
The Ultimate Guide to Forgetting in Answer Set Programming

Ricardo Gonçalves and Matthias Knorr and João Leite
NOVA LINCS, Departamento de Informática

Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
2829-516 Caparica, Portugal

Abstract

Many approaches for forgetting in Answer Set Programming
(ASP) have been proposed in recent years, in the form of
specific operators, or classes of operators, following differ-
ent principles and obeying different properties. Whereas each
approach was developed to somehow address some particu-
lar view on forgetting, thus aimed at obeying a specific set
of properties deemed adequate for such view, we are lack-
ing a comprehensive and uniform overview of existing op-
erators and properties. We aim at overcoming this by thor-
oughly examining existing properties and (classes of) opera-
tors for forgetting in ASP, drawing a complete picture, which
includes many novel (even surprising) results on relations be-
tween properties and operators. Our goal is to provide a guide
to help users in choosing the most adequate operator for their
application requirements.

Introduction

In this paper, we present a systematic study of forgetting in
Answer Set Programming (ASP), thoroughly investigating
the different approaches found in the literature, their proper-
ties and relationships – including many novel results – giv-
ing rise to a comprehensive guide aimed at helping users
navigate this topic’s complex landscape and ultimately assist
them in choosing suitable operators for each application.

Forgetting – or variable elimination – is an operation that
allows the removal, from a knowledge base, of middle vari-
ables no longer deemed relevant. The importance of forget-
ting is witnessed by its application to cognitive robotics (Lin
and Reiter 1997; Liu and Wen 2011; Rajaratnam et al. 2014),
resolving conflicts (Lang, Liberatore, and Marquis 2003;
Zhang and Foo 2006; Eiter and Wang 2008; Lang and Mar-
quis 2010), and ontology abstraction and comparison (Wang
et al. 2010; Kontchakov, Wolter, and Zakharyaschev 2010;
Konev et al. 2012; 2013). With its early roots in Boolean
Algebra (Lewis 1918), it has been extensively studied in
the context of classical logic (Bledsoe and Hines 1980;
Lang, Liberatore, and Marquis 2003; Larrosa 2000; Larrosa,
Morancho, and Niso 2005; Middeldorp, Okui, and Ida 1996;
Moinard 2007; Weber 1986).

Only more recently, the operation of forgetting began to
receive attention in the context of logic programming and

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

non-monotonic reasoning, notably of ASP. It turns out that
the rule-based nature and non-monotonic semantics of ASP
create very unique challenges to the development of forget-
ting operators – just as to the development of other belief
change operators such as those for revision and update, c.f.
(Slota and Leite 2014) – making it a special endeavour with
unique characteristics distinct from those for classical logic.

Over the years, many have proposed different approaches
to forgetting in ASP, through the characterization of the re-
sult of forgetting a set of atoms from a given program up to
some equivalence class, and/or through the definition of con-
crete operators that produce a specific program for each in-
put program and atoms to be forgotten (Zhang and Foo 2006;
Eiter and Wang 2008; Wong 2009; Wang et al. 2012;
Wang, Wang, and Zhang 2013; Knorr and Alferes 2014;
Wang et al. 2014; Delgrande and Wang 2015).

All these approaches were typically proposed to obey
some specific set of properties that their authors deemed ad-
equate, some adapted from the literature on classical for-
getting (Zhang and Zhou 2009; Wang et al. 2012; 2014),
others specifically introduced for the case of ASP (Eiter and
Wang 2008; Wong 2009; Wang et al. 2012; Wang, Wang,
and Zhang 2013; Knorr and Alferes 2014; Delgrande and
Wang 2015). Examples of such properties include strength-
ened consequence, which requires that the answer sets of the
result of forgetting be bound to the answer-sets of the origi-
nal program modulo the forgotten atoms, or the so-called ex-
istence, which requires that the result of forgetting belongs
to the same class of programs admitted by the forgetting op-
erator, so that the same reasoners can be used and the oper-
ator be iterated, among many others.

The result is a complex landscape filled with operators and
properties, with very little effort put into drawing a map that
could help to better understand the relationships between
properties and operators. Recently, Ji, Wang and You (2015)
sought to characterize an operator that would obey all of
the properties in the literature. Whereas, in principle, having
such an operator would be a good outcome, especially be-
cause each property proposed in the literature is prima facie
desirable, it turns out that any such operator can only be de-
fined for an extremely limited class of programs, which does
not include the standard class of normal logic programs nor
just about all the programs used in examples found in the
literature on forgetting in ASP.

Proceedings, Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016)

135

This strengthens the idea that there cannot be a one-size-
fits-all forgetting operator for ASP, but rather a family of
operators, each obeying a specific set of properties. The
choice of operator will then depend on which properties are
deemed more important for the specific application in hand,
for which it is important to understand: a) the relationships
between different properties, b) which properties are obeyed
by which operators, and even c) whether some sets of prop-
erties make more sense than others.

To this end, in this paper, we present a systematic, com-
prehensive and thorough study of forgetting in ASP, going
well beyond a simple survey since many novel results and
insights are presented. After a brief section with preliminar-
ies and a section where the concept of forgetting is defined,
the paper is divided into four main sections. The first one
contains a comprehensive account of the properties found
in the literature, together with an investigation into the re-
lationships between them, including several novel results.
The subsequent section is devoted to describing the oper-
ators defined in the literature, and establishing some results
on their relationships, including a surprising equivalence be-
tween two of these operators. Then, we devote one section
to present a comprehensive account of which properties are
satisfied by which operators, some of the results to be found
scattered in the literature, but more than half being novel.
This section also contains a map of the landscape of exist-
ing operators, organized according to their properties, and a
thorough discussion to better explain the main results and
the (sometimes subtle) details that help understand them.
The final main section, before the conclusions, contains a
discussion of the landscape beyond the existing literature,
including some additional results and thoughts on specific
sets of properties for which operators have never been de-
fined, and even show that some of them make little sense
since they can be represented by absurd operators.

Preliminaries

We assume a propositional language LA over a signature A,
a finite set of propositional atoms1. The formulas of LA are
inductively defined using connectives ⊥, ∧, ∨, and ⊃:

ϕ ::= ⊥ | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⊃ ϕ (1)

where p ∈ A. In addition, ¬ϕ and � are resp. shortcuts for
ϕ ⊃ ⊥ and ⊥ ⊃ ⊥. Given a finite set S of formulas,

∨
S

and
∧
S denote resp. the disjunction and conjunction of all

formulas in S. In particular,
∨
∅ and

∧
∅ stand for resp. ⊥

and �, and ¬S and ¬¬S represent resp. {¬ϕ | ϕ ∈ S} and
{¬¬ϕ | ϕ ∈ S}. Unless otherwise stated, we assume that
the underlying signature for a particular formula ϕ is A(ϕ),
the set of atoms appearing in ϕ.

