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Abstract

In this paper, we propose a general framework, both pa-
rameterized and parameter-free, for defining a family
of fine-grained inconsistency measures for propositional
knowledge bases. The parameterized approach allows
to encompass several existing inconsistency measures
as specific cases, by properly setting its parameter. And
the parameter-free approach is defined to avoid the dif-
ficulty in choosing a suitable parameter in practice but
still keeps a desired ranking for knowledge bases by their
inconsistency degrees. The fine granularity of our frame-
work is based on the notion of MIS partition that con-
siders the inner structure of all the minimal inconsistent
subsets of a knowledge base. Moreover, MinCostSAT-
based encodings are provided, which enable the use of
efficient SAT solvers for the computation of the pro-
posed measures. We implement these algorithms and
test them on some real-world datasets. The preliminary
experimental results for a variety of inputs show that the
proposed framework gives a wide range of possibilities
for evaluating large knowledge bases.

Introduction

Reasoning about inconsistent knowledge bases (KBs) has
been a long-standing challenge in the AI community. In re-
cent years, measuring inconsistency has proved useful in di-
verse scenarios, including software specifications (Barragans-
Martinez, Arias, and Vilas 2004), belief merging (Qi, Liu,
and Bell 2005), news reports (Hunter 2006), integrity con-
straints (Grant and Hunter 2006; 2013), and multi-agents
systems (Hunter, Parsons, and Wooldridge 2014; Jabbour,
Ma, and Raddaoui 2014).

Inconsistencies are often unavoidable in real-world appli-
cations. To achieve a certain goal, an agent may need to co-
operate with another agent, even in the presence of conflicts
between them. In this case, the agent would prefer one that
has the least disagreement with herself. For instance, suppose
that an agent A with the support on two topics t1 and t2, writ-
ten A = {t1, t2}, has to collaborate with one of the following
two agents: B1 = {¬t1,¬t2}, and B2 = {¬t1,¬t1 ∨ ¬t2}.
Clearly, A is in conflict with both, since B1 and B2 agree
upon the topic ¬t1 that contradicts with the topic t1 of A. In
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this case, it is not desired to immediately conclude that both
agents have a same conflict degree with A. Instead, some
proper inconsistency measures are necessary.

Among many possible ways to define an inconsistency
measure (Hunter 2006; Grant and Hunter 2008; Hunter and
Konieczny 2010; Ma, Qi, and Hitzler 2011; Jabbour et al.
2014), minimal inconsistent subsets (MISes) are often used
because a MIS forms a direct representation of an incon-
sistency core in a KB. For example, a classical measure
IMI (Hunter and Konieczny 2010) is defined as the num-
ber of MISes of a base K, i.e., IMI(K) = |MISes(K)|,
by which we have IMI(A ∪ B1) = IMI(A ∪ B2) = 2
for the previously mentioned example. Although useful
for many scenarios (Hunter and Konieczny 2010; 2008;
Mu, Liu, and Jin 2011), IMI measure fails to recommend
B1 or B2 for A. We claim that B1 has more conflicts with
A than B2 because there are two independent contradictory
topics between A and B1 (i.e. {t1,¬t1}, {t2,¬t2}), each of
which should be modified to make an agreement between A
and B1. However, the disagreement between A and B2 (i.e.
{t1,¬t1}, {t1, t2,¬t1 ∨ ¬t2}) can be handled by revising
only one topic, for instance, if A deletes t1. The problem of
no distinction between B1 and B2 for A is due to the fact that
IMI treats all MISes equally in terms of their contributions to
the inconsistency degree. Recently, another measure, called
ICC , has been developed as a lower bound of all standard in-
consistency measures (Jabbour, Ma, and Raddaoui 2014), by
considering the most representative MISes. The ICC metric
can distinguish B1 and B2 for A because ICC(A ∪B1) = 2
and ICC(A ∪ B2) = 1. However, if another agent is avail-
able, say B3 = {¬t1, t1 → t2}, we get ICC(A ∪ B3) = 1.
That is, the agent A can not distinguish between B2 and
B3, which is again insufficient in the following aspect: A
and B2 have more groups of topics in conflict (i.e. {t1,¬t1},
{t1, t2,¬t1 ∨¬t2}) than A and B3 (i.e. {t1,¬t1}). From the
above discussion about IMI and ICC , a fine-grained analysis
of the inner structures of MISes is clearly necessary.

Studies on inner structures of MISes have been performed
in many different settings. For instance, a dependence relation
among MISes has been identified by the fact that resolving
some MISes allows automatic resolution of others (Benferhat,
Dubois, and Prade 1995). In the context of ontology debug-
ging, root or derived axioms for unsatisfiability have been
distinguished (Kalyanpur et al. 2005). A graphical represen-
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tation of the relationships among justifications and axioms
is provided (Bail et al. 2011). In this paper, we propose the
notion of MIS partition that results in a general framework
of inconsistency measures.

Our contribution can be summarized as follows:

• Based on the MIS partition, we define a new family of
weighted inconsistency measures and show that these mea-
sures satisfy some rational properties, and capture several
existing inconsistency measures.

• To overcome the difficulty in choosing a suitable parameter
in practice, we further provide a parameter-free inconsis-
tency measure that can preserve the desired ranking (see
below for details) generated from the MIS partition.

• We present Minimum-Cost Satisfiability (MinCostSAT)
based encodings so that we can benefit from cutting-edge
SAT solvers for computing the proposed fine-grained in-
consistency measures.

• An experimental study is conducted to show the relevance
of the proposed measures for finely quantifying the conflict
status of real-world KBs.

Preliminaries

A propositional language L is built over a finite set of
propositional symbols PS using classical logical connec-
tives {¬,∧,∨,→,↔}. The symbol ⊥ denotes contradiction.
a, b, c, . . . represent atoms in PS. A literal is an atom a
or its negation ¬a. A clause C is a disjunction of literals:
C = a1 ∨ . . . ∨ an. A formula α in conjunctive normal form
(CNF) is a conjunction of clauses. Let V ar(α) denotes the
set of variables in α. An interpretation is a total function
from PS to {true, false}. An interpretation B is a model
of α iff B(α) = true. A KB K is a finite set of propositional
formulas. For a set S, we denote by |S| its cardinality, and by
2S its power set. K is inconsistent if K � ⊥, where � is the
classical consequence relation. Minimal inconsistent subsets,
defined below, are often used to analyze inconsistency in a
KB.

