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Abstract

Online reviews are quickly becoming one of the most impor-
tant sources of information for consumers on various prod-
ucts and services. With their increased importance, there ex-
ists an increased opportunity for spammers or unethical busi-
ness owners to create false reviews in order to artificially pro-
mote their goods and services or smear those of their com-
petitors. In response to this growing problem, there have been
many studies on the most effective ways of detecting review
spam using various machine learning algorithms. One com-
mon thread in most of these studies is the conversion of re-
views to word vectors, which can potentially result in hun-
dreds of thousands of features. However, there has been lit-
tle study on reducing the feature subset size to a manage-
able number or how best to do so. In this paper, we consider
two distinct methods of reducing feature subset size in the
review spam domain. The methods include filter-based fea-
ture rankers and word-frequency based feature selection. We
show that there is not a one size fits all approach to feature
selection, and the best way to reduce the feature subset size is
dependent upon both the classifier being used and the feature
subset size desired. It was also observed that the feature sub-
set size had significant influence on which feature selection
method is used.

Introduction

Consumers have always sought to find reviews or recom-
mendations for various products and services before they
buy them. Previously, consumers relied on publications and
services such as Consumer Reports or AAA; however, the
explosion of Web 2.0 has provided a way for consumers to
share their experiences directly with each other, and not rely
on third party companies for this type of information. Sites
like Yelp, TripAdvisor, and Amazon provide a way for con-
sumers to give feedback on their experience with various
products or services, which others can then view before de-
ciding to make a purchase.

While this has worked well for many years, the influence
of reviews on product and service consumption is loosing its
authenticity. Spammers and unscrupulous businesses have
tampered the review sites with with fake and untruthful re-
views. The Canadian government recently estimated that a
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full third of all online reviews are fake, which prompted
them to issue a warning “encouraging consumers to be
wary of fake online endorsements that give the impression
that they have been made by ordinary consumers.” (Bureau
2014)

Methods for detecting fake reviews have become fore-
front in recent years since these types of untruthful reviews
can erode consumer trust or negatively affect their purchas-
ing habits. Most research on detecting review spam involves
training classifiers using a labeled dataset and then apply-
ing it to unlabeled reviews reviews to determine if they are
fake or not (Crawford et al. 2015)(Ott, Cardie, and Hancock
2013). Researchers commonly use the occurrence of words
in reviews as the features which describe a given review in-
stance. However, in an area which could potentially have
millions of reviews and hundreds of thousands of distinct
words, it is important to identify which words (or features)
are important or even potentially detrimental as traditional
machine learning techniques have shown difficulty in scal-
ing to feature set sizes of this magnitude (López et al. 2015).
Existing research has, for the most part, focused on the cre-
ation of datasets, features, and evaluation of classifiers (Sho-
jaee et al. 2013)(Ott et al. 2011)(Fei et al. 2013). How many
of the word features are needed to effectively train a review
spam classifier has generally been ignored. To the best of our
knowledge this is the first study on the number of text based
features which are needed for detection of review spam.

This study provides an empirical evaluation of the ef-
fectiveness of two methods of feature selection for reduc-
ing the feature set size in review spam detection. We com-
pare feature selection using word frequency versus a Chi-
Squared feature selection method across various classifiers.
The dataset used in this study spans three distinct domains:
restaurants, hotels, and doctors. We found that for lower
feature subset sizes, the Chi-Squared feature selection tech-
nique outperformed using word frequency for all of the clas-
sifiers in this study. At higher feature subset sizes, there was
no distinguishable difference between the two methods.

The remainder of this paper is structured as follows. The
Related Works section contains some of the previous re-
search in the review spam domain. The Empirical Design
section discusses the dataset used in this study along with
the experimental protocol which was followed. The Results
section presents the results of our study along with commen-
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tary and statistical analysis of them. The Conclusion section
contains our conclusions along with possible areas of future
study.

