊥α iff:
• X ⊆ B;
• α /∈ Cn(X);
• for any set Y , if X � Y ⊆ B, α ∈ Cn(Y ).
Definition 4.2. A function γ is a selection function for a
base B ⊆ L iff:
• if B⊥α �= ∅, ∅ �= γ(B⊥α) ⊆ B⊥α;
• otherwise γ(B⊥α) = {B}.
Definition 4.3. The operator − : L → 2L is a partial meet
contraction for a baseB ⊆ L if, for any formula α ∈ L,B−
α =

⋂
γ(B⊥α) for some selection function γ. If γ(B⊥α)

is a singleton for every α ∈ L, − is called a maxichoice
contraction.

For classical propositional logic, Hansson (1999) linked
the rationality postulates to the partial meet construction. To
present this and other results for a general language L with
an arbitrary consequence operation Cn(.), we have to im-
pose some restrictions on the latter. Below, we define some
useful properties a consequence operation may hold:
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Definition 4.4. Consider a general language L, arbitrary
basesB,B′, B′′ ⊆ L, an arbitrary formula α ∈ L and a con-
sequence operation Cn′(.). A consequence operation Cn(.)
satisfies

• Monotonicity if B ⊆ B′ implies Cn(B) ⊆ Cn(B′);
• Idempotence if Cn(Cn(B)) ⊆ Cn(B);
• Inclusion if B ⊆ Cn(B);
• the Upper Bound Property if, for every B′ ⊆ B with α /∈
Cn(B′), there is a B′′ ⊇ B′ such that B′′ ∈ B⊥α;

• Cn′-Dominance if Cn(B) ⊆ Cn′(B);
• Subclassicality if Cn satisfies CnCl-Dominance.

If Cn satisfies monotonicity, inclusion and idempotence, we
say it is Tarskian.

For instance, CnCl for the propositional language and
CnPr for probabilistic conditionals are Tarskian conse-
quence operations, as they are defined through models, but
only the former fully satisfies the upper bound property, as
we shall see.

Now, Hansson’s representation theorem can be general-
ized (Wassermann 2000)3:

Theorem 4.5. Let Cn be a consequence operation satisfy-
ing monotonicity and the upper bound property. The oper-
ator − : L → 2L for a base B ⊆ 2L satisfies (Success),
(Inclusion), (Relevance) and (Uniformity) iff − is a partial
meet contraction.

To axiomatize maxichoice contraction, (Relevance) can
be strengthened (Hansson 1999):

(Fullness) If β ∈ B and β /∈ B−α, then α /∈ Cn(B−α)
and α ∈ Cn((B − α) ∪ {β}).

Hansson (1999) proved the result below for classical
logic, and Wassermann (2000) generalized it:

Theorem 4.6. Let Cn be a consequence operation satisfy-
ing monotonicity and the upper bound property. The opera-
tor − : L → 2L for a base B ⊆ 2L satisfies (Success), (In-
clusion), (Fullness) and (Uniformity) iff − is a maxichoice
contraction.

Hansson (1997) defines a partial meet consolidation as a
partial meet contraction by the contradiction (⊥), which is
here adapted:

Definition 4.7. The operation B! is a partial meet consol-
idation for a base B ⊆ L if B! =

⋂
γ(B⊥⊥) for some

selection function γ. If γ(B⊥⊥) is a singleton, ! is called a
maxichoice consolidation.

Except for (Uniformity), the postulates for contraction
apply to consolidation (B!), as contraction by the contra-
diction, just taking α = ⊥; and (Success) for consolida-
tion is also called (Consistency). Hansson (1999) proved the
following representation result, generalized by Wassermann
(2000):

3All proofs are in the appendix of the version available online
through the link
www.ime.usp.br/∼mfinger/etc/sub/KR2016.pdf.

Theorem 4.8. Let Cn be a consequence operation satisfy-
ing monotonicity, the upper bound property and such that
⊥ /∈ Cn(∅) . B! satisfies (Success), (Inclusion), (Rele-
vance) iff B! is a partial meet consolidation.
Corollary 4.9. Let Cn be a consequence operation satis-
fying monotonicity, the upper bound property and such that
⊥ /∈ Cn(∅) . B! satisfies (Success), (Inclusion), (Fullness)
iff B! is a maxichoice consolidation.