Definition 1 Let K be a KB and M ⊆ K. M is a Minimal
Inconsistent Subset (MIS ) of K iff M � ⊥ and ∀M ′ � M ,
M ′ �� ⊥. The set of all minimal inconsistent subsets of K is
denoted MISes(K).

A formula α ∈ K is called a free formula iff �M ∈
MISes(K) s.t. α ∈ M . The class of free formulas of K
is written free(K) = K \

⋃
MISes(K), and its complement

is named unfree formulas set: unfree(K) = K \ free(K).
An inconsistency measure I is a function that maps a KB

to a non-negative real number such that higher value indicates
larger conflict.

Several desired properties have been defined to charac-
terize inconsistency measures (Hunter and Konieczny 2010;
Jabbour, Ma, and Raddaoui 2014; Besnard 2014). In this pa-
per, given an arbitrary inconsistency measure I we focus on
the following properties:

• Consistency: I(K) = 0 iff K is consistent.

• Monotonicity: if K ⊆ K′, then I(K) ≤ I(K′).

• Independence: I(K∪{α}) = I(K) if α ∈ free(K∪{α}).
• MinInc: I(M) = 1 if M ∈ MISes(K).
• Ind-decomposability: I(K1 ∪ . . . ∪ Kn) = Σn

i=1I(Ki) if
MISes(K1∪. . .∪Kn) = MISes(K1) � . . .�MISes(Kn),
where � is the multi-set union over sets, and unfree(Ki)∩
unfree(Kj) = ∅ for 1 ≤ i �= j ≤ n.

The first four properties seem natural for an inconsistency
measure. The idea behind the Ind-decomposability (Jabbour,
Ma, and Raddaoui 2014) is that the inconsistency degrees
of several KBs should be additive if these bases are dis-
joint and have disjoint MISes. Notice that this revised prop-
erty is introduced to overcome the limitations of the De-
composability property (Hunter and Konieczny 2010). An-
other property named Dominance says that I(K ∪ {α}) ≥
I(K ∪ {β}) if α � β, which is however criticized due to
its unsuitability for characterizing inconsistency measures
based on minimal inconsistent subsets (Mu et al. 2011;
Besnard 2014). Therefore, in the rest of this paper, we only
consider the five postulates given above which are widely
accepted by the AI community.

Definition 2 An inconsistency measure is called a standard
measure if it satisfies the Consistency, Monotonicity, Indepen-
dence, MinInc, and Ind-decomposability properties.

It is easy to check that IMI is a standard measure.

MIS-based Measure ICC Revisited

In (Jabbour, Ma, and Raddaoui 2014), the authors proposed
a new inconsistency measure, denoted ICC , based on a subtle
analysis of the dependencies among the formulas of the KB.
For example, in the ICC measure, overlap among MISes are
taken into account. Indeed, to characterize the inner struc-
ture of MISes, each KB K is associated with an hypergraph
GK whose vertices are associated with the formulas of K
and edges with the MISes of K. This hypergraph based rep-
resentation gives a better insight of the correlations among
MISes so that it becomes useful for analyzing inconsistencies.
For example, the notion of strong-partition of a KB can be
considered in the light of the connected components of GK,
based on which the ICC measure can be defined.

Definition 3 (Jabbour, Ma, and Raddaoui 2014) Let K be
a KB and R ⊆ K. A strong-partition of K is a pair
〈{K1, . . . ,Kn}, R〉 such that:

(1) Ki ⊆ K and Ki � ⊥, ∀i (1 ≤ i ≤ n);
(2) {K1, . . . ,Kn, R} is a partition of K;
(3) MISes(K1 ∪ . . . ∪ Kn) =

⊎n
i=1 MISes(Ki).

The ICC measure is defined as ICC(K) = m if there is a
strong-partition 〈D,R〉 where |D| = m, and there is no
strong-partition 〈D′, R′〉 such that |D′| > m.

That is, when removing the set R from K, ICC corresponds
exactly to the number of connected components of the hyper-
graph representing K \R.

One thing to note is that the measure ICC is defined to
serve as a lower bound of all standard measures.

Proposition 1 ((Jabbour, Ma, and Raddaoui 2014)) For
any KB K and any standard measure I , ICC(K) ≤ I(K).
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Example 1 Consider the KB K = {a,¬a, a ∧ b, (a ∨
c) ∧ d,¬d,¬c ∧ e,¬e,¬e ∧ f} with its formulas named
u1, u2, . . . , u8, respectively. K has six MISes as depicted
in the hypergraph below. It follows that ICC(K) = 2, which
means that MISes(K) are highly correlated, that is, the hy-
pergraph can not be decomposed into more connected com-
ponents even if some formulas are removed.

In the following, we provide some additional properties of
ICC using the closed set packing problem defined in (Jabbour
et al. 2015).

We first review the classical set packing problem defined
as follows.
Definition 4 Let U be a universe and S a family of subsets
of U . A set packing is a subset P ⊆ S such that, ∀Si, Sj ∈ P
with Si �= Sj , Si ∩ Sj = ∅.

The closed set packing problem is defined to circumscribe
a special type of set packing.

Definition 5 Let U be a universe and S a family of subsets
of U . We define the function fS : 2S → 2S as fS(P ) =
{Si ∈ S | Si ⊆ ∪S′∈PS

′}. Then, a set packing P ⊆ S is
called a closed set packing (CSP) if P is a fixed point of the
function fS , i.e., fS(P ) = P .

That is, a CSP P of S satisfies the following condition: the
union of the selected subsets does not contain any unselected
subsets of S, i.e., ∀Si ∈ S \ P , Si �⊆

⋃
S′∈P S′.

Example 2 (Example 1 contd.) By taking the universe
U = {u1, u2, u3, u4, u5, u6, u7, u8} and S = MISes(K),
various CSPs can be constructed. For instance, {S2, S4} is
one, but not {S2, S4, S6} since S3 ⊆ S2 ∪ S4 ∪ S6. Indeed,
{S2, S4} is a CSP of maximal cardinality.