Related Works

As the field of online review spam detection is relatively
new, the first study that we are able to find on the subject
matter was done by Jindal and Liu in 2007 (Jindal and Liu
2007), which they later expanded upon in 2008 (Jindal and
Liu 2008). In their study, they use a dataset of nearly six mil-
lion reviews collected from Amazon. All reviews which are
duplicates or near duplicates are labeled as spam. Reviews
with a Jaccard similarity score of over 90% were considered
duplicates. A method known as w-shingling (Broder et al.
1997) was used in order to accomplish this task on such a
large dataset . They trained a Logistic Regression classifier
on this data and use it to try to identify potential spam which
are not simply duplicate reviews. Upon manually analysis of
100 of the non-duplicate reviews which had been classified
as spam, 52 of them were definitely spam.

Finding labeled datasets is always a challenge for ma-
chine learning researchers and review spam detection is no
different. Ott et al. (Ott et al. 2011) devised a novel method
of using Amazon Mechanical Turk (AMT) to generate fake
reviews for their dataset and combined them with “truthful”
reviews which were collected from TripAdvisor. In all, 400
deceptive and 400 truthful reviews were collected to con-
struct their final dataset. They evaluated the performance of
Naı̈ve Bayes and Support Vector Machine (SVM) classifiers
using unigrams, bigrams and trigrams. The authors observed
that SVM with bigrams had the highest performance; how-
ever, no statistical analysis was done to determine if this dif-
ference was significant and the dataset was relatively small.

In a recent study by Li et al. (Li et al. 2014), the dataset
previously created by Ott et al. was expanded to include two
additional domains (restaurants and doctors). While AMT
was once again used to collect some of the fake reviews, a
study by Mukherjee et al. (Mukherjee et al. 2013) had found
that reviews created via AMT were more easily identified
than reviews which had been flagged as spam on the Yelp
website. To combat this, Li et al. also solicited fake reviews
from actual employees and thus dubbed them “expert” re-
views since these are people with direct knowledge of the lo-
cations they are reviewing and can potentially provide more
“accurate” fake reviews. The authors then studied the ef-
fectiveness of training and evaluating an SVM classifier on
each of the domains. They observed that unigram features
demonstrate the best performance; however, it is not clear
how many features were used or how they were selected. An
important insight from Li et al.’s study was that it was eas-
ier to distinguish between truthful and AMT reviews than
truthful and expert reviews.

Empirical Design

Dataset

In our study, we use the publicly available version of a
dataset from (Li et al. 2014), which features reviews from

three domains (restaurants, hotels, and doctors). The truth-
ful reviews in the dataset were collected from actual review
websites, while the fake reviews were solicited from AMT
and industry experts. The breakdown of the class and do-
main distribution of the dataset is detailed in Table 1. The
instances themselves are simply the text of the review and
class indicator (spam or truthful). The text was later split
into individual words (unigrams), as described in the next
section, which served as the features of the instances.

Domain Truthful Spam Total
doctors 200 356 356
hotels 800 1080 1880

restaurants 200 200 400
Total 1200 1636 2836

Table 1: Dataset domain and class distribution

Classifiers, Cross-Validation, and Performance
Metric

We consider five different classifiers, Decision Tree (C4.5),
Logistic Regression (LR), Naı̈ve Bayes (NB), Multinomial
Naı̈ve Bayes (MNB), and Support Vector Machine (SVM) in
our study. All classifiers were implemented using the Weka
machine learning toolkit (Hall et al. 2009) using the default
values except SVM, for which the complexity constant (c)
was set to 5 and the buildLogisticModels parameter was
set to true. Please refer to (Hall et al. 2009) for further in-
formation on the specific implementation of these classifiers.

Four runs of five-fold cross validation were used in all
experiments. This means that for each run, the dataset was
randomly divided into five parts. Each of the five parts was
then used exactly one time to evaluate a classifier which
was trained on the remaining four parts. All classifiers were
trained such that feature creation and selection was per-
formed using the four training folds of cross-validation. This
process was then repeated four times, which results in train-
ing and evaluating twenty models for each combination of
classifier and feature subset size. By doing the experimenta-
tion in this manner, we reduce the chance of any bias due to
good or bad data splits.