HT-models Regarding the semantics of propositional for-
mulas, we consider the monotonic logic here-and-there (HT)
and equilibrium models (Lifschitz, Pearce, and Valverde
2001). An HT -interpretation is a pair 〈H,T 〉 s.t. H ⊆ T ⊆
A. The satisfiability relation in HT, denoted |=HT, is recur-
sively defined as follows for p ∈ A and formulas ϕ and ψ:

1Often, the term propositional variable is used synonymously.

• 〈H,T 〉 |=HT p if p ∈ H;
• 〈H,T 〉 �|=HT ⊥;
• 〈H,T 〉 |=HT ϕ ∧ ψ if 〈H,T 〉 |=HTϕ and 〈H,T 〉 |=HTψ;
• 〈H,T 〉 |=HT ϕ ∨ ψ if 〈H,T 〉 |=HT ϕ or 〈H,T 〉 |=HT ψ;
• 〈H,T 〉 |=HT ϕ ⊃ ψ if both (i) T |= ϕ ⊃ ψ,2 and (ii)

〈H,T 〉 |=HT ϕ implies 〈H,T 〉 |=HT ψ.
An HT -interpretation is an HT -model of a formula ϕ if
〈H,T 〉 |=HT ϕ. We denote by HT (ϕ) the set of all HT-
models of ϕ. In particular, 〈T, T 〉 ∈ HT (ϕ) is an equilib-
rium model of ϕ if there is no T ′ ⊂ T s.t. 〈T ′, T 〉 ∈ HT (ϕ).

Given two formulas ϕ and ψ, if HT (ϕ) ⊆ HT (ψ), then
ϕ entails ψ in HT, written ϕ |=HT ψ. Also, ϕ and ψ are
HT-equivalent, written ϕ ≡HT ψ, if HT (ϕ) = HT (ψ).

For sets of atomsX,Y and V ⊆ A, Y ∼V X denotes that
Y \V = X \V . ForHT -interpretations 〈H,T 〉 and 〈X,Y 〉,
〈H,T 〉 ∼V 〈X,Y 〉 denotes that H ∼V X and T ∼V Y .
Then, for a set M of HT -interpretations, M†V denotes the
set {〈X,Y 〉 | 〈H,T 〉 ∈ M and 〈X,Y 〉 ∼V 〈H,T 〉}.

Logic Programs An (extended) logic program P is a finite
set of (extended) rules, i.e., formulas of the form

∧
¬¬D ∧

∧
¬C ∧

∧
B ⊃

∨
A , (2)

where all elements in A = {a1, . . . , ak}, B = {b1, . . . , bl},
C = {c1, . . . , cm}, D = {d1, . . . , dn} are atoms.3 Such
rules r are also commonly written as

a1 ∨ . . . ∨ ak ← b1, ..., bl, not c1, ..., not cm,

not not d1, ..., not not dn , (3)

and we will use both forms interchangeably. Given r, we
distinguish its head, head(r) = A, and its body, body(r) =
B∪¬C∪¬¬D , representing a disjunction and a conjunction.

As shown by Cabalar and Ferraris (2007), any set of
(propositional) formulas is HT-equivalent to an (extended)
logic program which is why we can focus solely on these.

This class of logic programs, Ce, includes a number of
special kinds of rules r: if n = 0, then we call r disjunctive;
if, in addition, k ≤ 1, then r is normal; if on top of that m =
0, then we call r Horn, and fact if also l = 0. The classes
of disjunctive, normal and Horn programs, Cd, Cn, and CH ,
are defined resp. as a finite set of disjunctive, normal, and
Horn rules. We also call extended rules with k ≤ 1 non-
disjunctive, thus admitting a non-standard class Cnd, called
non-disjunctive programs, different from normal programs.
We have CH ⊂ Cn ⊂ Cd ⊂ Ce and also Cn ⊂ Cnd ⊂ Ce.

We now recall the answer set semantics (Gelfond and Lif-
schitz 1991) for logic programs. Given a program P and a
set I of atoms, the reduct P I is defined as P I = {A ←
B : r of the form (3) in P,C ∩ I = ∅,D ⊆ I}. A set I ′ of
atoms is a model of P I if, for each r ∈ P I , I ′ |= B implies
I ′ |= A. I is minimal in a set S, denoted by I ∈ MIN (S),
if there is no I ′ ∈ S s.t. I ′ ⊂ I . Then, I is an answer set
of P iff I is a minimal model of P I . Note that, for Cnd and
its subclasses, this minimal model is in fact unique. The set

2|= is the standard consequence relation from classical logic.
3Extended logic programs (Lifschitz, Tang, and Turner 1999)

are actually more expressive, but this form is sufficient here.

136

of all answer sets of P is denoted by AS(P). Note that, for
Cd and its subclasses, all I ∈ AS(P) are pairwise incom-
parable. If P has an answer set, then P is consistent. Also,
the V -exclusion of a set of answer sets M, denoted M‖V , is
{X \ V | X ∈ M}. Two programs P1, P2 are equivalent if
AS(P1) = AS(P2) and strongly equivalent if P1 ≡HT P2.
It is well-known that answer sets and equilibrium models
coincide (Lifschitz, Pearce, and Valverde 2001), but since
the former notion is frequently used in the literature and ar-
guably easier to use, we will mainly rely on it. Finally, deter-
mining if program P has an answer set is Σp

2-complete, and
NP-complete if P is non-disjunctive (Dantsin et al. 2001).

Forgetting

The principal idea of forgetting in logic programming is to
remove or hide certain atoms from a given program, while
preserving its semantics for the remaining atoms.

Example 1. Consider the following program P :

d← not c a← e e← b b←
The result of forgetting about atom e from P should be a
program over the remaining atoms of P , i.e., it should not
contain e. Intuitively, in the result, the fact b ← should per-
sist since it is independent of e. In addition, the link between
a and b should be preserved in some way, even if e is absent.
Also, d should still follow from the result of forgetting as the
original rule d← not c does not contain e.

As the example indicates, preserving the semantics for the
remaining atoms is not necessarily tied to one unique pro-
gram. Rather often, a representative up to some notion of
equivalence between programs is considered. In this sense,
many notions of forgetting for logic programs are defined
semantically, i.e., they introduce a class of operators that sat-
isfy a certain semantic characterization. Each single opera-
tor in such a class is then a concrete function that, given a
program P and a set of atoms V to be forgotten, returns a
unique program, the result of forgetting about V from P .

Definition 1. Given a class of logic programs C over A, a
forgetting operator is a partial function f : C × 2A → C s.t.
f(P, V) is a program over A(P) \ V , for each P ∈ C and
V ∈ 2A. We call f(P, V) the result of forgetting about V
from P . Furthermore, f is called closed for C′ ⊆ C if, for
every P ∈ C′ and V ∈ 2A, we have f(P, V) ∈ C′. A class F
of forgetting operators is a set of forgetting operators.

Note that the requirement for being a partial function is a
natural one given the existing notions in the literature, where
some are not closed for certain classes of programs.

To remain as general and uniform as possible, we focus on
classes of operators. Whenever a notion of forgetting in the
literature is defined through a concrete forgetting operator
only, we consider the class containing that single operator.