The maximum set packing (resp. closed set packing) prob-
lem, written MSP (resp. MCSP), are the related optimization
problems, defined as finding a set packing (resp. closed set
packing) of S with the maximum size for a collection of
subsets S over a universe U .

Given U and S, we write σMSP(U, S) (resp. σMCSP(U, S))
for the cardinality of the optimal solution of the correspond-
ing MSP (resp. MCSP) problem. Then, we have the following
relationship between MSP and MCSP:

Proposition 2 Given an inconsistent KB K, it holds that:

σMCSP(K,MISes(K)) = max
R⊂K

{σMSP(K \R,MISes(K \R))}.

Proof: (Sketch) The ≤ direction can be seen from the
fact that for any R, a set packing w.r.t. U = K \ R and
S = MISes(K \R) is closed under the function fS . The ≥

direction holds because a closed set packing T for U = K
and S = MISes(K) is indeed a set packing for U = K \R
and S = MISes(K \R) with R = K \

⋃
Q⊆T Q. �

For Example 1, if we take R = {u1, u4, u7}, we will get
the maximal set packing of K\R = {s2, s6} which is indeed
a maximal closed set packing of K. This proposition says that
the optimal closed set packing corresponds to the maximal
set packing with some sub-bases removed.

Using Proposition 2 and Definition 3, the ICC measure can
be nicely characterized by the closed set packing problem as
stated by the following proposition.

Corollary 3 For any KB K, we have:

ICC(K) = σMCSP(K,MISes(K)).

Proof: (Sketch) By Definition 3, ICC value corresponds to
the size of the largest subset of MISes(K) having pairwise
disjoints MISes and closed by union. This corresponds to
the solutions of the defined MCSP(U, S). �

The last result shows that ICC value can be computed by
leveraging solutions to the closed set packing problem. The
detailed algorithm is given in the section dedicated to the
computation issues.

Towards Weight-Based Standard Measures

As mentioned earlier, the ICC measure defines a lower bound
for standard measures. Unfortunately, the lower bound con-
siders only a subset of MISes forming a closed set packing
of MISes (cf. Corollary 3). That is, ICC does not take into
account the contribution of each MIS to the whole inconsis-
tency. A key step for designing a more accurate inconsistency
metric is to analyse the contribution of each MIS to the in-
consistency of a given KB.

One of such analyses can be done via a weighted assess-
ment of the relevance of each MIS by taking into account
the overall structure of the whole set of MISes. To illustrate
this point, let us consider the KB K = {a,¬a, a ∨ b,¬b}
with two MISes M1 = {a,¬a}, and M2 = {¬a, a ∨ b,¬b}.
Since M1 ∩ M2 �= ∅, a “relevant” standard inconsistency
measure I should satisfy I(K) < I(M1) + I(M2) = 2. On
the other hand, I(K) should be greater than the lower bound
ICC(K) = 1. Consequently, we need to have1 1 < I(K) < 2.
To satisfy such a condition, a deeper analysis of these two
MISes by considering for example their overlap is necessary.
This can be expressed using a weighted measure such as
I(K) = w1 × I(M1) + w2 × I(M2) where w1, w2 ∈ [0, 1]
are positive real values representing the relevance of M1 and
M2, respectively.

In this section, we develop a new weight-based standard
inconsistency measure that captures the correlation between
MISes. More precisely, we are interested in inconsistency
metrics that assign higher (resp. lower) conflict degrees to
KBs with sparser (resp. denser) MISes under the notion of
hypergraph. The intuition is that a sparse MISes hypergraph

1Note that the Ind-decomposability cannot be applied to K be-
cause its MISes are inner connected. Hence, for a standard measure
I , it is not required that I(K) = 2.
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indicates that the conflicts spread over the whole KB with
various independent sources of inconsistency. To resolve such
sort of inconsistency, all these conflicts need to be handled
separately. To this end, our proposed approach exploits the
closed set packing problem to characterize the correlation
among different MISes.

Before defining our inconsistency measures, we need to
introduce a MIS partition that partitions the set of MISes of a
KB into clusters of closed set packing, called c-partition.

Definition 6 Let K be a KB, U = K and S =
MISes(K). P = {p1, . . . , pn} is called a c-partition of K
if MISes(K) =

⊎
1≤i≤n pi , where each pi is a closed set

packing for U and S.

In the sequel, let PMISes(K) denote the set of c-partitions
of K. Obviously, PMISes(K) �= ∅ if K � ⊥. Indeed, we can
build a c-partition where each pi contains exactly one MIS.

Now, we will associate with each c-partition P =
{p1, . . . , pn} the following numeric vector V (P) =
〈|π(p1)|, . . . , |π(pn)|〉 where π is a permutation of P such
that |π(p1)| ≥ . . . ≥ |π(pn)|. Clearly, each c-partition pos-
sesses a unique ordered numeric vector.

In order to compare two c-partitions of a given KB, it will
be convenient to assume a lexicographic ordering relation �
over their associated numeric vectors:

Definition 7 Let u, v ∈ Nn × Nm be two vectors. Suppose
that u = 〈u1, . . . , un〉 and v = 〈v1, . . . , vm〉. Then, u is
lexicographically less than v, denoted by u � v, iff u = v,
or there exists k ≤ min(n,m) s.t. uk < vk and ui = vi for
each i < k. Furthermore, u ≺ v iff u � v and u �= v.

Definition 8 Let K be a KB and P = {p1, . . . , pn}, P ′ =
{p′1, . . . , p′m} two c-partitions of K. Then, P �pr P ′ iff
V (P) � V (P ′).

Note that the relation �pr is a total preorder on PMISes(K).
Indeed, �pr is reflexive and transitive. Additionally, no pair
of c-partitions is incomparable.

Definition 9 Let K be a KB and P be a c-partition of K.
Then, P is called a maximal c-partition if and only if there
exists no c-partition P ′ such that P �pr P ′.

In the following, based on �pr, we can associate with each
KB a vector of positive integers, called conflict vector.

Definition 10 Let K be a KB. The conflict vector of K, writ-
ten V(K), is defined as V(K) = V (P) where P is a maximal
c-partition of K.