By taking canonical probabilistic knowledge bases as be-
lief bases over the language LP

Xn
and considering the prob-

abilistic consequence operation CnPr(.), we can evaluate
the consolidation operators introduced in Section 3 with re-
spect to the AGM rationality postulates. For a given base,
a maximal consolidation operator ! is not a contraction by
the contradiction, for formulas are not being discarded, but
changed, and (Inclusion) is violated. The postulate of (Log-
ical Inclusion) is satisfied, so ! could be viewed as a pseudo-
contraction by the contradiction. Nevertheless, this postulate
is vacuous when Γ is inconsistent — which is the only mean-
ingful application of consolidation —, forCnPr(Γ) = LP

Xn
.

In the following, we look for ways to embed maximal con-
solidation operators, like !p, into the AGM paradigm in a
more suitable way.

5 Changing Probability Bounds versus

Discarding Formulas

When probability lower bounds in a canonical probabilistic
knowledge base are decreased to consolidate it, this opera-
tion satisfies (Logical Inclusion) in a particular way. Not any
consequence of a base Γ can appear in its consolidation, but
only consequences of each single probabilistic conditional,
just with the probability bound modified. Santos, Ribeiro
and Wassermann (2015) investigated contractions on propo-
sitional bases considering, besides the classical consequence
CnCl, an arbitrary Tarskian, subclassical consequence oper-
ation Cn�. Based on their ideas, we explore different ways
of connecting probabilistic consolidation via changing lower
bounds with consolidation via partial meet. First, we define
an element-wise consequence operation Cnew for the prob-
abilistic language LP

Xn
.

Definition 5.1. The function Cnew : K → K is a conse-
quence operation such that, for all Γ ∈ K:

Cnew(Γ) = {P (ϕ|ψ) ≥ q′|P (ϕ|ψ) ≥ q ∈ Γ and 0 ≤ q′ ≤ q}
Proposition 5.2. Cnew is Tarskian and satisfies CnPr-
dominance.

Given a canonical probabilistic base Γ ∈ Kc and a max-
imal consolidation operator !, we have !(Γ) ⊆ Cnew(Γ) —
equivalently, by monotonicity, idempotency (→) and inclu-
sion (←), Cnew(!(Γ)) ⊆ Cnew(Γ) —, a special kind of
inclusion. Furthermore, when Γ is inconsistent, it is not nec-
essarily the case thatCnew(Γ) = LP

Xn
, thus this inclusion is

not trivially satisfied, as it happens with (Logical Inclusion)
using CnPr. This motivates the following postulate (San-
tos, Ribeiro, and Wassermann 2015), for a general logical
language L and an arbitrary consequence operation Cn�:

(Inclusion�) B − α ⊆ Cn�(B).
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If Cn� = Cnew, (Inclusion�) is the kind of inclusion any
maximal consolidation operator respects, when viewed as a
contraction by the contradiction. In other words, decreasing
probability lower bounds in a canonical base Γ is the same
as picking a canonical subset of Cnew(Γ).

In a similar way, Santos et al. (2015) propose starred ver-
sions for (Relevance) and (Uniformity).

(Relevance�) If β ∈ Cn�(B) \B − α, there is a B′ such
thatB−α ⊆ B′ ⊆ Cn�(B), α /∈ Cn(B′) and α ∈ Cn(B′∪
{β}).

(Uniformity�) For all B′ ⊆ Cn�(B), if it is the case that
α ∈ Cn(B′) iff β ∈ Cn(B′), then B − α = B − β.

The postulate of (Relevance�), together with (Inclusion�),
forces a contraction — and a consolidation — to be closed
under Cn�, what is called (Enforced Closure�) (Santos,
Ribeiro, and Wassermann 2015):

(Enforced Closure�) B − α = Cn�(B − α).

As maximal consolidation operators return canonical
bases, which are not closed under Cnew, (Relevance�) is
violated. Nonetheless, if we consider the closure of the re-
sulting base under Cnew, this postulate is recovered:

Proposition 5.3. Let !MC : Kc → Kc be a maximal con-
solidation operator and consider Cn� = Cnew. For any
Γ ∈ K, the consolidation operation ! for Γ defined as
Γ! = Cnew(Γ!MC) satisfies (Relevance�).