It is worth noting that some notions of forgetting do not
explicitly require that atoms to be forgotten be absent from
the result of forgetting, but instead that they be irrelevant:

(IR) f(P, V) ≡HT P
′ for some P ′ not containing any v ∈ V .

Although (IR) allows (irrelevant) occurrences of atoms in
a result of forgetting, in the literature they are subsequently

assumed to be not occurring, which is sanctioned by (IR).
Hence, focusing on operators that yield programs without
the atoms to be forgotten is not a restriction in these cases.

Properties of Forgetting
Previous work on forgetting in ASP has introduced a variety
of desirable properties. In this section, we recall the relevant
properties found in the literature and investigate existing re-
lations between them.

Unless otherwise stated, F is a class of forgetting opera-
tors, and C the class of programs over A of a given f ∈ F.

The first three properties were proposed by Eiter and
Wang (2008), though not formally introduced as such. The
first two were in fact guiding principles for defining their
notion of forgetting, while the third was later formalized by
Wang et al. (2013).

(sC) F satisfies strengthened Consequence if, for each f ∈ F,
P ∈ C and V ⊆ A, we have AS(f(P, V)) ⊆ AS(P)‖V .

Strengthened Consequence requires that the answer sets of
the result of forgetting be answer sets of the original pro-
gram, ignoring the atoms to be forgotten.

(wE) F satisfies weak Equivalence if, for each f ∈ F, P, P ′ ∈
C and V ⊆ A, we have AS(f(P, V)) = AS(f(P ′, V))
whenever AS(P) = AS(P ′).

Weak Equivalence requires that forgetting preserves equiva-
lence of programs (equality of answer sets).

(SE) F satisfies Strong Equivalence if, for each f ∈ F, P, P ′ ∈
C and V ⊆ A: if P ≡HT P

′, then f(P, V) ≡HT f(P ′, V).
Strong Equivalence requires that forgetting preserves strong
equivalence of programs.

The next three properties, together with (IR), were intro-
duced by Zhang and Zhou (2009) in the context of forget-
ting in modal logics, and later adopted by Wang et al. (2012;
2014) for forgetting in ASP.

(W) F satisfies Weakening if, for each f ∈ F, P ∈ C and V ⊆
A, we have P |=HT f(P, V).

Weakening requires that the HT -models of P also be HT -
models of f(P, V), thus implying that f(P, V) has at most
the same consequences as P .

(PP) F satisfies Positive Persistence if, for each f ∈ F, P ∈ C
and V ⊆ A: if P |=HT P ′, with P ′ ∈ C and A(P ′) ⊆
A \ V , then f(P, V) |=HT P

′.
Positive Persistence requires that the consequences of P not
containing atoms to be forgotten be preserved in the result
of forgetting.

(NP) F satisfies Negative Persistence if, for each f ∈ F, P ∈ C
and V ⊆ A: if P �|=HT P ′, with P ′ ∈ C and A(P ′) ⊆
A \ V , then f(P, V) �|=HT P

′.
Negative Persistence requires that a program not containing
atoms to be forgotten not be a consequence of f(P, V), un-
less it was already a consequence of P .

The following property was introduced by Wong (2009),
but the more descriptive name is novel here.

(SI) F satisfies Strong (addition) Invariance if, for each f ∈ F,
P ∈ C and V ⊆ A, we have f(P, V)∪R ≡HT f(P∪R, V)
for all programs R ∈ C with A(R) ⊆ A \ V .

Strong Invariance requires that it be (strongly) equivalent to
add a program without the atoms to be forgotten before or
after forgetting.

137

The property called existence was discussed by Wang et
al. (2012) and formalized by Wang et al. (2013). It requires
that a result of forgetting for P in C exists in the class C,
important to iterate. We extend this property s.t. it be explic-
itly tied to a class C, thus allowing to speak about F being
closed/not closed for different classes C.

(EC) F satisfies existence for C, i.e., F is closed for a class of
programs C if there exists f ∈ F s.t. f is closed for C.

In the literature, classes of operators are often defined in
ways such that only some of its members are closed for a
certain class. Thus, class F being closed for some C only re-
quires that there exists some “witness in favor of it”, instead
of having to restrict the class to the closed operators.

The next property was introduced by Wang et al. (2013)
building on the ideas behind (sC) by Eiter and Wang (2008).

(CP) F satisfies Consequence Persistence if, for each f ∈ F,
P ∈ C and V ⊆ A, we have AS(f(P, V)) = AS(P)‖V .

Consequence persistence requires that the answer sets of the
result of forgetting correspond exactly to the answer sets of
the original program, ignoring the atoms to be forgotten.

The following property was introduced by Knorr and
Alferes (2014) with the aim of imposing the preservation
of all dependencies contained in the original program.

(SP) F satisfies Strong Persistence if, for each f ∈ F, P ∈ C
and V ⊆ A, we have AS(f(P, V)∪R) = AS(P ∪R)‖V ,
for all programs R ∈ C with A(R) ⊆ A \ V .

This strengthens (CP) by imposing that the correspondence
between answer-sets of the result of forgetting and those of
the original program be preserved in the presence of any ad-
ditional set of rules not containing the atoms to be forgotten.

The final property here is due to Delgrande and Wang
(2015), although its name is novel as well.

(wC) F satisfies weakened Consequence if, for each f ∈ F, P ∈
C and V ⊆ A, we have AS(P)‖V ⊆ AS(f(P, V)).

Weakened Consequence requires that the answer sets of the
original program be preserved while forgetting, ignoring the
atoms to be forgotten.

These properties are not orthogonal to one another, and
several relations between them exist. The following propo-
sition establishes all known relevant relations between prop-
erties, some novel and some to be found in the literature.
Proposition 1. The following relations hold for all F:4

1. (CP) is incompatible with (W) as well as with (NP) (for
F closed for C, where C contains normal logic programs);

2. (W) is equivalent to (NP);
3. (SP) implies (PP);
4. (SP) implies (SE);
5. (W) and (PP) together imply (SE);
6. (CP) and (SI) together are equivalent to (SP);
7. (sC) and (wC) together are equivalent to (CP);
8. (CP) implies (wE);
9. (SE) and (SI) together imply (PP).
Items 1.-4. are known from the literature: 1. in (Wang, Wang,
and Zhang 2013), 2.-3. in (Ji, You, and Wang 2015), and 4.
in (Knorr and Alferes 2014). The remainder are novel.

Note first, that 1. and 2. also rely on (IR) in their origi-
nal formulation, in particular, (W) is equivalent to (NP) and

4To ease the reading, here “(P)” stands for “F satisfies (P)”.

(IR). As (IR) is incorporated directly into our definition of
forgetting operators, this reliance is ensured implicitly. This
means that, by 2., the four properties proposed by Zhang
and Zhou (2009) actually reduce to two distinct ones. In ad-
dition, 5. ensures that these two imply (SE), which is consid-
ered desirable by Wang et al. (2012) in addition to the for-
mer. So, five desired properties can be represented by two.

