
On Referring Expressions in Query Answering
over First Order Knowledge Bases

Alexander Borgida
Department of Computer Science

Rutgers University, New Brunswick, USA
borgida@cs.rutgers.edu

David Toman
Cheriton School of Computer Science

University of Waterloo, Canada
david@uwaterloo.ca

Grant Weddell
Cheriton School of Computer Science

University of Waterloo, Canada
gweddell@uwaterloo.ca

Abstract

A referring expression in linguistics is any noun phrase iden-
tifying an object in a way that will be useful to interlocutors.
In the context of a query over a first order knowledge base K,
constant symbols occurring in K are the artifacts usually used
as referring expressions in certain answers to the query. In this
paper, we begin to explore how this can be usefully extended
by allowing a class of more general formulas, called singular
referring expressions, to replace constants in this role. In par-
ticular, we lay a foundation for admitting singular referring
expressions in certain answer computation for queries over K.
An integral part of this foundation are characterization theo-
rems for identification properties of singular referring expres-
sions for queries annotated with a domain specific language
for referring concept types. Finally, we apply this framework
in the context of tractable description logic dialects, showing
how identification properties can be determined at compile-
time for conjunctive queries, and how off-the-shelf conjunc-
tive query evaluation for these dialects can be used in query
evaluations, preserving, in all cases, underlying tractability.

1. Introduction and Motivation
Query answering in logic-based approaches to data and
knowledge bases has traditionally been viewed as finding
constant names, appearing in the knowledge-base, which
can be substituted for the variables of the query. More for-
mally, a query q(x1, . . . , xn) is viewed as a formula with
free variables x1, . . . , xn and, if the knowledge-base K con-
tains individual constant names IN, query answering con-
sists of computing the set { (a1, . . . , an) | ai ∈ IN,K |=
q(a1/x1, . . . , ak/xk) }. We believe that in a number of cir-
cumstances this is less than ideal.

(1) In object-based KBMSs (including Object-Relational,
XML and Object-Oriented DBMSs, as well as DLs with
UNA), all known individual objects must have unique
(internal) distinguishing identifiers. However, these iden-
tifiers are often insufficient to allow users to figure out
what real-world object they refer to, especially for large
KBs. For example, system generated ref expressions in
object-oriented databases (Silberschatz, Korth, and Sudar-
shan 2005) and blank node identifiers in RDF are se-
mantically opaque to end-users. A specific example of

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this are identifiers that individual authors or the sys-
tem must invent in community-developed ontologies such
as Freebase (Bollacker et al. 2008). There, for exam-
ple, the id of the “Synchronicity” album by the Police
is "/guid/9202a8c04000641f8000000002f9e349" (as
of April, 2015.)

(2) In Relational DBMSs, the above problem is suppos-
edly avoided by using “external keys”: tuples of attributes
whose values (strings, integers, ...) uniquely identify rows
of tables. Problem (1) above will then arise in OBDA access
to legacy relational systems, since the ontology will surely
be object-based.

Even for standard databases, universally unique keys are
often impossible to find (e.g., newly arrived foreign students
do not have ssn#), though they may work for subsets of in-
dividuals, such as those returned by queries. For this rea-
son, many tables use as keys columns labeled with suffix
_ID (e.g., emp ID), supported by “auto-increment” fea-
ture available in all modern RDBMS. Such identifiers will
further obscure the meaning of answers, especially when
OBDA is used to merge databases.

(3) Additional problems for finding identifying at-
tributes for classes of objects arise in conceptual model-
ing. For example, consider all cases where Extended Entity-
Relationship modeling creates a new heterogeneous entity
set by “generalization” (Elmasri and Navathe 2000). For ex-
ample, we want to generalize Person (with key ssn#) and
Company (with key tickerSymbol) to LegalEntity, which can
own things. In EER modeling, such a situation forces the
introduction of a new, artificial attribute as a key, with the
attendant problems. Yet when we retrieve a set of legal enti-
ties, we can reference them in different, more natural ways,
depending on which subclass they belong to.

(4) The next example illustrates a subtler version of the
above: consider a situation where Publication is a class, with
subclass EditedCollection identified by isbn#, while Jour-
nal is in turn a subclass of EditedCollection, identified by
title and publisher. When a query returns instances of Pub-
lication, there would be a natural preference for journals to
be described using more meaningful (title, publisher) pairs
over isbn# for edited collections.