In the classical propositional case, Santos et al. (2015)
proved that, for a compact, Tarskian, subclassical Cn�, a
contraction operator − for a base B satisfies (Success),
(Inclusion�), (Relevance�) and (Uniformity�) iff B − α =⋂
γ(Cn�(B)⊥α) for some selection function γ. Conse-

quently, if !(B) = B − ⊥ for a − satisfying these four
postulates, ! is a partial meet contraction by the contradic-
tion of the starred closure Cn�(B). To prove the analogous
result for probabilistic logic, where ⊥ can denote P (⊥) ≥ 1,
we need an intermediate result, for the probabilistic conse-
quence operation CnPr is not compact:

Lemma 5.4 (Upper bound property for probabilistic consol-
idation). Let Γ ∈ Kc be a canonical base. For every con-
sistent Δ ⊆ Cnew(Γ), there is a Δ′ such that Δ ⊆ Δ′ ⊆
Cnew(Γ) and Δ′ ∈ Cnew(Γ)⊥⊥.

Lemma 5.5. Let Γ ∈ Kc be a canonical base. Ψ ∈ Kc is a
maximal consolidation of Γ iff Cnew(Ψ) ∈ Cnew(Γ)⊥⊥.

The lemma above states that besides the remainder set
Cnew(Γ)⊥⊥ being well-defined, it is characterized by the
maximal consolidations. Now a representation Theorem can
be proved:

Theorem 5.6. Consider a base Γ ∈ Kc. An operation
Γ! satisfies (Success), (Inclusion�) and (Relevance�), for
Cn� = Cnew, iff Γ! =

⋂
γ(Cnew(Γ)⊥⊥), for some se-

lection function γ.

From this theorem, the first result connecting maximal
consolidation operators and the AGM theory follows, in
which ◦ denotes function composition:

Corollary 5.7. Consider the consequence operation
Cnew = Cn�, a maximal consolidation operator !MC and
a consolidation operation ! for each Γ ∈ Kc defined as
Γ! = Cnew◦!MC(Γ). For each canonical base Γ ∈ Kc,
Γ! satisfies (Success), (Inclusion�) and (Relevance�).

This result relates a consolidation operation ! that returns
the closure of a maximal consolidation under Cnew to a
partial meet construction. Nonetheless, it is not the case
that any construction satisfying (Success), (Inclusion�) and
(Relevance�) is the Cnew-closure of a maximal consolida-
tion. From Lemma 5.5, it is easy to see that any consolida-
tion operation that returns the Cnew-closure of a maximal
consolidation can be seen as a partial meet construction that
selects a single element out of the remainder set — a maxi-
choice contraction. Hence, to fully characterize these opera-
tions, we define the starred version of (Fullness):

(Fullness�) If β ∈ Cn�(B) and β /∈ B − α, then α /∈
Cn(B − α) and α ∈ Cn((B − α) ∪ {β}).
Corollary 5.8. Consider the consequence operation
Cnew = Cn�. The consolidation operation Γ!, for any
Γ ∈ Kc, satisfies (Success), (Inclusion�) and (Fullness�)
iff there is a maximal consolidation operator !MC such that
Γ! = Cnew◦!MC(Γ) for all Γ ∈ Kc.

If the input base is already closed under Cnew (i.e.,
Cnew(Γ) = Γ), we can link any maximal consolidation op-
erator !MC to the original (not starred) postulates, through a
canonical base Ψ such that Cnew(Ψ) = Γ. To do that, we
need a way to get such canonical base Ψ:
Definition 5.9. For any probabilistic knowledge base Γ such
that Cnew(Γ) = Cnew(Ψ) for a canonical Ψ ∈ Kc

4:

Cn−1
ew(Γ) = {P (ϕ|ψ) ≥ q ∈ Γ| there is no

P (ϕ|ψ) ≥ q′ ∈ Γ with q′ > q}
Now a second way to relate a maximal consolidation op-

erator to the partial meet construction follows:
Corollary 5.10. Consider a base Γ = Cnew(Γ) in K.
The consolidation operation !(Γ), for any Γ = Cnew(Γ)
in K, satisfies (Success), (Inclusion) and (Fullness) iff there
is a maximal consolidation operator !MC such that !(Γ) =
Cnew◦!MC ◦ Cn−1

ew(Γ) for all Γ = Cnew(Γ) in K.
From Theorem 5.6, it follows that any consolidation op-

eration Γ! = Cnew◦!MC ◦ Cn−1
ew(Γ), for a Cnew-closed

Γ, is a partial meet consolidation Γ! =
⋂
γ(Γ⊥⊥). In-

deed, Γ! = Cnew(Ψ), for some maximal consolidation Ψ
of Cn−1

ew(Γ).
Until now, we have founded on the AGM paradigm two

kinds of consolidation operations based on a maximal con-
solidation operator !MC :
• Cnew◦!MC(Γ) for each canonical base Γ ∈ Kc re-

turns a base closed under Cnew, satisfying (Success),
(Inclusion�) and (Fullness�);