As indicated by 3. and 4., (SP) seems to be an expres-
sive property, further confirmed by the new result 6. that
provides a non-trivial decomposition of (SP) into (CP) and
(SI). These two are themselves expressive, as witnessed by
other new results. Namely, 7. shows that (CP) is the com-
bination of (sC) and (wC), and 8. that it implies preserva-
tion of equivalence, while 9. provides the non-trivial result
that Strong Equivalence and Strong Invariance imply Posi-
tive Persistence. The latter means that 3. can actually be ob-
tained without relying on (CP). Altogether, (SP) implies all
properties in this section, except for (W) and (NP), to which
it is incompatible under the condition given in 1., and (EC),
where we need to consider concrete classes of programs.

Operators of Forgetting

We now turn our attention to operators of forgetting in ASP,
reviewing the approaches found in the literature and estab-
lishing novel relations between them.

Strong and Weak Forgetting The first proposals are due
to Zhang and Foo (2006) introducing two syntactic operators
for normal logic programs, termed Strong and Weak Forget-
ting. Both start with computing a reduction corresponding
to the well-known weak partial evaluation (WGPPE) (Brass
and Dix 1999), defined as follows: for a normal logic pro-
gram P and a ∈ A, R(P, a) is the set of all rules in P and
all rules of the form head(r1) ← body(r1) \ {a}∪ body(r2)
for each r1, r2 ∈ P s.t. a ∈ body(r1) and head(r2) = a.
Then, the two operators differ on how they subsequently re-
move rules containing a, the atom to be forgotten. In Strong
Forgetting, all rules containing a are simply removed:

fstrong(P, a) = {r ∈ R(P, a) | a �∈ A(r)}
In Weak Forgetting, rules with occurrences of not a in the
body are kept, after not a is removed.

fweak(P, a) = {head(r) ← body(r) \ {not a} |
r ∈ R(P, a), a �∈ head(r) ∪ body(r)}

The motivation for this difference is whether such not a is
seen as support for the rule head (Strong) or not (Weak). In
both cases, the actual operator for a set of atoms V is de-
fined by the sequential application of the respective operator
to each a ∈ V . Both operators are closed for Cn. The corre-
sponding singleton classes are defined as follows.

Fstrong = {fstrong} Fweak = {fweak}

Semantic Forgetting Eiter and Wang (2008) proposed Se-
mantic Forgetting to improve on some of the shortcomings
of the two purely syntax-based operators fstrong and fweak.

138

Semantic Forgetting introduces a class of operators for con-
sistent disjunctive programs5 defined as follows:

Fsem = {f | AS(f(P, V)) = MIN (AS(P)‖V)}
The basic idea is to characterize a result of forgetting just by
its answer sets, obtained by considering only the minimal
sets among the answer sets of P ignoring V . Three concrete
algorithms are presented, two based on semantic considera-
tions and one syntactic. Unlike the former, the latter is not
closed for classes6 C+

d and C+
n , since double negation is re-

quired in general.

Semantic Strong and Weak Forgetting Wong (2009) ar-
gued that semantic forgetting should not be focused on an-
swer sets only, as these do not contain all the informa-
tion present in a program. He defined two classes of for-
getting operators for disjunctive programs, building on HT-
models.7 First, given a program P and an atom a, the
set of all consequences of P is defined as Cn(P, a) =
{r | r disjunctive, P |=HT r, A(r) ⊆ A(P)}. We obtain
PS(P, a) and PW (P, a), the results of strongly and weakly
forgetting a single atom a from P , as follows:

1. Consider P1 = Cn(P, a).
2. Obtain P2 by removing from P1: (i) r with a ∈ body(r),

(ii) a from the head of each r with not a ∈ body(r).
3. Given P2, obtain PS(P, a) and PW (P, a) by replac-

ing/removing certain rules r in P2 as follows:
r with not a in body r with a in head

S (remove) (remove)
W remove only not a remove only a

The generalization to sets of atoms V , i.e., PS(P, V) and
PW (P, V), can be obtained by simply sequentially forget-
ting each a ∈ V , yielding the following classes of operators.

FS = {f | f(P, V) ≡HT PS(P, V)}
FW = {f | f(P, V) ≡HT PW (P, V)}

While steps 2. and 3. are syntactic, different strongly equiva-
lent representations of Cn(P, a) exist, thus providing differ-
ent instances. Wong (2009) defined one construction based
on inference rules for HT-consequence, closed for Cd.

HT-Forgetting Wang et al. (2012; 2014) introduced HT-
Forgetting, building on properties introduced by Zhang and
Zhou (2009) in the context of modal logics, with the aim
of overcoming problems with Wongs notions, namely that
each of them did not satisfy one of the properties (PP) and
(W). HT-Forgetting is defined for extended programs and
uses representations of sets of HT-models directly.

FHT = {f | HT (f(P, V)) = HT (P)†V }
A concrete operator is presented (Wang et al. 2014) that is
shown to be closed for Ce and CH , and it is also shown that

5Actually, classical negation can occur in scope of not , but due
to the restriction to consistent programs, this difference is of no
effect (Gelfond and Lifschitz 1991), so we ignore it here.

6Here, + denotes the restriction to consistent programs.
7Wong (2009) considers SE-models (Turner 2003). Without

loss of generality, we consider the more general HT-models.

no operator exists that is closed for either Cd or Cn.

SM-Forgetting Wang et al. (2013) defined a modification
of HT-Forgetting, SM-Forgetting, for extended programs,
with the objective of preserving the answer sets of the origi-
nal program (modulo the forgotten atoms).

FSM = {f | HT (f(P, V)) is a maximal subset of
HT (P)†V s.t. AS(f(P, V)) = AS(P)‖V }

A concrete operator is provided that, like for FHT, is shown
to be closed for Ce and CH . It is also shown that no operator
exists that is closed for either Cd or Cn.

Strong AS-Forgetting Knorr and Alferes (2014) intro-
duced Strong AS-Forgetting with the aim of preserving not
only the answer sets of P itself but also those of P ∪ R for
any R over the signature without the atoms to be forgotten.
The notion is defined abstractly for classes of programs C.

FSas = {f | AS(f(P, V) ∪R) = AS(P ∪R)‖V for all

programs R ∈ C with A(R) ⊆ A(P) \ V }
A concrete operator is defined for Cnd, but not closed for Cn
and only defined for certain programs with double negation.

SE-Forgetting Delgrande and Wang (2015) recently in-
troduced SE-Forgetting based on the idea that forgetting an
atom from program P is characterized by the set of those
SE-consequences, i.e., HT-consequences, of P that do not
mention the atoms to be forgotten. The notion is defined
for disjunctive programs building on an inference system by
Wong (2008) that preserves strong equivalence. Given that
�s is the consequence relation of this system, CnA(P) is
{r ∈ LA | r disjunctive, P �s r}. The class is defined by:

FSE = {f | f(P, V) ≡HT CnA(P) ∩ LA(P)\V }
An operator is provided, which is closed for Cd.

While all these classes were introduced with differing mo-
tivations, they coincide under certain conditions, e.g., when
restricted to specific classes of programs.