The performance of each model is evaluated using the
Area Under the Receiver Operating Characteristic Curve
(AUC). The curve is a graph with the false positive rate on
the X axis versus the true positive rate on the Y axis. These
rates are inversely correlated and collected by varying the
threshold value which splits positive and negative class pre-
dictions. By determining the area under this curve, one can
effectively estimate the true predictive capability of a given
model.

Feature Selection Techniques

In addition to word frequency, ten filter-based feature selec-
tion techniques were also considered for this study: Signal-
to-Noise (S2N), Chi-Squared (CS), Mutual Information
(MI), area under the Precision-Recall Curve (PRC), AUC,
Wilcoxon Rank Sum (WRS), Probability Ratio (PR) and
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Technique Group AUC stdev
S2N A 0.822 0.061
CS A 0.821 0.062
AUC B 0.818 0.054
KS B 0.818 0.054
MI B 0.817 0.054
PRC B 0.816 0.054
SAM C 0.661 0.060
WRS D 0.614 0.050
GI E 0.605 0.072
PR E 0.604 0.070

Table 2: Tukey HSD Test of feature selection techniques
across all classifiers with feature subset sizes from 100 to
1,000 (alpha=0.05)

Gini-Index (GI). Filter-based techniques were used in fa-
vor of wrapper based techniques since the filter-based tech-
niques are relatively less computationally complex (Prusa,
Khoshgoftaar, and Dittman 2015). An experiment was con-
ducted to evaluate each of these ten filter-based feature se-
lection techniques against the combined dataset from Table
1 with various classifiers. The number of features to be se-
lected was varied from 100 to 1,000 in increments of 100
for each combination of classifier and feature selection tech-
nique. A Tukey’s HSD (Honest Significant Difference) test
was run on the results (Table 2) and shows that S2N and CS
are in the top group (A), while 4 others are in a second group
(B), and the last 4 are far below in the other groups (C,D,E).
The results are also summarized visually in Figure 1. In this
figure you can clearly see that there is a stark contrast be-
tween the top six (S2N, CS, MI, PRC, AUC and KS) and the
bottom four (SAM, WRS, GI and PR). Because there isn’t
much of a difference in the top performers (and no statisti-
cally difference between the top two) we chose to use CS for
this study as it is the most commonly available and widely
used in the literature for other text mining domains.

In the case of attribute selection using word frequency,
we use a modified version of the StringToWordVector fil-
ter from the Weka toolkit. The out-of-the-box filter allows
you specify a minimum number of attributes but then in-
cludes all ties. So if you specify 100 words, it will deter-
mine what the cut-off frequency is for 100 words and then
include all words which have at least the number of oc-
currences as this cutoff value. This means that while you
specify 100 words, you may in fact get a higher number
of attributes (words). Our modified implementation, Exact-
StringToWordVector, instead randomly selects a subset of
the words which have the same number of occurrences such
that the exact number of features asked for is returned. So
if you ask for 100 words, you will get exactly 100 words,
presuming 100 distinct words exist.

Results

In this study we attempt to empirically determine how many
features are needed for several types of classifiers in the re-
view spam domain, as well as determine if it is better to use
a Chi-Squared feature selection filter or simply rely upon the

word count frequencies in the documents themselves to se-
lect the features. An analysis of variance (ANOVA) test was
run on the results (Table 3), and it shows that all three factors
(classifier, feature selection technique, and subset size), and
their interactions, are significant.