• Cnew◦!MC ◦ Cn−1
ew(Γ) each base Γ ∈ K closed under

Cnew returns a base closed under Cnew, satisfying (Suc-
cess), (Inclusion) and (Fullness).
4This avoids ill-defined cases, such as Γ = {P (ϕ) ≥ q|q < 1}.
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However, we have still not characterized maximal consoli-
dation operators themselves with postulates or partial meet
constructions. Corollary 5.10 points a way to do that via the
starred closure of the contraction operator, which motivates
a generalization of the contraction concept.

6 Liftable Contractions

Given a contraction operator − for a belief base B over
a general language L and a consequence operation Cn�,
we define the starred closure of − as the operator −� for
Cn�(B) such that Cn�(B)−� α = Cn�(B−α). That is, if
− takes a formula α and returnsB′ = B−α, −� takes α and
returns Cn�(B′). The starred closure !� of a consolidation
operator ! can be defined through (Cn�(B))!� = Cn�(B!).

The (Logical Inclusion) postulate can be seen as a restric-
tion on theCn-closure of a contraction operator. That is, tak-
ing Cn� = Cn, (Logical Inclusion) requires that the starred
closure of the operator satisfy (Inclusion): Cn�(B)−� α =
Cn�(B − α) ⊆ Cn�(B). Similarly, if Cn� were the iden-
tity function, (Inclusion) can be viewed as a restriction on
the starred operator as well, for Cn�(B) = B. For a general
consequence operation Cn�, we can “lift” in this way the
(Inclusion) postulate to the starred closure of the operator:

(�Lifted Inclusion) The operator − for a base B is such
that −� for Cn�(B) satisfies (Inclusion).

Any postulate can be similarly lifted, but note that (Suc-
cess) is equivalent to (�Lifted Success), given some assump-
tions:
Proposition 6.1. If Cn satisfies monotonicity and idempo-
tency, and Cn�, inclusion and Cn-dominance, (Success) is
equivalent to (�Lifted Success).

We call an operator satisfying (�Lifted Inclusion) and
(�Lifted Success) a liftable contraction. As we pointed out,
contractions and pseudo-contractions are particular cases of
liftable contractions, where Cn�(B) = B and Cn�(B) =
Cn(B), respectively. 5 Similarly, we can lift (Relevance),
(Uniformity) and (Fullness):

(�Lifted Relevance) The operator − for a base B is such
that −� for Cn�(B) satisfies (Relevance).

(�Lifted Uniformity) The operator − for a baseB is such
that −� for Cn�(B) satisfies (Uniformity).

(�Lifted Fullness) The operator − for a base B is such
that −� for Cn�(B) satisfies (Fullness).

The following result shows how the lifted postulates relate
to the starred ones:
Proposition 6.2. Consider a consequence operation Cn
that satisfies monotonicity and idempotence and a Tarskian
consequence operation Cn� satisfying Cn-dominance. The
postulate of (Inclusion�) is equivalent to (�Lifted Inclusion).

5Liftable contractions are in some sense converse to base-
generated contractions, defined in (Hansson 1999). While the for-
mer is an operation on bases defined through their Cn�-closure,
the latter is an operation on Cn-closed sets defined via their bases.

The postulate of (Relevance�) implies (�Lifted Relevance).
The postulate of (Uniformity�) implies (�Lifted Uniformity).
The postulate of (Fullness�) implies (�Lifted Fullness).

To guarantee equivalence between the lifted and the
starred postulates, it suffices to require the closure of the re-
sulting base under Cn�:
Proposition 6.3. Consider a consequence operation Cn
that satisfies monotonicity and idempotence and a Tarskian
consequence operation Cn� satisfying Cn-dominance. If
(Enforced Closure�) is satisfied, then (�Lifted Relevance) is
equivalent to (Relevance�), (�Lifted Uniformity) is equiva-
lent to (Uniformity�) and (�Lifted Fullness) is equivalent to
(Fullness�).