Proposition 2. For all Horn programs P , every V ⊆
A(P), and all forgetting operators f1, f2 in the classes
Fstrong , Fweak, FS , FHT, FSM, FSas, and FSE , it holds that
f1(P, V) ≡HT f2(P, V).

Example 2. Consider the subset of rules of P in Ex. 1 that
are Horn, P ′ = {a ← e, e ← b, b ←}. Then, f(P ′, {e})
for any f in any of these classes is strongly equivalent to
a← b and b←. All three known operators in Fsem actually
also satisfy this condition, but the class is not sufficiently
restricted to ensure this in general. FW completely differs
since any operator in FW must include ← b in its result.

Wang et al. (2012; 2014) additionally show that, for CH ,
the result of FHT is strongly equivalent to that of classical
forgetting. We thus obtain as a corollary that this holds for
all classes of forgetting operators mentioned in Prop. 2.

Perhaps surprisingly, two classes of operators coincide.

139

sC wE SE W PP NP SI CP SP wC ECH
ECn

ECd
ECnd

ECe

Fstrong × × × � × � � × × × � � - - -
Fweak × × × × � × � × × × � � - - -
Fsem � � × × × × × × × × � � � - -
FS × × � � � � × × × × � × � - -
FW � � � × � × � × × × � � � - -
FHT × × � � � � � × × × � × × × �
FSM � � � × � × × � × � � × × × �
FSas � � � × � × � � � � � × × × ×
FSE × × � � � � × × × × � × � - -

Figure 1: Satisfaction of properties for known classes of forgetting operators. For class F and property P, ’�’ represents that F
satisfies P, ’×’ that F does not satisfy P, and ’-’ that F is not defined for the class C in consideration. White background means
a novel result, and gray a previously known one.6

Theorem 1. Consider the class of disjunctive programs.
Then, FS and FSE coincide.
This coincidence can be traced back to the fact that the infer-
ence system used for FSE is the same as that used to define
the example operator for FS . This correspondence can be
extended to FHT in a particular case.
Proposition 3. Let P be a disjunctive program, V ⊆ A(P),
fS ∈ FS , fHT ∈ FHT, and fSE ∈ FSE . Then, fS(P, V) ≡HT

fHT(P, V) ≡HT fSE(P, V) whenever fHT(P, V) is strongly
equivalent to a disjunctive program.
This does not hold in general, as the next example shows.
Example 3. Given P = {a ← not b, b ← not a, ← a, b},
consider forgetting about b from P . For any fHT, fHT(P, {b})
must contain a← not not a, which is not disjunctive.

This also means that item 1. in Prop. 2 (Delgrande and
Wang 2015) actually does not hold.

Complexity All approaches show or mention that comput-
ing the result of forgetting with one particular operator is in
EXP. The only exception is f ∈ FSE , where forgetting one
atom leads only to at most a quadratic increase in program
size. Still, if a set of atoms is forgotten, then, e.g., Ex. 9 by
Brass et al. (2001) applies, hence, it is also in EXP. Some-
times the complexity of other problems is established, such
as satisfiability of f(P, V) or whether some a holds in some
or all S ∈ AS(f(P, V)). In most cases, these results match
those considering P itself, with the exception of Fsem where
slight modifications are due to the additional minimality test.

On the Properties of Existing Operators

The desirability of the properties presented before is, to
some extent, in the eye of the beholder. Often, a particular
novel approach to forgetting is justified by the fact that pre-
vious approaches did not obey some new property deemed
crucial, neglecting however that this novel approach actu-
ally ended up failing to satisfy other properties, themselves

6Previous results are proved in (Zhang and Foo 2006; Eiter
and Wang 2008; Wong 2009; Wang et al. 2012; Wang, Wang,
and Zhang 2013; Knorr and Alferes 2014; Wang et al. 2014;
Delgrande and Wang 2015; Ji, You, and Wang 2015).

deemed crucial by those who introduced them. Whereas the
introduction of most known approaches to forgetting was ac-
companied by a study of some properties they each enjoyed,
there are many missing gaps, some because some properties
were only introduced later, others because they were simply
neglected. Despite the discussion and potential controversy
around the adequacy of the properties, which may ultimately
depend on the application at hand, the first and perhaps most
important step is to draw an exhaustive picture regarding
which properties are obeyed by which classes of operators.
This takes us to the central theorem of our paper, illustrated
in one easy-to-read table.

Theorem 2. All results in Fig. 1 hold.

One first observation is that every class of operators obeys
a different set of properties (apart from FS and FSE , which
coincide, c.f. Thm. 1). This is a strong indication that these
properties play a role in characterizing the classes of oper-
ators. In fact, a precise characterization of some classes of
operators in terms of the properties they satisfy sometimes
exists (Wang et al. 2012; 2014; Delgrande and Wang 2015),
although this not the case in general.

Specific Properties
We now focus on analyzing specific properties and how they
relate to the known classes of operators.

Starting with (sC) and (wE), we know, by Prop. 1, that
any F that is known to satisfy (CP) also satisfies these two.
For the remaining classes, it is worth illustrating why FS ,
FHT, and FSE do not satisfy (sC) by looking at the example
where we forget about a from P = {a ← not a}: all three
classes require the result to be strongly equivalent to ∅, i.e.,
the forgetting operation introduces a new answer-set. Turn-
ing to (wE), it requires that the results of forgetting about p
from P = {q ← not p, q ← not q} and from Q = {q ←}
have the same answer-sets, while the three classes FS , FHT,
and FSE require that the results be strongly equivalent to
f(P, p) = {q ← not q} and f(Q, p) = {q ←}, which are
obviously not equivalent. FW satisfies both properties: in the
previous two examples, ⊥ must be returned in the former,
while f(P, p) includes q ← in the latter.

The properties (SE), (W), (PP), and (NP) have received
more attention in the literature, although focusing more on

140

the properties not satisfied by previous approaches to moti-
vate the introduction of a new one. As a result, several novel
positive results were yet to be proved, and are included in
the table. It is perhaps worth pointing out that despite Wang
et al. (2014) having discussed that FS and FW do not sat-
isfy (PP), they did so using a counterexample – Ex. 3 in this
paper – that is not really part of the language for which FS

and FW are defined, since it relies on rules with double nega-
tion as missing consequences, hence an unfair argument. For
the language for which they are defined, they satisfy (PP).
Worth illustrating is why FSas does not satisfy (W)/(NP):
Example 4. With P = {a ← not b, b ← not c}, f(P, b) for
any f ∈ FSas must contain a ← not not c which is not a
consequence of P , hence (W) (and (NP)) is not satisfied.

(SI) has received less attention, yet often this non-trivial
property is satisfied. Wong (2009) showed (SI) for strong
and weak forgetting, but using t-equivalence instead ofHT -
equivalence, whose semantics differs. The negative results
for FSE follow by correspondence to FS and, for FSM, from
forgetting about b from P as in Ex. 4: f(P, b) ≡HT ∅ for
f ∈ FSM, so adding c ← results precisely in a program con-
taining this fact. If we add c ← before forgetting, then the
HT -models of the result of forgetting, ignoring all occur-
rences of b, correspond precisely to 〈{c}, {c}〉, 〈{c}, {a, c}〉,
and 〈{a, c}, {a, c}〉. To preserve the answer sets, only the
last of these three can be considered. Hence, a ← and c ←
(or strongly equivalent rules) occur in the result of forgetting
for any f ∈ FSM, and (SI) does not hold.