Additional experiments were conducted to analyze each
of the classification techniques across a larger range of sub-
set sizes, specifically looking at the word frequency and Chi-
Squared feature selection techniques. In the remainder of
this section, we will analyze each of the classification tech-
niques individually, look at them as a whole, and discuss our
recommendations. For C4.5 and Naı̈ve Bayes we show fea-
ture subset sizes from 100 to 5,000 as the performance does
not change beyond that. The remaining classifiers (Logistic
Regression, SVM and Multinomial Naı̈ve Bayes ) we evalu-
ate feature subset sizes from 100 to 10,000 as they continued
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Figure 1: Comparison of feature selection techniques across
classifiers. While difficult to distinguish between the indi-
vidual classifiers, it is easy to see there generally 2 observ-
able groups. (The legend is in ordered of mean AUC from
top to bottom)
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Df SS MS F-value Pr(>F)
Classifier(A) 4 24.51 6.13 9835.3 0.0000
Num Attr(B) 44 1.84 0.04 67.0 0.0000
Technique(C) 1 1.33 1.33 2139.7 0.0000
A:B 156 4.49 0.03 46.2 0.0000
A:C 4 1.55 0.39 622.0 0.0000
B:C 34 0.64 0.02 30.1 0.0000
A:B:C 136 3.82 0.03 45.1 0.0000
Residuals 7220 4.50 0.00

Table 3: ANOVA analysis of the number of attributes, clas-
sifier, and feature selection technique

to exhibit variation at higher subset sizes.

Decision Tree

With the C4.5 Decision Tree implementation, the Chi-
Squared feature selector has a higher AUC score than fre-
quency for all subset sizes (Fig 2). While using the Chi-
Squared feature selection method achieves near its top AUC
score for all subset sizes, frequency has a sharp increase in
AUC from 100 to 1,000 and then levels off for larger subset
sizes. This would indicate that CS should always be used in
favor of frequency for this classifier and domain.
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Figure 2: Average AUC score for C4.5 using feature subset
sizes from 100 to 5,000

Logistic Regression

With Logistic Regression, we see an interesting trend that
there is a spike early on and then a steep decline (Fig 3).
Both the Chi-Squared and frequency versions then recover
at higher attribute levels. While using frequency is good at
very high numbers of attributes, having a feature set of this
size is counter-productive to our goals. Also of note is that
Chi-Squared does not have as big of a drop in performance
and recovers more quickly from the downturn. In general,
the LR classifier appears to be very unstable with respect
to feature subset set size on this dataset. Ensemble learners
using LR may stabilize the classification performance, and
can be investigated in future work.
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Figure 3: Average AUC score for Logistic Regression using
feature subset sizes from 100 to 10,000

Naı̈ve Bayes

Examining Naı̈ve Bayes we can observe that at lower feature
subset sizes (i.e. less than 1000), the Chi-Squared feature
selection technique has a higher AUC than frequency (Fig
4); however, frequency yields slightly higher beyond 2,500.
This would again suggest that the choice in feature selection
technique would be dictated by the feature subset size.
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Figure 4: Average AUC score for Naı̈ve Bayes using feature
subset sizes from 100 to 10,000

Support Vector Machine

The results for Support Vector Machine (Fig 5) have some of
the most stark contrasts with Chi-Squared performing better
at lower subset sizes, but frequency having a higher mean
AUC beyond 1,700 features. Although the average AUC for
frequency shows a steady increase with the addition of addi-
tional features, it never reaches the peak obtained by the Chi-
Squared feature selection technique at 400 features. This
would suggest that Chi-Squared feature selection should be
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Figure 5: Average AUC score for Support Vector Machine
using feature subset sizes from 100 to 10,000

used when using the SVM classifier and smaller feature sub-
set sizes are desired.

Multinomial Naı̈ve Bayes

Multinomial Naı̈ve Bayes is similar to Naı̈ve Bayes in shape
except that the AUC scores are higher (Fig 6). The Chi-
Squared feature selector has a higher base AUC at 100 fea-
tures and quickly rises to a local minimum around 800 fea-
tures then levels off. Conversely, selecting features based
upon frequency has much lower performance with 100 fea-
tures and a steady rise as more features are added. Of note is
that the mean AUC using frequency is actually higher than
Chi-Squared for higher feature subset sizes. This would indi-
cate that for this particular classifier, the number of features
that you want to use in your final model should dictate which
method to use to pick them.