Example 3 (Example 1 contd.) Let K = {a,¬a, a∧b, (a∨
c) ∧ d,¬d,¬c ∧ e,¬e,¬e ∧ f}. Then, K has 8 maximal c-
partitions:
P1 = {{S1, S4}, {S2, S5}, S3, S6} P2 = {{S1, S4}, {S2, S6}, S3, S5}
P3 = {{S2, S4}, {S1, S5}, S3, S6} P4 = {{S2, S4}, {S1, S6}, S3, S5}
P5 = {{S1, S5}, {S2, S4}, S3, S6} P6 = {{S1, S5}, {S2, S6}, S3, S4}
P7 = {{S2, S5}, {S1, S4}, S3, S6} P8 = {{S2, S5}, {S1, S6}, S3, S4}

It follows that V (K) = 〈2, 2, 1, 1〉.
Note that all the maximal c-partitions possess the same

numeric vector. So the conflict vector of K is unique.
For two KBs with V(K) = 〈|p1|, . . . , |pn|〉 and V(K′) =

〈|p′1|, . . . , |p′m|〉, if |p1| = |p′1|, then ICC associates the same

inconsistency value to both K and K′, since ICC(K) = |p1|
and ICC(K′) = |p′1| by Corollary 3. In contrast, the ordering
defined above allows us to compare two KBs according to
the remaining elements of the conflict vectors.

To quantify the conflict degree of a KB, we will use the set
of c-partitions with an associated weighting scheme. This will
allows us to better quantify the contribution of the different
MISes to the inconsistency of the KB.

Definition 11 Let K be a KB and P = {p1, . . . , pn} ∈
PMISes(K). We define the weighting function W of P as:

W(P) =
∑
pi∈P

|pi| × wi,

where {wn}+∞
n=1 is a decreasing positive sequence with w1 =

1.

That is, the MISes belonging to the same pi are equally
weighted and the weight associated to each c-partition is the
sum of the individual weight associated to each MIS.

Now, we are ready to define our new class of inconsistency
metrics induced by W as follows:

Definition 12 Let K be a KB. The weighted inconsistency
measure of K, w.r.t. a weighting function W , is defined as
follows:

IW(K) = max{W(P) | P ∈ PMISes(K)}.

As we can remark, another possibility in defining IW
would be W(P ′), where P ′ is a maximal c-partition of K.
However, these two ways yield different definitions in gen-
eral. For instance, if V (K) = V (P) = 〈4, 1, 1, 1〉 for a
maximal c-partition P and there exists another c-partition
P ′ with V (P ′) = 〈3, 3, 1〉, we have IW(P) − IW(P ′) =
1 ∗ w1 − 2 ∗ w2 + w4. Now let us consider the weight-
ing sequence w1 = 1, w2 = 0.9 and w4 = 0.1, then
IW(P) − IW(P ′) = 1 − 1.8 + 0.1 = −0.7 < 0. This
means that the maximum value of IW is not reached for the
maximal c-partition. Moreover, as shown in Proposition 6 and
Theorem 7, the measure IW , as defined in Definition 12, is
general enough to encompass particular measures (ICC , IMI ),
which nevertheless cannot be always guaranteed by W(P)
for maximal c-partitions P .

Given an inconsistent KB K, It is important to note that the
measure IW reaches the maximum value when MISes(K)
itself forms a CSP. Indeed, in this case MISes(K) has a
singleton maximal c-partition P so that the conflict vector
V (K) = 〈|MISes(K)|〉. This property is meaningful as it
indicates the case where the sources of conflicts of K are
independent and spread over the KB. The minimum value is
obtained for instance when all MISes of K share at least one
formula. In this case, IW(K) =

∑
1≤i≤n wi.

Alternatively, IW can be expressed as the maximum value
of

∑
pi∈P(wi × IW(pi)), for all P ∈ PMISes(K). Note that

IW(pi) = |pi|, since pi is a closed set packing.
From the definition of IW , we can derive the following

property expressing its relation with IMI and ICC measures.
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Proposition 4 Let K be a KB and μ = |MISes(K)| −
ICC(K). Then, we have:

(

μ∑
i=2

wi) + ICC(K) ≤ IW(K) ≤ IMI(K).

Proof: By definition of ICC , there exists a strong-partition
〈D,R〉 where D = {K1, . . . ,KICC(K)} and R = K \
∪K′∈DK′. Let us consider P = {p1, . . . , pμ} where p1 =
{M1, . . .MICC(K)} s.t. Mi ∈ MISes(Ki) for 1 ≤ i ≤
ICC(K), and {p2, . . . , pμ} = MISes(K) \ p1. Clearly,
P is a c-partition of K. According to Definition 12, it
holds that IW(K) ≥ ICC(K) +

∑
2≤i≤μ wi. Also, we have

IW(K) ≤ IMI(K) since {wn}+∞
n=1 is a decreasing sequence

and w1 = 1. �
Interestingly, the weighted inconsistency measure IW sat-

isfies all the rational properties mentioned above.

Theorem 5 IW measure is a standard measure.

Proof:

• Consistency and Independence are verified be-
cause MISes(K) �= ∅ iff K is inconsistent, and
MISes(K) = MISes(K∪{α}) for α ∈ free(K∪{α}).

• Monotonicity: Let K and K′ be two KBs, and
P = {p1, . . . , pn} a c-partition of MISes(K).
We have MISes(K) ⊆ MISes(K ∪ K′). Let
{M ′

1, . . . ,M
′
m} = MISes(K ∪ K′) \ MISes(K). Then,

P ′ = {p1, . . . , pn, {M ′
1}, . . . , {M ′

m}} is a c-partition of
K ∪ K′. So, W(P ′) ≥ W(P). Consequently, IW(K ∪
K′) ≥ IW(K).

• MinInc: For a single MIS M , there exists a unique c-
partition P = {M}. Since w1 = 1, IW(M) = 1.

• Ind-decomposability: The proof follows from the
existence of a bijection between the partition of K ∪ K′

and the union of the partitions of K and K′.

�
Now we can compare different KBs by conflict degrees.

Definition 13 Let K and K′ be two KBs. We say that K is
less inconsistent than K′ iff IW(K) ≤ IW(K′).