To link the lifted postulates to partial meet constructions
for the starred closure, we define:
Definition 6.4. We say a liftable contraction is a liftable par-
tial meet contraction (consolidation) if its starred closure
is a partial meet contraction (consolidation); we say it is a
liftable maxichoice contraction (consolidation) if its starred
closure is a maxichoice contraction (consolidation).

The implementation of a liftable partial meet contraction
is only partially determined through its starred closure, un-
less we require the closure of the resulting base under Cn�:
Proposition 6.5. Consider a monotonic consequence op-
eration Cn that satisfies the upper bound property and
a Tarskian consequence operation Cn� satisfying Cn-
dominance. A contraction operator − : L → 2L for a
base B ⊆ 2L satisfies the �lifted versions of the postu-
lates of success, inclusion, relevance (fullness) and unifor-
mity iff it is a liftable partial meet contraction (liftable maxi-
choice contraction). Furthermore, − additionally satisfies
(Enforced Closure�) iff B − α =

⋂
γ(Cn�(B)⊥α) (and

γ(Cn�(B)⊥α) is a singleton) for all α ∈ L and for some
selection function γ.

For consolidations, it is always the case that α = ⊥, and
one can drop (�Lifted Uniformity) from the result above:
Proposition 6.6. Consider a monotonic consequence op-
eration Cn that satisfies the upper bound property and
a Tarskian consequence operation Cn� satisfying Cn-
dominance. A consolidation operationB! satisfies the �lifted
versions of the postulates of success, inclusion, and rele-
vance (fullness) iff it is a liftable partial meet consolidation
(liftable maxichoice consolidation). Furthermore, if B! sat-
isfies (Enforced Closure�), then B! =

⋂
γ(Cn�(B)⊥⊥) for

some selection function γ (B! ∈ (Cn�(B)⊥⊥)).
Any maximal consolidation operator satisfies the �lifted

postulates, including (�Lifted Fullness), but not (Enforced
Closure�). Hence, from Proposition 6.6, maximal consoli-
dations are liftable maxichoice consolidations. To uniquely
characterize maximal consolidation operators, we need to
require that output bases be canonical. Given a general
consequence operation Cn� for a language L, we say a
canonical form is a function f� : 2L → 2L such that
Cn�(B) = Cn�(f�(B)), and Cn�(B) = Cn�(B′) im-
plies f�(B) = f�(B

′). Note that these conditions also im-
ply f�(f�(B)) = f�(B). For any base B, we say f�(B) is
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its canonical form (regarding f�). Given a canonical form f�
for a consequence operation Cn�, we can define:

(f�-Canonicity) B − α = f�(B − α).

With this extra postulate, the partial meet construction for
the liftable contraction is uniquely determined by the selec-
tion function γ, and (�Lifted Fullness) forces γ to return a
singleton:

Proposition 6.7. Consider a consequence operation Cn
that satisfies monotonicity, idempotence and the upper
bound property and a Tarskian consequence operation Cn�
satisfying Cn-dominance. An operator − : L → 2L for a
base B is a liftable partial meet contraction (liftable maxi-
choice contraction) and satisfies (f�-Canonicity) iff, for any
formula α ∈ L, B − α = f�(

⋂
γ(Cn�(B)⊥α)) for some

selection function γ (and γ(Cn�(B)⊥α) is a singleton).

Corollary 6.8. Consider a consequence operation Cn that
satisfies monotonicity, idempotence and the upper bound
property and a Tarskian consequence operation Cn� sat-
isfying Cn-dominance. An operation B! is a liftable partial
meet consolidation (liftable maxichoice consolidation) and
satisfies (f�-Canonicity) iff,B! = f�(

⋂
γ(Cn�(B)⊥⊥)) for

some selection function γ (and γ(Cn�(B)⊥⊥) is a single-
ton).