(5) Many kinds of KBMSs, including those based on DLs
and FOL, allow one to describe situations where objects

Proceedings, Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016)

319

can be inferred to exist, without having an explicit (inter-
nal) identifier. For example, if Fred is a person, then he has
a mother and possibly a spouse, who are also persons. Nor-
mally, such objects cannot be returned in the list of answers
unless they are named constants. This is all the more un-
pleasant if we can capture information about this unknown
person, such as the fact that Fred’s mother or spouse has
a particular age, and a query searches for people of some
age. Yet it is common in human communication to identify
objects by their relationship to other known objects. For ex-
ample, “Fred’s mother” is a perfectly reasonable referring
description of someone who is a person.

The standard response to some of the above problems
would be to have the user modify the query by finding the
appropriate values for identifying attributes (external keys).
For example, instead of the query q1(x) : −Journal(x) , the
programmer would be expected to write
q2(t, p) : −Journal(x), hasTitle(x, t), hasPublisher(x, p).

This approach has several problems: (i) In the enu-
meration of answers to q2, the relationship between the
original object of interest, x, and its descriptors, t and
p, is lost; something akin to “objects x with title
= t and publisher = p” would be more desirable.
(ii) The above reformulation cannot be done using reg-
ular conjunctive queries in the case of item 4 above,
because the answer for publications that are not journals
should be identified by isbn#, for which the query is
q5(ib) : −EditedCollection(x),¬Journal(x), isbn(x, ib)
which is not a conjunctive query, since it includes a nega-
tion. (iii) From the point of view of software engineering,
the task of choosing these identifying references is mentally
distinct from the task of selecting the objects of interest
to begin with. Both SQL’s select clause, and XQuery’s
return clause are examples of separating these two aspects
in existing query languages.

This paper is then dedicated to the task of proposing a
first solution to (some of) the issues raised by providing
“singular referring expressions” in the place of individuals
returned by queries, in the context of FOL KBs, and then
specialize this to conjunctive queries for some “lightweight”
dialects of description logic (DL). (In general, referring ex-
pressions will correspond to formulas with a single free vari-
able; in DLs these correspond naturally to concepts, if one
also admits nominals.)

Our plan and contributions are as follows: We will start
by proposing a language for referring expressions and types.
This language will generalize the usual case of presenting
answers to queries as individual names to situations that: (i)
allow object identification by key (paths), possibly within
the limited context of some concept instances; this will also
support “descriptive answers”. (ii) deal with heterogeneous
answer sets, such as LegalEntity; and (iii) allow preferen-
tial choice of referring expressions, as for EditedCollection.
Ultimately, we will use this language to define answers for
conjunctive queries over DL knowledge bases. In our case,
the query head will annotate each variable x returned with a
referring expression type; as an answer, this will be instanti-
ated to a referring expression in the form of a formula with a
single free variable x; such formulas will eventually bottom

out to individual constants.
Because we wish to generalize the usual case of constant

names in answers, we desire to know when referring ex-
pression types always lead to referring expression formu-
las in answers that are singular expressions, i.e., ones which
uniquely identify one individual.1 Unfortunately, without
knowing anything else, it is impossible, for example, to tell
whether an expression such as “object with p-value 3” will
be singular or not: if p is a key, then yes, but not otherwise.
Therefore, we need to use information from the ontology to
verify the singularity of a referring concept type. This can
be extended by also examining the body of the query (and
hence learning more about what kinds of values answer vari-
ables may take).

The paper is organized as follows. In Section 2, we in-
troduce our referring expression type language within the
general framework of FOL, and consider how compile-time
analysis using a given ontology and query body can ensure
the above-mentioned singularity property. The section then
considers a stronger notion of singularity that ensures syn-
tactically distinct singular expressions for a query variable
must always denote distinct individuals. Note that this pro-
vides a basis for counting, that is, for aggregate queries that
must compute at least a minimum number of distinct an-
swers. Section 2 ends with a formulation of query evalua-
tion in this general framework in terms of oracles capable of
“traditional” query answering with constant names. In Sec-
tion 3, we apply this general framework to a pair of tractable
DL dialects, which have efficient algorithms for reasoning
about logical consequence and for conjunctive query evalu-
ation. The first is a DL-Lite dialect with path-based identifi-
cation constraints (Calvanese et al. 2008a), and the second a
feature-based DL dialect called CFD ∀

nc that includes a ca-
pability for capturing a variety of functional dependencies
based on feature paths (Toman and Weddell 2014a). In both
cases, we show how tractability is preserved in our more
general setting: of compile time type checking for our refer-
ring expression type language, and of run time conjunctive
query evaluation. Our summary comments and conclusions
then follow in Section 4.