Example 4 Let us consider the following two KBs K1 =
{a,¬a, a∨b,¬b, b}, and K2 = {c,¬c∧d,¬d∧e∧f,¬e,¬f}.
Given a sequence wi =

1
i , i ∈ N∗,

• We have, MISes(K1) = {{a,¬a}, {b,¬b}, {¬a, a ∨
b,¬b}}. Then, the maximal c-partition of K1 is P =
{p1, p2} such that p1 = {{a,¬a}, {b,¬b}} and p2 =
{¬a, a ∨ b,¬b}. It follows that IW(K1) = |p1| × w1 +
|p2| × w2 = 2× 1 + 1× 1

2 = 5
2 .

• In a similar way, we obtain IW(K2) = 1+ 1
2+

1
3+

1
4 = 25

12 .

As IW(K2) < IW(K1), so K2 is less inconsistent than K1.

Next we study the relationship between the three stan-
dard measures IW , ICC , and IMI for particular sequences of
weights.

Proposition 6 Let K be a KB and {wn}+∞
n=1 a weighting

sequence such that w1 = 1 and wn = λ for all n > 1, where
λ is a non negative constant satisfying 0 ≤ λ ≤ 1. Then,

IW(K) = (1− λ)× ICC(K) + λ× IMI(K).

Proof: Note that w1 = 1 and wn = λ for all n > 1,
it is clear that a partition P = {p1, . . . , pn} maximizing
the W(P) must put in p1 the maximal set of MISes that
forms a closed set packing, which corresponds to ICC , and the
remaining MISes can be distributed into the other elements
pi (1 < i ≤ n) with the same amount of contribution λ to
IW(K). So IW(K) = ICC(K) + λ× (IMI(K)− ICC(K)) =
(1− λ)× ICC(K) + λ× IMI(K). �

The following result is very important, because it reveals
that our framework of weighted inconsistency measures is
general enough to encompass some standard measures as spe-
cific cases, especially those given in (Hunter and Konieczny
2010; Jabbour, Ma, and Raddaoui 2014).

Theorem 7 Let K be a KB. We have:

IW(K) =

⎧⎪⎨
⎪⎩

ICC(K) if λ = 0
ICC(K)+IMI(K)

2 if λ = 1
2

IMI(K) if λ = 1

Proof: Direct consequence of Proposition 6. �
Corollary 8 Let K be a KB and {wn}+∞

n=1 a weighting se-
quence. Then, we have:

IW(K) = IMI(K) if and only if ∀n ∈[1,+∞[, wn = 1.

Finally, let us stress that the definition of IW is a gen-
eral method to define an inconsistency measure. Follow-
ing the same way, another measure can be obtained by
defining the partitions by set packing instead of closed set
packing (cf. Definition 6), which leads to the following
new inconsistency value: ISP(K) = max{W(P) | P ∈
PMISes(K) such that ∀p ∈ P , p is a set packing}.

Example 5 Consider the following KBs K1 = {a,¬a, a ∨
b,¬b, b} and K2 = {a,¬a∧ b,¬b∧ c,¬c}. Suppose that we
use a sequence wi =

1
i , i ∈ N∗. We have:

• IW(K1) = ISP(K1) = 2 + 1
2 = 5

2 ,

• IW(K2) = 1 + 1
2 + 1

3 = 11
6 and ISP(K2) = 2 + 1

2 = 5
2 .

Note that both K1 and K2 have three MISes: M1
K1

=

{a,¬a},M2
K1

= {¬a, a ∨ b,¬b},M3
K1

= {b,¬b}, and
M1

K2
= {a,¬a ∧ b},M2

K2
= {¬a ∧ b,¬b ∧ c},M3

K2
=

{¬b ∧ c,¬c}. Similarly, they both own two sized set pack-
ings, e.g. {M1

K1
,M3

K1
} and {M1

K2
,M3

K2
}, respectively.

However, their closed set packings are different, so are
the c-partitions corresponding to IW(K1) and IW(K2):
〈{M1

K1
,M3

K1
}, {M2

K1
}〉 and 〈{M1

K2
}, {M2

K2
}, {M3

K2
}〉, re-

spectively.

By their definitions, we have the following relation be-
tween ISP and IW measures:
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Proposition 9 Let K be a KB. The following inequality
holds:

ISP(K) ≥ IW(K).

Towards a Parameter-Free Standard Measure

An important property of the previously defined weight-based
measure IW lies in its ability to encompass some existing
inconsistency measures, such as IMI and ICC , as specific
cases. However, such a measure is defined using an additional
parameter w that must be tuned in practice. In the following,
we will study the impact of the parameter w on the induced
IW value. Considering that an inconsistency measure is often
used to rank different KBs, the goal is, therefore, to have a
parameter-free measure that can return a meaningful ranking
of different KBs based on their degrees of conflict.

First, we examine the ranking of different KBs under the
IW measure, illustrated by the following example.

Example 6 Let us consider two KBs
K1 = {u1, u2, u3, u4, u5, u6, u7} and K2 =
{v1, v2, v3, v4, v5, v6, v7} whose MISes are depicted
below by ellipses:

We can see that some maximal c-partitions can be obtained
(the left hand side for K1, the right hand side for K2):

So we have V (K1) = 〈2, 2〉 and V (K2) = 〈2, 1, 1, 1〉. Now,
we take two different sequences wi

1 = 1
i and wi

2 = 1
2i−1 , i ∈

N∗. Then, for wi
1 we have IW(K1) = 2× 1+2× 1

2 = 3 and
IW(K2) = 2×1+1× 1

2+1× 1
3+1× 1

4 = 37
12 . Consequently,

IW(K1) < IW(K2). Meanwhile, if we consider the sequence
wi

2 it holds that IW(K1) = 2×1+2× 1
2 = 3 and IW(K2) =

2×1+1× 1
2 +1× 1

22 +1× 1
23 = 23

8 , so IW(K1) > IW(K2),
which contradicts the previous ordering of K1 and K2 under
wi

1.

This example shows that there exist cases where different
settings of the parameter w can lead to different rankings
of KBs. To overcome this problem, we introduce below a
new inconsistency measure, called Icf , which is defined as a
special continued fraction constructed from MIS partitions
of a KB.

Definition 14 Let K be a KB and V(K) = 〈v1, ..., vn〉
its conflict vector. The inconsistency measure Icf is 0 if
V(K) is a zero vector; otherwise Icf is the continued frac-
tion corresponding to the extended sequence Ve(K) =

〈v1, 1, v2, 1, . . . , vn−1, 1, vn〉:

Icf (K) = v1 +
1

1 +
1

v2 +
1

1 +
1

. . . +
1

vn

.