The new negative results for (CP) and (SP) can be il-
lustrated with forgetting about b from P = {a ← not b,
b← not a}, i.e., the first two rules of Ex. 3. Since AS(P) =
{{a}, {b}}, the result must have two answer sets {a} and ∅,
which is not possible for disjunctive programs obtained from
operators in FS , FW , and FSE . The same example serves as
counterexample for all negative results of (wC), while posi-
tive results follow for classes satisfying (CP) from Prop. 1.
Notably, the counterexample also applies to FSE , thus inval-
idating Thm. 2 in (Delgrande and Wang 2015), and explain-
ing why all results for (wC) are novel.

The results on (EC) for different classes of programs C
reveal that all classes of operators are closed for CH . Yet,
when admitting negation, each F apart from FSas is closed
for the maximal class of programs considered, but often not
for intermediate ones, with the exception of Fsem and FW .
Interestingly, the two known semantic operators in Fsem are
not closed for CH , while the known syntactic one is, despite
not being closed in general. Note that ’-’ was used w.r.t.
to the definitions of each F: the singleton classes Fstrong

and Fweak are precisely defined for normal programs; the
intuition behind minimization embedded in Fsem’s defini-
tion does not combine well with double negation; and, for
FS , FW , and FSE , the consequence relation that is applied
is defined for disjunctive rules.

We omit any complexity results from the table since they
do not contribute to distinguishing classes of operators, as
discussed before.

Classes of Operators
The results in Fig. 1 provide us valuable information to com-

�

SE,W,PP,NP,SI sC,wE,SE,PP,SI,CP,SP,wC

SE,W,PP,NP sC,wE,SE,PP,SI sC,wE,SE,PP,CP,wC

PP,SIW,NP,SI sC,wE

IR

FHT

Fstrong Fweak

FSas

FSM

Fsem

FS ,FSE FW

Figure 2: Sets of properties satisfied by known classes of
forgetting operators

pare classes of operators and provide some guidelines re-
garding the choice of a forgetting operator.

The first concern is perhaps the required class of programs
C. If some class of operators is not closed or even not defined
for C, then it is certainly not a good choice. An exception
may be the only known operator for FSas, whose applicabil-
ity condition can be checked in linear time (on the number of
rules), if one accepts that forgetting is not always possible.

With these considerations on (EC) in mind, we can ana-
lyze the remaining properties. Fig. 2 shows a lattice of inclu-
sions between the sets of properties satisfied by each known
class of forgetting operators, adding � to represent all the
properties (except (EC)) and (IR) as the bottom element.

Fig. 2 makes it apparent that there is one kind of prop-
erty that divides the classes into two groups, namely whether
some kind of preservation of answer sets from the original
program to its result of forgetting is supported or not. The
classes for which this is the case are Fsem, FW , FSM, and
FSas by either satisfying (sC) or (CP). Among them, the two
classes that satisfy (CP) turn out to be separated by only one
property as follows (using semi-formal notation):9

FSM + (SI) � FSas

Hence, the previously observed difference between the two
on (SP) is only a consequence of the difference on (SI).

Unlike the former, the two that satisfy (sC), Fsem and FW ,
are closed for all the program classes for which they are con-
sidered. For FW , adding (wC) seemingly yields FSas:

FW + (wC) � FSas

However, note that picking an operator of FW and somehow
enforcing (wC) will not provide an operator of FSas. It can
be shown that the effect of forgetting V from P for f ∈ FW

yields a result that replaces all v ∈ V as if they were false,
independently of the actual rules in P . E.g., forgetting about
p from p ← would yield ⊥, which is not aligned with the
original idea of forgetting, i.e., removing all v ∈ V without
affecting other derivations, and adding (wC) would disal-
low such operation. In general, an operator of a superclass
does not necessarily belong to a subclass in the hierarchy of
Fig. 2. This also means that at least one of FW and FSas is

9Such equations are in fact not to be read as precise characteri-
zations of classes, but rather a form of visualization of differences.

141

not precisely characterized by their sets of satisfied proper-
ties, and given the intrinsic connection of FSas to (SP), we
conjecture that FW is the culprit.

Among the four classes that do not support preservation
of answer sets, Fstrong and Fweak are closely related due to
their similar definition. Both coincide on satisfying (SI), a
consequence of their syntactic definition that only manipu-
lates rules containing the atoms to be forgotten, and differ
on (W) and (PP), a consequence of the different treatment
of negated occurrences of the atoms to be forgotten.

For the third node without this preservation support,
FS/FSE , there is also a close proximity to FW based on
their definition, yet, their characterizations differ substan-
tially. Both satisfy (SE) and (PP), but differ on five other
properties, which means that in this case the variation in the
definition has a much more profound effect on the set of sat-
isfied properties. At the same time, we already know that
there is a close relation to the remaining class FHT as wit-
nessed in Prop. 3. This is matched by a close correspondence
in terms of satisfied properties.

FS/FSE + (SI) � FHT

Again, (SI) plays a distinguishing role. Notably this clarifies
the apparent mismatch of the characterizations for FHT and
FSE , both claiming that it is precisely given by (IR), (W),
(PP), and (NP). This is indeed true for each of them for the
maximal class of programs considered, but, intuitively, re-
stricting FHT to Cd cancels (SI).
FHT is also closely connected to FSM, as the latter restricts

the HT-models of the result s.t. (CP) holds. It turns out that
this not only cancels (W) (see 1. of Prop. 1), but also (SI).

Beyond the Existing Literature

Whereas the results and discussion so far provide insights
into the properties and relations between existing classes of
operators, which may help when picking one for a given ap-
plication, the landscape of forgetting operators may admit
additional classes, which will be the focus of this section.

Subclasses of Programs
While the results in Thm. 2 for (EC) naturally differentiate
between the classes of programs C considered, the remaining
properties are stated for the most general class of programs
for which the class of operators is defined. This begs the
question whether restricting C would affect the results shown
in Fig. 1, which we will now address.

We first consider Horn programs, for which we already
know that all classes of operators are closed. From Prop. 2,
we know that several classes that satisfy different sets of
properties in the general case actually coincide. As expected,
these classes all satisfy the same set of properties when re-
stricted to Horn programs. The reason can be traced back to
the incompatibility result 1. in Prop. 1, only stated for pro-
gram classes above CH , i.e., it does not apply here.
Theorem 3. For Horn programs, the following holds:
• Fstrong , Fweak, FS , FHT, FSM, FSas, and FSE satisfy (W)

and (SP);
• Fsem satisfies (CP);
• FW satisfies (sC), (wE), (SE) and (SI).