As the function Cn−1
ew satisfies the properties of a canoni-

cal form f� for the consequence operationCnew, we can say
that maximal consolidation operators satisfy the correspond-
ing (f�-Canonicity). Even though the probabilistic logic is
not compact, using Lemma 5.4 we can prove some repre-
sentation results:

Lemma 6.9. Consider Cn� = Cnew and f� = Cn−1
ew . The

operation Γ! satisfies (�Lifted Success), (�Lifted Inclusion),
(�Lifted Fullness) and (f�-Canonicity) for all Γ ∈ Kc iff
!MC : Kc → Kc, with !MC(Γ) = Γ! for all Γ ∈ L, is a
maximal consolidation operator.

If only (�Lifted Relevance) is required, and not (�Lifted
Fullness), we obtain constructions that select the infimum of
the lower bounds in a set of maximal consolidations.

Definition 6.10. Consider a base Γ ∈ Kc and a set of vec-
tors S ⊆ [0, 1]|Γ|. We define inf{ΛΓ(q)|q ∈ Q} = ΛΓ(q

′),
where q′ ∈ [0, 1]|Γ| is such that q′i = inf{qi|q ∈ S} for
every 1 ≤ i ≤ |Γ|.
Lemma 6.11. Consider Cn� = Cnew, f� = Cn−1

ew , a
Γ ∈ Kc. Γ! satisfies (�Lifted Success), (�Lifted Inclusion),
(�Lifted Relevance) and (f�-Canonicity) iff Γ! = infM , for
a set M of maximal consolidations of Γ.

The setM can be defined through the remainder set, as the
elements of the former (maximal consolidations) are canon-
ical forms of elements of the latter: M = {f�(Ψ)|Ψ ∈
γ(Cn�(Γ)⊥⊥)}. The full meet criterion, which requires that
a partial meet contraction be the intersection of all elements
in the remainder set, is met whenM is the set of all maximal
consolidations.

By leaving the maxichoice contraction, allowing M to be
a set of maximal consolidations, we do not need methods
that specify a single one, but only a set of preferred ones.

We said in Section 3 that minimizing the p-norm distance
does not necessarily yield a unique maximal consolidation;
that is, Cp requires additional selection criteria to be a well-
defined function from bases to bases. Nevertheless, mini-
mizing these distances (dp) leads to a set Dp of preferred,
closest maximal consolidations, inducing a selection func-
tion γ. To perform a consolidation, we can employ these
distances to construct selection functions γ for the partial
meet construction, which corresponds to take the minimum
lower bounds of the corresponding maximal consolidations.
Definition 6.12. Consider a canonical base Γ = ΛΓ(q). For
any positive p in N ∪ {∞} ,

γp(Cnew(Γ)⊥⊥) = {Cnew(ΛΓ(q)) ∈ Cnew(Γ)⊥⊥

|dp(q, q′) is minimum} .
Example 6.13 (Rain City Revisited II). Consider that we
want to consolidate the canonical base Γ = {P (ϕ) ≤
0.3, P (ϕ) ≥ 0.6} through a liftable partial meet contraction
by the contradiction, returning a canonical base (in practice,
we just want to change the probability bounds). Firstly, we
compute the closure of Γ under Cnew:

Cnew(Γ) = Cnew({P (ϕ) ≤ 0.3}) ∪ Cnew({P (ϕ) ≥ 0.6}) .
Then the remainder set Cnew(Γ)⊥⊥ can be defined through
the (Cnew)-closure of the maximal consolidations:

Cnew(Γ)⊥⊥ = {Cnew({P (ϕ) ≤ q1, P (ϕ) ≥ q2})
|q1 = q2, q1 ∈ [0.3, 0.6]} .

Now we need a selection function γ. Consider for instance
the selection function γp based on distance minimization,
forp = 1, p = 2 and p = ∞:

γ1(Cnew(Γ)⊥⊥) = Cnew(Γ)⊥⊥ ,

γ2(Cnew(Γ)⊥⊥) = Cnew({P (ϕ) ≤ 0.45, P (ϕ) ≥ 0.45}) ,
γ∞(Cnew(Γ)⊥⊥) = Cnew({P (ϕ) ≤ 0.45, P (ϕ) ≥ 0.45}) .

When p = 1, any q1, q2 ∈ [0.3, 0.6] with q1 = q2 is such
that d1(〈q1, q2〉, 〈0.3, 0.6〉) = |q1−0.3|+ |q2−0.6| = 0.3 6.
Hence, γ1 selects all elements in the remainder set. Nonethe-
less, d2(〈q1, q2〉, 〈0.3, 0.6〉) has a single minimum with q1 =
q2 at q1 = q2 = 0.45, and γ2 selects only the (Cnew) clo-
sure of the corresponding maximal consolidation. The same
happens to γ∞.