Note that the extra “1”s in the above definition are added
into the vector to guarantee that Theorem 11 (below) holds.

Example 7 (Example 6 contd.) From Definition 14, we
have Icf (K1) = 2 + 1

1+ 1
2

= 8
3 and Icf (K2) = 34

13 whose
corresponding extended sequence are Ve(K1) = 〈2, 1,2〉
and Ve(K2) = 〈2, 1,1, 1,1, 1,1〉. Then, we deduce that K1

is more inconsistent than K2, i.e., K2 is less conflicting than
K1, under the measure Icf .

Similar to IW , we can see that Icf (K) satisfies all the
desired properties of a standard measure.

Proposition 10 Icf measure is a standard measure.

For any KBs K and K′, suppose that their conflict vectors
are V (K) = 〈v1, · · · , vn〉 and V (K′) = 〈v′1, · · · , v′m〉, re-
spectively. Recall that we have a ranking between K and K′

by their conflict vectors, that is, K is less conflicting than K′

if V (K) � V (K′).

Example 8 (Example 6 and 7 contd.) Since V (K1) =
〈2, 2〉 and V (K2) = 〈2, 1, 1, 1〉, we have V (K2) � V (K1),
that is, K2 is of less conflict than K1 according to their con-
flict vectors.

The key property of the Icf measure is characterized by
the following proposition.

Theorem 11 For any KBs K and K′, Icf (K) ≤ Icf (K′) if
K � K′.

Proof: It is obvious that if K = K′, Icf (K) = Icf (K′).
Now we suppose K ≺ K′ and V (K) = 〈v1, · · · , vn〉,
V (K′) = 〈v′1, · · · , v′m〉. Then, there exists 1 ≤ k ≤
min(n,m) such that vi = v′i for 0 ≤ i < k and vk < v′k.
Therefore, all the subparts of the continued fraction of
the form 1

1+... are strictly smaller than 1. We deduce that
vk + 1

1+ 1
vk+1+...

< v′k by noting that vk and v′k are positive

integers according to the definition of conflict vector. Conse-
quently, Icf (K) ≤ Icf (K′). �

Theorem 11 tells us that the ranking of KBs under the Icf
measure coincides with that defined by their conflict vectors.

On the Computation of Standard Measures

According to Corollary 3, computing the lower bound of stan-
dard measures is equivalent to computing a solution to a max-
imum closed set packing problem. In this section, we extend
this result to the fine-grained measure IW and Icf . Indeed,
we provide encodings for all the three measures into the Min-
imum Cost Satisfiability problem (MinCostSAT) (Miyazaki,
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Iwama, and Kambayashi 1996), which allows us to take a
full advantage of the continuous progresses in practical SAT
solving.

MinCostSAT-based Encoding of ICC
Let us recall that ICC is the cardinality of the maximum closed
set packing of S = MISes(K) over the universe U = K. No-
tice that a direct encoding of this problem can be obtained
by modeling the conflicting sets of MISes, i.e., sets of MISes
which are not closed set packings. Unfortunately, this ap-
proach is clearly inefficient because of the huge number of
possible conflicting sets of MISes. To overcome this problem,
we propose an original encoding that considers both S and
U in MinCostSAT.

Definition 15 (MinCostSAT) Let α be a CNF formula and
f a cost function that associates a non-negative cost to each
variable in V ar(α). The MinCostSAT is the problem of find-
ing a model B for α that minimizes the objective function:

F(B) =
∑

x∈V ar(α)

f(x)× B(x)

Let U be a universe and S a set of subsets of U . We
associate a boolean variable Xe (resp. YSi

) to each e ∈ U
(resp. Si ∈ S). The first formula allows us to only consider
the pairwise disjoint subsets in S:

∧

e∈U

∑

Si∈S|e∈Si

YSi ≤ 1 (1)

The inequalities in (1) correspond to the AtMostOne con-
straint which is a special case of the well-known cardinality
constraint. Several efficient encodings of the cardinality con-
straint to CNF have been proposed, most of which try to im-
prove the efficiency of constraint propagation (e.g. (Bailleux
and Boufkhad 2003; Sinz 2005)). In this case, the inequality∑

Si∈S|e∈Si
YSi ≤ 1 is encoded as follows using a sequen-

tial counter (Sinz 2005; Marques-Silva and Lynce 2007) (we
suppose that

∑
Si∈S|e∈Si

YSi
can be rewritten as

∑n
i=1 YSi

):

(¬YS1 ∨ q1) ∧ (¬YSn ∨ ¬qn−1)∧
1<i<n

((¬YSi
∨ qi) ∧ (¬qi−1 ∨ qi) ∧ (¬YSi

∨ ¬qi−1))

(2)

where qi is a fresh propositional variable for all
1 ≤ i ≤ n− 1.

The following formula is to express that YSi
= 1 if and

only if for all e ∈ Si, Xe = 1, i.e., YSi
⇔ (

∑
e∈Si

Xe =
|Si|): ∧

Si∈S

∧

e∈Si

¬YSi ∨Xe (3)

∧

Si∈S

(YSi ∨
∨

e∈Si

¬Xe) (4)

It is worth noticing that any solution to the inequalities (1),
(3) and (4) represents a closed set packing of S.

In order to compute ICC , we need to maximize the sum∑
Si∈S YSi . To encode this maximization problem as a Min-

CostSAT problem, we only need to rename each variable
YSi

with ¬Y ′
Si

(Y ′
Si

is a fresh propositional variable) in α =
(1) ∧ (3) ∧ (4), for all Si ∈ S. We note such renamed for-
mula R(α). The MinCostSAT -ICC(U, S), encoding ICC ,
is defined as follows:

Problem: MinCostSAT -ICC(U, S)

minF(B) =
∑

x∈V ar(α)

f(x)× B(x)

subject to
B ∈ M(R(α)) with f defined as follows:

∀Si ∈ S, f(Y ′
Si
) = 1;

∀X ∈ V ar(α) \ {Y ′
Si

| Si ∈ S}, f(X) = 0.