As Multinomial Naı̈ve Bayes provides the best perfor-
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Figure 6: Average AUC score for Multinomial Naı̈ve Bayes
using feature subset sizes from 100 to 10,000

Technique:Subset Size Group AUC stdev
ChiSq:1000 A 0.887 0.017
ChiSq:500 AB 0.881 0.018
Freq:1000 B 0.867 0.018
Freq:500 C 0.841 0.022

Table 4: Tukey HSD Test comparing feature subset size and
selection technique for subset sizes of 500 and 1,000

Technique:Subset Size Group AUC stdev
Freq:5000 A 0.896 0.014
ChiSq:5000 A 0.894 0.015
Freq:4000 A 0.894 0.015
Freq:3000 A 0.891 0.016
ChiSq:4000 A 0.890 0.015
ChiSq:2000 A 0.888 0.016
ChiSq:3000 A 0.887 0.016
Freq:2000 A 0.884 0.017

Table 5: Tukey HSD Test comparing feature subset size and
selection technique for subset sizes of 2,000 to 5,000

Classifier Group AUC stdev
MNB A 0.885 0.017
SVM B 0.874 0.013
NB C 0.828 0.024
LR D 0.750 0.060
C4.5 E 0.741 0.022

Table 6: Tukey HSD Test of each classifier using Chi-
Squared feature selection and feature subset sizes between
500 and 1000 (alpha=0.05)

mance for this particular dataset (Table 6), we investigate
further the differences between the feature selection tech-
niques at different subset sizes while providing statistical
analysis.

Looking at relatively small subset sizes of 500 and 1,000,
it can be observed that Chi-Squared performs significantly
better (Table 4). However, when looking at subset sizes from
2,000 to 5,000 (Table 5), there is not a significant difference
between the two. This tells us that for smaller subset sizes,
Chi-Squared performs better; however, if you chose a larger
subset size there is no gain from the additional cost of using
Chi-Squared since simple frequency performs equally well.

Comparison of Classifiers

In order to compare the classifiers, a Tukey HSD test was
performed comparing the AUC scores of each classifier
when using Chi-Squared feature selection (Table 6). Each
classifier is found to be significantly different than the oth-
ers, with Multinomial Naı̈ve Bayes and SVM being the best
while Logistic Regression and C4.5 are significantly worse
than the others. Standard Naı̈ve Bayes fall in the middle.
The stark contrast can be seen more clearly in Figure 7. It is
important to note that this figure shows the confidence inter-
val of the mean AUC score across all subset sizes and thus
LR and C4.5 overlap, where as the Tukey HSD test takes
into consideration that feature subset size is an additional
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Figure 7: 95% confidence interval of mean AUC for each
classifier using the Chi-Squared feature selector with feature
subset sizes between 500 and 1000

factor in determining groups and thus does not group them
together.

Conclusion

Methods for detecting online fake reviews have become in-
creasingly important in recent years as both the popularity
of online review sites and the number of fake reviews has
increased. Current research has primarily focused on super-
vised classification using features extracted from the text of
reviews, with little regard for how many features are being
extracted. However, as the number of review sites and re-
views grows, methods for curtailing the number of features
is becoming necessary, since the feature set sizes can grow
beyond what can be handled by traditional machine learning
techniques.

In this study, we consider two common approaches from
other text mining domains for limiting the number of fea-
tures in a corpus and examine which method is better for
multiple classifiers and desired feature subset sizes. The first
method is to simply select the words which appear most of-
ten in the text. Alternatively, one can use filter based feature
rankers (i.e. Chi-Squared) to rank features and then select
the top ranked features. The crucial finding of this study is
that there is not a one size fits all approach that is always bet-
ter. In general, using Chi-Squared feature selection performs
better for smaller subset sizes, while the less computation-
ally intense method of word frequency performs just as well,
if not better, for larger feature subset sizes.

Further work should include determining if the domain of
the user reviews has any affect on the results. Also, other
datasets (especially those which do not include AMT re-
views) should be examined to verify that this trend gener-
alizes.
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