To consolidate Cnew(Γ), we take the intersection of the
selected bases for each selection function:

Cnew(Γ)!
1
� =

⋂
γ1(Cnew(Γ)⊥⊥) =

⋂
Cnew(Γ)⊥⊥

= Cnew({P (ϕ) ≤ 0.6, P (ϕ) ≥ 0.3}) ,
Cnew(Γ)!

2
� =

⋂
γ2(Cnew(Γ)⊥⊥)

=
⋂
Cnew({P (ϕ) ≤ 0.45, P (ϕ) ≥ 0.45})

= Cnew({P (ϕ) ≤ 0.45, P (ϕ) ≥ 0.45}) ,
Cnew(Γ)!

∞
� = Cnew(Γ)!

2
� .

6Technically, P (ϕ) ≤ 0.3 and P (ϕ) ≤ q1 abbreviate
P (¬ϕ) ≥ 1 − 0.3 and P (¬ϕ) ≥ 1 − q1, but note that |1 − q1 −
(1− 0.3)| = |0.3− q1| = |q1 − 0.3|.
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Note that, in this particular case, Cnew(Γ)!
2
� and

Cnew(Γ)!
∞
� are maxichoice consolidations, while

Cnew(Γ)!
1
� is a full meet consolidation.

As Cnew(Γ)!
p
�, for any p ∈ {1, 2,∞}, is a partial meet

consolidation, any Γ!p such that Cnew(Γ!p) = Cnew(Γ)!
p
�

will be a liftable partial meet consolidation. To satisfy (f�-
canonicity), we take the canonical form:

Γ!1 = Cn−1
ew(Γ!

1
�) = {P (ϕ) ≤ 0.6, P (ϕ) ≥ 0.3}

Γ!2 = Cn−1
ew(Γ!

2
�) = {P (ϕ) ≤ 0.45, P (ϕ) ≥ 0.45}

Γ!∞ = Cn−1
ew(Γ!

∞
� ) = {P (ϕ) ≤ 0.45, P (ϕ) ≥ 0.45}

Due to their starred closures, Γ!2 and Γ!∞ are liftable
maxichoice consolidations, whereas Γ!1 is a liftable full
meet consolidation.

Recall that P (ϕ) ≤ q1 abbreviates P (¬ϕ) ≥ 1 − q1.
Thus, Γ!1 is taking the minimum lower bounds from the set
of maximal consolidations: 1 − q1 = 1 − 0.6 = 0.4 and
q2 = 0.3. The operations Γ!2 and Γ!∞ return a single pre-
ferred maximal consolidation. In the end, by consolidating
the closure and taking the canonical form, we are just chang-
ing the probability bounds.

Once we have fully characterized the consolidation of
canonical probabilistic knowledge bases, by employing —
and extending — the AGM approach, a compelling question
is how to generalize these results to probabilistic contrac-
tion, if possible, which we tackle in the next section.

7 Towards Probabilistic Contraction

Using the upper bound property for probabilistic consol-
idation (Lemma 5.4), we derived results to characterize
(liftable) contractions of canonical probabilistic bases by
the contradiction (Γ − ⊥) through their starred closure
(Cnew(Γ) −� ⊥), but not by arbitrary formulas α ∈ LP

Xn
.

In fact, contracting a probabilistic knowledge base Γ =
Cnew(Γ) by an arbitrary conditional α ∈ LP

Xn
via partial

meet is not possible, due to the following result:

Proposition 7.1. CnPr does not satisfy the upper bound
property.

As a consequence, there are bases Γ ∈ K and conditionals
α such that the partial meet contraction Γ− α is ill-defined.
To understand how probabilistic consolidation works fine
via partial meet, while contraction in general does not, we
extend the probabilistic logic. Let L̄P

Xn
be the language con-

taining the negated conditionals: L̄P
Xn

= {¬α|α ∈ LP
Xn

}.
The semantics for the language L̄P

Xn
∪ LP

Xn
is given by the

semantics for LP
Xn

with an extra rule for negation: a prob-
ability interpretation π satisfies ¬α ∈ L̄P

Xn
if π does not

satisfy α ∈ LP
Xn

. The consequence operation CnPr can be
extended accordingly, and Lemma 5.4, generalized:

Theorem 7.2 (Upper bound). Let Γ = Cnew(Γ) be a prob-
abilistic knowledge base in K, and α ∈ L̄P

Xn
, a negated con-

ditional. For every Δ ⊆ Γ such that α /∈ CnPr(Δ), there is
a Ψ ∈ (Γ⊥α) such that Δ ⊆ Ψ.