MinCostSAT-based Encoding of IW
Similarly to the previous encoding of ICC , we provide a
MinCostSAT-based encoding to compute IW value. Indeed,
we look for a partition of MISes such that each element of
the partition is a closed set packing (see Definition 6).

Let P = {P1, . . . , Pn} be a partition of S. Here, we asso-
ciate a binary variable Xj

e to each element e in U to express
that e ∈ Pj and a set of binary variables Y j

Si
∈ {0, 1} to each

subset Si in S to express that Si ∈ Pj .
The first formula allows us to only consider the pairwise

disjoint subsets in S w.r.t. Pj :

∧
e∈U

n∧
j=1

∑
Si∈S|e∈Si

Y j
Si

≤ 1 (5)

The following formulas allow us to express that Y j
Si

= 1

if and only if ∀e ∈ Si, Xj
e = 1:

n∧
j=1

∧
Si∈S

∧
e∈Si

¬Y j
Si

∨Xj
e (6)

n∧

j=1

∧

Si∈S

(Y j
Si

∨
∨

e∈Si

¬Xj
e ) (7)

The following formula expresses that each Si has to be in
exactly one element of P:

∧

Si∈S

n∑

j=1

Y j
Si

= 1 (8)

In order to obtain a sound encoding of IW , we have to
maximize the following sum:

∑n
j=1(

∑
Si∈S Y j

Si
)× wj .

A MinCostSAT encoding can be obtained by renaming the
variables of the form Y j

Si
as ¬Zj

Si
(Zj

Si
is a fresh variable),

in the same way as in our encoding of ICC . We use R′(α) to
denote the formula obtained from α by using this renaming
where α = (5) ∧ (6) ∧ (7) ∧ (8).

Problem: MinCostSAT -IW(U, S)
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minF(B) =
∑

x∈V ar(α)

f(x)× B(x)

subject to
B ∈ M(R′(α)) with f defined as follows:

∀Si ∈ S and ∀j ∈ {1, . . . , n}, f(Zj
Si
) = wj ;

∀X ∈ V ar(α) \ Z, f(X) = 0

where Z = {Zj
Si

| Si ∈ S, j ∈ {1, . . . , n}}.

Computation of Icf

Let us recall that the computation of Icf is based on the
conflict vector corresponding to a maximal c-partition w.r.t.
a lexicographical ordering. The encoding of c-partitions is
described by the constraints Cp =(5)∧ (6)∧ (7)∧ (8) used for
computing IW . To calculate a maximal c-partition P , we enu-
merate the models of Cp in a lexicographical ordering. Each
time a model is found, a lex-constraint is added dynamically
in order to search for a new model (c-partition) that is greater
than the previous one w.r.t. �pr. In a second step, we derive
a conflict vector associated to the maximal c-partition of K,
then we compute Icf (see Definition 14).

Experiments

The previous encodings provide a way to benefit from the
efficient SAT solvers for computing the family of standard
inconsistency measures. In this section, we conduct a com-
parative evaluation of IMI , ICC , IW , and Icf measures. Our
goal is to discover their strengths and complementarities. We
implemented the algorithms based on an optimization-based
SAT solver MiniSAT 2.2 (Eén and Sörensson 2003). The ex-
periments were performed on a Xeon 3.2GHz (2 GB RAM)
cluster with a timeout of one hour of CPU time based on the
following three datasets:

Datasets 1 were taken from the MaxSAT competition2

used in the context of MISes Enumeration (Previti and
Marques-Silva 2013). These datasets encode real-world prob-
lems coming from rocket domain or automotive product con-
figuration of car lines. For these instances, the state-of-the-art
MISes enumerator eMUS (Previti and Marques-Silva 2013)
was used to generate MISes of each KB. Note that eMUS is a
partial MISes enumerator, so for certain instances, we only
consider subsets of their MISes if eMUS cannot get all MISes
before timeout.

Datasets 2 are instances from the error-tolerant reasoning
(Ludwig and Peñaloza 2014) over large biomedical ontolo-
gies ( SNOMED version 13.11d and the NCI thesaurus3)
with their EL++ versions (Baader, Brandt, and Lutz 2005).
The data instances correspond to different brave and cautious
consequences of the given ontologies and errors (Ludwig and
Peñaloza 2014). The MISes for these data were computed
by JUST tool (Ludwig 2014). We used only the instances
treatable by JUST under its predefined timeout.

2http://www.satcompetition.org/2011/
3http://evs.nci.nih.gov/ftp1/NCI Thesaurus

Datasets 3 contain randomly generated instances, named
mpfs m n, having m MISes and each MIS is of the size n.
The artificial datasets are designed because both eMUS and
JUST can only terminate over instances whose MISes are
highly correlated, which is reflected by the small ICC values
for the datasets 1 and 2 as shown in Table 1. The procedure
is done by generating a random family of sets {S1, . . . , Sm}
to represent the set of MISes, with m varying between 50
and 200. Each Si (corresponding to a MIS) is generated as a
set of integers selected from the interval [1, 100] to stand for
formulas in Si by their indexes.

Table 1 reports, for each instance, the inconsistency values
under the four standard measures, i.e., IMI , ICC , IW (where
wn = 1

n ), and Icf , from which we can draw the following
conclusions:

The first interesting observation is that both IW and Icf
metrics assign all instances with distinct inconsistency de-
grees. In contrast, many instances have equivalent ICC or IMI

values. The ICC is more problematic due to its small values of
being either 1 or 2 in most cases for the first two real-world
datasets. This means that the ICC is not adequate in practice
to be used as an improvement of IMI to take into account
inner structure of MISes while estimating inconsistencies.
Meanwhile, it shows that our IW and Icf measures can be
used to better distinguish different KBs according to their
different inconsistency degrees, which benefits from the pro-
posed MIS partition for a fine-grained analysis of the inner
structure of MISes.

Secondly, compared to IW , the parameter-free measure
Icf has an important theoretical property that it guarantees
the ordering defined over conflict vectors. However, from
the experimental result, an advantage of the measure IW in
practice exists in a clear difference between the inconsistency
values. For instance, IW(Snomed typeI out2) = 6.53 and
IW(Snomed typeI out48) = 4.16 but their Icf values are
too close with a difference of less than 10−7.