Actually, only the minimally necessary properties are men-
tioned, the remaining can be obtained from Prop. 1. This
means, in particular, that the first group of classes satisfies
all the presented properties (with (EC) limited to (EH), of
course), and, surprisingly, that reducing to Horn programs
does not change the set of properties satisfied by FW .

For normal programs, it turns out that the introduction of
negation in the body immediately makes the result coincide
with the general one. This is witnessed by the fact that all
counterexamples are normal programs, in particular those
mentioned in the previous section.

Additional Classes of Operators
We now take a step back and look at the bigger picture of
the sets of properties beyond those that have been shown
to hold for existing classes of operators. Fig. 3 provides a
lattice with all possible combinations of properties, taking
into consideration the following set of simplifications, that
actually also can be understood as indicators as to which
properties are important for the comparison.
• Since (SP) is only satisfied by FSas, hence not well-suited

for a comparison, we use (SI) and (CP) instead. Also, all
the implications of (SI) and (CP) are left implicit.

• Since (W) and (NP) (together with (IR)) are equivalent,
we only use (W).

• Whenever (W) and (PP) hold, we omit (SE).
• Whenever (SE) and (SI) hold, we omit (PP).
• Since (sC) is implied by (CP), we only show the former

whenever the latter does not hold.
• (wC) requires that the set of answer sets can only ever

increase through forgetting, which is at odds with the non-
monotonic nature of ASP. (wC) only seems meaningful
if combined with (sC), as (CP), to preserve answer sets,
which is seconded by the existing classes of forgetting
operators. We therefore omit (wC).

• (sC) requires that the answer sets of the result of forget-
ting from P be a subset of those of P . As the choice of the
subset is deterministic for a concrete operator, (wE) holds
as well. Thus, even though (sC) and (wE) are not formally
related, any concrete operator satisfies either both or none,
hence we omit (wE).

Accordingly, the graph only shows (sC), (SE), (W), (PP),
(SI), and (CP) and each node automatically “inherits” all
properties from the nodes below to which it is connected,
even if some are not explicitly shown because they are im-
plied according to Prop. 1. The lattice is arranged in levels
based on the number of properties that are satisfied, where
(CP) includes (sC), and implicit properties are taken into ac-
count. Thus, e.g., (SI),(CP) appears one level below � be-
cause of all the properties implied by the combination of the
two. Links are made between neighboring levels apart from
one case where a dashed line ensures that the link between
(W),(SI) and (W),(PP),(SI) is not lost.

Though quite a few nodes in the graph correspond to
known classes or special cases for Horn, further classes can
be explicitly determined. As an example, consider the con-
crete forgetting operators for Semantic Forgetting that also
satisfy (SE). Based on these, a new class of forgetting opera-
tors can be defined, essentially adding a condition to the def-

142

(IR)

(SE)(PP)(W) (SI) (sC)

(SE),(W) (W),(SI) (SE),(PP) (PP),(SI) (PP),(sC) (SE),(sC) (SI),(sC) (CP)

(W),(PP) (SE),(SI) (SE),(PP),(sC) (PP),(SI),(sC) (PP),(CP) (SE),(CP)

(W),(PP),(SI) (SE),(SI),(sC) (SE),(PP),(CP)

(SI),(CP)

�

Figure 3: Combinations of properties. Sets of properties with doubled borders are satisfied by known classes, those with single
borders match newly considered classes, and absurd operators have been found for those with gray background.

inition of Semantic Forgetting that requires that for any two
strongly equivalent programs, their results be also strongly
equivalent. This provides a distinct class of operators which
satisfies both (sC) and (SE), and which, if restricted to Horn
programs, satisfies (SE) and (CP). The two cases for Horn
programs, (CP) and (SE),(CP) give rise to two new classes
of operators by simply omitting the minimality condition on
answer sets for the result, which also makes it reasonable
to consider such classes for programs with double negation.
An example operator is sketched for each one:
• (CP) : compute all answer sets, remove all atoms to be

forgotten, create a program that represents this set of re-
duced answer sets;

• (SE),(CP) : compute all answer sets, remove all atoms to
be forgotten, create a canonical program representing the
resulting set of answer sets.

Whether these new classes would be preferable to the al-
ready existing ones in certain aspects/applications remains
an open question that requires further study.

Providing operators that precisely satisfy only a certain
set of properties can also be used to show that some set of
properties does not suffice to characterize the class:
• (W),(SI) : delete all rules with atoms to be forgotten.
This operator matches the properties satisfied by Strong For-
getting, but it clearly does not fit into the class (even if we
ignored that we defined Fstrong as a singleton), since by the
way deletion is applied, the idea of (WGPPE) is lost.

Further operators can be defined in a similar style, pro-
viding evidence that certain sets of properties are probably
of little interest as they are satisfied by absurd operators. We
mention those pointed out in Fig. 3:
• (IR) : delete all rules; then add some arbitrary rules over

the remaining alphabet (after forgetting);10

• (W) : delete all rules with atoms to be forgotten and an
arbitrary 50% of the remaining rules;

• (PP) : perform weak forgetting; in the resulting program,
pick an arbitrary set of rules and turn them into facts by
removing their body;

• (SE) : compute all answer sets; remove all atoms to be

10The term “arbitrary” is used freely to represent some determin-
istic set, e.g., the first elements of some specific ordering.

forgotten from them; create a set of facts that represents
the intersection of all such reduced answer sets;

• (SI) : perform the WGPPE replacement step of strong
and weak forgetting; in the resulting program, arbitrar-
ily delete rules with negative occurrences (in the body)
of atoms to be forgotten, or just remove their bodies, and
delete all rules with positive occurrences (in the body or
head) of atoms to be forgotten;

• (SE),(W) : delete the entire program;
• (SE),(PP) : add, as facts, to the result of performing SE-

forgetting, the atoms that belong to some answer-set of
the original program and for which there is some rule of
the original program that contains some negative and no
positive occurrence of forgotten atoms.
Other sets of properties, unannotated in Fig. 3, do not

seem to permit the definition of such simplistic operators,
so their interest as a class requires further study.

Conclusions

The landscape of forgetting in ASP comprises many opera-
tors and classes of operators defined to obey some subset of
a large number of desirable properties proposed in the liter-
ature, while lacking a systematic account of all these results
and their relations, making it all too difficult to get a clear
understanding of the state-of-the-art, and even to choose the
most adequate operator for some specific application.

This paper aimed at addressing this problem, presenting a
systematic study of forgetting in ASP, including a thorough
investigation of both properties and existing classes of for-
getting operators, going well beyond a survey of the state-of-
the-art as many novel results were included, thus achieving
a truly comprehensive picture of the landscape. The wider
picture of yet unexplored terrain was also approached, re-
vealing new candidates for classes of operators as well as
sets of properties whose apparent unreasonableness advises
against further consideration.

One reasonable way to move forward is to investigate for-
getting with semantics other than ASP, such as (Wang et al.
2014) based on the FLP-semantics (Truszczynski 2010), or
(Alferes, Knorr, and Wang 2013; Knorr and Alferes 2014)
based on the well-founded semantics (Gelder, Ross, and
Schlipf 1991).