From which follows that the scope of the well-behaved
probabilistic contraction is L̄P

Xn

7. With this in mind, we
relax in this section the definition of a contraction operator −
to allow a domain that is strictly smaller than the language,
L̄P
Xn

� L̄P
Xn

∪LP
Xn

, in order to obtain representation results:

Corollary 7.3. The operator − : L̄P
Xn

→ K for a Γ =
Cnew(Γ) in Kc satisfies (Success), (Inclusion), (Relevance)
and (Uniformity) iff Γ − α =

⋂
γ(Γ⊥α) for all α ∈ L̄P

Xn

and for some selection function γ.

To see that this result holds for consolidation, just take
α = P (⊥) > 0 ∈ L̄P

Xn
. That is, we can contract by ⊥ =

P (⊥) ≥ 1 just because it is equivalent to ⊥′ = P (⊥) > 0.
However, it is not the case that any P (ϕ|ψ) ≥ q has an
equivalent P (ϕ′|ψ′) > q′.

Since the contraction of a probabilistic base Γ =
Cnew(Γ) by negated conditionals is well-defined, so is the
corresponding liftable contraction. Consequently, Proposi-
tions 6.5 and 6.7 also hold in this case.

The fact that only contractions by negated conditionals
can be well characterized by the postulates and the par-
tial meet construction within the probabilistic logic may be
somewhat strange at first, but thinking about belief revision,
such oddness disappears. To revise a probabilistic knowl-
edge base by a conditional α = P (ϕ|ψ) ≥ q, one can apply
these two operations, in some order: contract by ¬α; expand
by α. And as contractions by ¬α are indeed well-founded on
the AGM paradigm, one can define revision as well. For in-
stance, using Levi’s identity, to revise a canonical base Γ by
a conditional α = P (ϕ|ψ) ≥ q, one could perform a liftable
contraction by ¬α, which is a well-defined operation, fol-
lowed by consistently adding α to the base.

8 Conclusion and Future Work

We investigated consolidation procedures for probabilistic
knowledge bases under the AGM framework of belief re-
vision. To characterize consolidation via probability chang-
ing, we defined the concept of liftable contraction, which is
parametrized by a consequence operation. Using this con-
sequence operation, we lifted the postulates for base con-
traction operations in order that probabilistic consolidations
may be fully characterized through a representation theo-
rem. In the end, we devised a probabilistic contraction oper-
ation for a specific language, since in the general case such
operation is ill-defined.

Future work includes the investigation of liftable revisions
via liftable contractions. To achieve that, one might need
to define an expansion operation parametrized by a conse-
quence operation as well. Such revision via liftable contrac-
tions could then be characterized by a set of lifted postulates.
The (liftable) probabilistic contraction we introduced could
be explored in detail to ground a liftable revision operation
for probabilistic knowledge bases.

7Note that this contraction is regarding the standard semantics
(CnPr), and does not apply to the maximum entropy entailment.

133



Acknowledgments

GDB was supported by CAPES. MF is partially supported
by CNPq grant PQ 306582/2014-7 and Fapesp project
2015/21880-4. RW is partially supported by CNPq grant PQ
309605/2013-0.

References

Alchourrón, C.; Gärdenfors, P.; and Makinson, D. 1985. On
the logic of theory change: Partial meet contraction and re-
vision functions. The journal of symbolic logic 50(02):510–
530.
Boole, G. 1854. An Investigation of the Laws of Thought:
on which are Founded the Mathematical Theories of Logic
and Probabilities. Walton and Maberly.
De Bona, G., and Finger, M. 2015. Measuring inconsistency
in probabilistic logic: rationality postulates and dutch book
interpretation. Artificial Intelligence 227:140–164.
de Finetti, B. 1930. Problemi determinati e indeterminati
nel calcolo delle probabilità. Rendiconti Reale Accademia
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