Finally, we note that there is a big difference between
IMI and the other measures (i.e. ICC , IW , Icf ). For example,
the instances C220 FV RZ 13 and apex gr 2pin w4.shuffled∗
from the datasets 1 have large IMI values (6772 and 1500,
respectively), but much smaller ICC , IW , and Icf degrees
(≤ 10). Small values of ICC , IW , and Icf indicate that the
MISes of such instances are strongly interconnected, which
can not be reflected by merely using the IMI measure.

Related Work

In this section, we provide a brief overview of some works
related to inconsistency measures.

To measure inconsistencies in classical logics, a range of
logic-based approaches have been proposed. For instance,
one can cite those based on probabilistic models (Knight
2002; Doder et al. 2010), multi-valued semantics (Grant
1978; Hunter 2002; 2003; Oller 2004; Hunter 2006; Grant and
Hunter 2008; Ma et al. 2010; Xiao et al. 2010; Ma, Qi, and
Hitzler 2011), maximal consistent subsets (Ammoura et al.
2015), minimal inconsistent subsets (Hunter and Konieczny
2008; Mu, Liu, and Jin 2011; 2012; Xiao and Ma 2012;
Jabbour, Ma, and Raddaoui 2014) and hitting sets (Mu 2015;
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Instance #vars #clauses IMI ICC IW Icf
C168 FW UT 851 1909 6758 102 1 5.2 〈1, 1, · · · , 1〉102
C220 FV RZ 13 1728 4014 6772 1 9.39 〈1, 1, · · · , 1〉6772
c880 gr rcs w5.shuffled 3280 44291 70 1 4.83 〈1, 1, · · · , 1〉70
rocket ext.b 283 1844 75 1 4.9 〈1, 1, · · · , 1〉75
c7552-bug-gate-0∗ 2640 6989 1000 1 7.48 〈1, 1, · · · , 1〉1000
apex gr 2pin w4.shuffled∗ 1322 10940 1500 2 8.89 〈1, 1, · · · , 1〉1500
wb conmax1.dimacs.filtered∗ 277950 1221020 20 2 4.54 2.73205080739
wb 4m8s4.dimacs.filtered∗ 463080 1759150 20 9 13.36 9.61803278689
wb1.dimacs.filtered∗ 49525 140091 71 50 59.16 50.61803398875

Snomed typeI out2 SNOMED metrics 112 2 6.53 2.73205080757
Snomed typeI out30 #axioms: 369194 8 1 3.78 〈1, 1, · · · , 1〉8
Snomed typeII out48 #concepts: 310013 19 2 4.16 2.73205080512
Snomed typeII out152 #roles: 58 21 2 4.54 2.73205080739
Snomed typeII out189 37 2 5.59 2.61803398875
NCI typeI out36 NCI metrics 41 1 4.96 〈1, 1, · · · , 1〉41
NCI typeII out157 #axioms: 159 805 79 2 5.2 2.61803398875
NCI typeI out233 #concepts: 104 087 82 1 5.96 〈1, 1, · · · , 1〉82
NCI typeII out425 #roles: 92 46 5 10.78 5.85410196625

mfsp 50 20 mfsp n m 50 5 11.12 5.82842712475
mfsp 100 50 n: # MISes 100 22 47.55 22.9582607431
mfsp 120 80 m: MIS size 120 20 46.03 20.9544511501
mfsp 150 60 150 11 29.50 11.9160797831
mfsp 200 50 200 11 34.79 11.9226162893

Table 1: Comparative Evaluation of IMI , ICC , Icf , and IW with wn = 1
n . For Icf , the results are either represented as the value

or in the form of conflict vector 〈1, 1, · · · , 1〉n where n denotes the length of a conflict vector. Note that once ICC(K) = 1, the
conflict vector of K will be 〈1, 1, · · · , 1〉|IMI(K)|, which can be directly used for ranking KBs.

Thimm 2016).

Inconsistency measures based on a Shapley value are an-
other alternative that exploits existing inconsistency measures
to define a coalition-based game and then use the Shapley
value to analyze the amount of inconsistency that can be im-
puted to each formula in a given KB (Hunter and Konieczny
2010). Recently, based on logical argumentation theory, an-
other family of inconsistency measures for propositional
logic has been proposed (Raddaoui 2015). Conspicuously,
it is hardly possible to have a complete comparison of the
existing measures. One way to categorize the existing metrics
is with respect to their dependence on syntax or semantics.
Semantic-based measures aim to compute the proportion of
the language that is affected by the inconsistency. The incon-
sistency measures belonging to this class are often based on
some paraconsistent semantics and, thus, syntax independent,
because we can still find paraconsistent models for incon-
sistent KBs. Whilst, syntax-based approaches are concerned
with the minimal number of formulas that cause inconsis-
tencies. An overview of inconsistency measures for classical
logics can be found in (Grant and Hunter 2011).

There is also related work on inconsistency measure-
ment for quantitative logics. In particular, several works
have extended existing inconsistency measures for classi-
cal frameworks to the probabilistic setting and investigates
their properties. One can quote for example the family of
inconsistency metrics, proposed by (Picado-Muiño 2011;
Thimm 2013), based on the quantification of the minimal
adjustments in the degrees of certainty (i.e., probabilities)
of the statements necessary to make the KB consistent. In
(Rodder and Xu 2001), another inconsistency measure for
probabilistic conditional logic is proposed. It is based on
generalized divergence which is a specific distance for proba-
bility functions.

Conclusion and Future Work
In this paper, based on the MIS partition, we have first pre-
sented an original framework for defining a family of in-
consistency measures of KBs which encompasses several
well-known measures as specific cases. Then, we simplified
the framework to get a parameter-free measure which keeps
a desired property in ranking inconsistent KBs. Moreover,
the computational aspects of these new measures and of an
existing lower bound of all standard measures have been ex-
plored using a MinCostSAT based encoding which enables
the use of efficient SAT solvers. We have implemented the
algorithms and tested them over real-world datasets. The
preliminary but encouraging experimental results highlight
that the new inconsistency measures can better distinguish
different KBs by their conflict degrees in comparison to two
well-known inconsistency metrics.

As future work, we plan to conduct further experimental
validations of our proposed framework on application do-
mains where inconsistency measure would be very helpful.
Such domains include belief merging, argumentation and
heterogeneous source integration and management.
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