143

Acknowledgments
We would like to thank the reviewers for their comments,
which helped improve this paper. R. Gonçalves, M. Knorr
and J. Leite were partially supported by FCT under strate-
gic project NOVA LINCS (PEst/UID/CEC/04516/2013).
R. Gonçalves was partially supported by FCT grant
SFRH/BPD/100906/2014 and M. Knorr was partially sup-
ported by FCT grant SFRH/BPD/86970/2012.

References
Alferes, J. J.; Knorr, M.; and Wang, K. 2013. Forgetting under
the well-founded semantics. In Cabalar, P., and Son, T. C., eds.,
Procs. of LPNMR, volume 8148 of LNCS, 36–41. Springer.
Bledsoe, W. W., and Hines, L. M. 1980. Variable elimination and
chaining in a resolution-based prover for inequalities. In Bibel,
W., and Kowalski, R. A., eds., Procs. of CADE, volume 87 of
LNCS, 70–87. Springer.
Brass, S., and Dix, J. 1999. Semantics of (disjunctive) logic
programs based on partial evaluation. J. Log. Program. 40(1):1–
46.
Brass, S.; Dix, J.; Freitag, B.; and Zukowski, U. 2001.
Transformation-based bottom-up computation of the well-
founded model. TPLP 1(5):497–538.
Cabalar, P., and Ferraris, P. 2007. Propositional theories are
strongly equivalent to logic programs. TPLP 7(6):745–759.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001. Com-
plexity and expressive power of logic programming. ACM Com-
put. Surv. 33(3):374–425.
Delgrande, J. P., and Wang, K. 2015. A syntax-independent ap-
proach to forgetting in disjunctive logic programs. In Bonet, B.,
and Koenig, S., eds., Procs. of AAAI, 1482–1488. AAAI Press.
Eiter, T., and Wang, K. 2008. Semantic forgetting in answer set
programming. Artif. Intell. 172(14):1644–1672.
Gelder, A. V.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs. J. ACM
38(3):620–650.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in logic
programs and disjunctive databases. New Generation Comput.
9(3-4):365–385.
Ji, J.; You, J.; and Wang, Y. 2015. On forgetting postulates in
answer set programming. In Yang, Q., and Wooldridge, M., eds.,
Procs. of IJCAI, 3076–3083. AAAI Press.
Knorr, M., and Alferes, J. J. 2014. Preserving strong equiva-
lence while forgetting. In Fermé, E., and Leite, J., eds., Procs. of
JELIA, volume 8761 of LNCS, 412–425. Springer.
Konev, B.; Ludwig, M.; Walther, D.; and Wolter, F. 2012. The
logical difference for the lightweight description logic EL. J.
Artif. Intell. Res. (JAIR) 44:633–708.
Konev, B.; Lutz, C.; Walther, D.; and Wolter, F. 2013. Model-
theoretic inseparability and modularity of description logic on-
tologies. Artif. Intell. 203:66–103.
Kontchakov, R.; Wolter, F.; and Zakharyaschev, M. 2010. Logic-
based ontology comparison and module extraction, with an ap-
plication to dl-lite. Artif. Intell. 174(15):1093–1141.
Lang, J., and Marquis, P. 2010. Reasoning under inconsistency:
A forgetting-based approach. Artif. Intell. 174(12-13):799–823.
Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propositional
independence: Formula-variable independence and forgetting. J.
Artif. Intell. Res. (JAIR) 18:391–443.

Larrosa, J.; Morancho, E.; and Niso, D. 2005. On the practical
use of variable elimination in constraint optimization problems:
’still-life’ as a case study. J. Artif. Intell. Res. (JAIR) 23:421–440.
Larrosa, J. 2000. Boosting search with variable elimination. In
Dechter, R., ed., Procs. of CP, volume 1894 of LNCS, 291–305.
Springer.
Lewis, C. I. 1918. A survey of symbolic logic. University of
California Press. Republished by Dover, 1960.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly equiv-
alent logic programs. ACM Trans. Comput. Log. 2(4):526–541.
Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested expres-
sions in logic programs. Ann. Math. Artif. Intell. 25(3-4):369–
389.
Lin, F., and Reiter, R. 1997. How to progress a database. Artif.
Intell. 92(1-2):131–167.
Liu, Y., and Wen, X. 2011. On the progression of knowledge in
the situation calculus. In Walsh, T., ed., Procs. of IJCAI, 976–
982. IJCAI/AAAI.
Middeldorp, A.; Okui, S.; and Ida, T. 1996. Lazy narrow-
ing: Strong completeness and eager variable elimination. Theor.
Comput. Sci. 167(1&2):95–130.
Moinard, Y. 2007. Forgetting literals with varying propositional
symbols. J. Log. Comput. 17(5):955–982.
Rajaratnam, D.; Levesque, H. J.; Pagnucco, M.; and Thielscher,
M. 2014. Forgetting in action. In Baral, C.; Giacomo, G. D.; and
Eiter, T., eds., Procs. of KR. AAAI Press.
Slota, M., and Leite, J. 2014. The rise and fall of semantic rule
updates based on SE-models. TPLP 14(6):869–907.
Truszczynski, M. 2010. Reducts of propositional theories, satis-
fiability relations, and generalizations of semantics of logic pro-
grams. Artif. Intell. 174(16-17):1285–1306.
Turner, H. 2003. Strong equivalence made easy: nested expres-
sions and weight constraints. TPLP 3(4-5):609–622.
Wang, Z.; Wang, K.; Topor, R. W.; and Pan, J. Z. 2010. For-
getting for knowledge bases in DL-Lite. Ann. Math. Artif. Intell.
58(1-2):117–151.
Wang, Y.; Zhang, Y.; Zhou, Y.; and Zhang, M. 2012. Forgetting
in logic programs under strong equivalence. In Brewka, G.; Eiter,
T.; and McIlraith, S. A., eds., Procs. of KR, 643–647. AAAI
Press.
Wang, Y.; Zhang, Y.; Zhou, Y.; and Zhang, M. 2014. Knowledge
forgetting in answer set programming. J. Artif. Intell. Res. (JAIR)
50:31–70.
Wang, Y.; Wang, K.; and Zhang, M. 2013. Forgetting for an-
swer set programs revisited. In Rossi, F., ed., Procs. of IJCAI.
IJCAI/AAAI.
Weber, A. 1986. Updating propositional formulas. In Expert
Database Conf., 487–500.
Wong, K.-S. 2008. Sound and complete inference rules for SE-
consequence. J. Artif. Intell. Res. (JAIR) 31:205–216.
Wong, K.-S. 2009. Forgetting in Logic Programs. Ph.D. Disser-
tation, The University of New South Wales.
Zhang, Y., and Foo, N. Y. 2006. Solving logic program conflict
through strong and weak forgettings. Artif. Intell. 170(8-9):739–
778.
Zhang, Y., and Zhou, Y. 2009. Knowledge forgetting: Properties
and applications. Artif. Intell. 173(16-17):1525–1537.

144