2. Referring Expressions and Certain Answers

We assume a knowledge base corresponds to a first-order
theory over a common universal signature, and that this sig-
nature consists, in turn, of constant symbols and of unary
and binary predicate symbols. Also, we write D to denote
a distinguished subset of the constants and assume every
knowledge base includes the sentences a �= b for every dis-
tinct a and b occurring in D. Intuitively, D elements will usu-
ally correspond to elements in so-called concrete domains,

1Researchers interested in so-called co-operative query answer-
ing have considered returning predicates describing sets of individ-
uals (e.g., (Bergamaschi, Sartori, and Vincini 1995; Borgida 1995;
Imielinski 1987; Motro 1994)), where an answer to the query “Who
can take the Data Structures course?” might include, “Anyone who
has passed the Intro to Computer Science course with at least a C
grade”. Please note that we are not considering that problem in this
paper.

320

such as integers or strings, and other objects with the unique
name assumption (UNA) which we are willing to see in
answers. The standard Tarskian semantics is also assumed,
and, for sentences, is defined with respect to interpretations
I = (�, (·)I).

In our general setting, a query corresponds to an arbi-
trary well-formed formula ψ over the common signature; we
write ψ{x1, . . . , xk} to also indicate the free variables.

In current practice, the space of possible answers to
ψ over a given knowledge base K will correspond to
a substitution (x1/a1, . . . , xk/ak) that maps each free
variable of ψ to a constant symbol. Also recall that
(x1/a1, . . . , xk/ak) qualifies as a certain answer when K |=
ψ(x1/a1, . . . , xk/ak). Our objective, however, is to study
how more general well-formed formulas φ over the com-
mon signature can replace the individual constants ai in sub-
stitutions thus serving the role of singular referring expres-
sions, still identifying individuals. We accommodate this by
the following generalization of what constitutes a space of
possible answers, of certain answers, and of when certain
answers are also singular:

Definition 1 (Certain and Singular Answers)
A referring expression is a formula φ with a single free vari-
able over the common signature. The space of possible R-
answers for a given query ψ{x1, . . . , xk} is given by an R-
substitution θ of the form

{x1 �→ φ1{x1}, . . . , xk �→ φk{xk}}. (1)

We write Cθ as shorthand for
∧

0<i≤k φi{xi} (where the un-
derlying query will be clear from context).
Let K be a consistent knowledge base. Then θ is a certain
R-answer with respect to K iff it satisfies the following two
conditions:

K |= ∃x1, . . . , xk : (Cθ ∧ ψ) (2)

and
K |= ∀x1, . . . , xk : (Cθ → ψ). (3)

θ is singular iff it is a certain R-answer2 and satisfies a third
condition for each 0 < j ≤ k:

K |= ∀x1, . . . , xj−1, y1, y2, xj+1, . . . , xk :
((Cθ ∧ ψ)(xj/y1) ∧ (Cθ ∧ ψ)(xj/y2)) → (y1 = y2).

�

For example, in current practice, each referring expression
φi in (1) has the form “xi = ai” for some constant symbol
ai. It can be paraphrased as “the object equal to ai”. A more
complex referring expression might be hasAge(xi, 25) or
∃y : hasFather(xi, y) ∧ hasLastName(y, “Castor”),
which would be paraphrased as “the object whose age is
25” and “the object for whom the last name of the father
is Castor”, respectively. Of course there may be several such
objects, so “the” should be “an”.

2Henceforth we will use “certain answer” for “certain R-
answer” in the rest of the paper.

A possible answer/R-substitution is really just a syntactic
notion. Conditions (2) and (3) tie it to the meaning of an-
swering query ψ in knowledge base K, in particular, (3) dis-
allows those R-substitutions which do not satisfy the query,
while (2) eliminates the possibility that (3) is trivially true
because the antecedent is false, in particular, the possibility
that ∃xi : φ{xi} is false for some i.

Note that condition (2) alone will ensure that, as expected,
K |= ψ(x1/a1, . . . , xk/ak) in the special cases in which
each of the φi have the form “xi = ai”.

Now consider a query ψ{x} and R-substitution
{x �→ Person(x)}. If K consists of the axiom
∀x : (Person(x) → ψ{x}), then all persons are an-
swers to the query in the context of K, while (2), i.e., the
sentence K |= ∃x : Person(x) ∧ ψ, guarantees that there
is at least one answer of this form. Observe in this case,
however, that Person(x) is not likely to satisfy the final
singularity condition on certain R-answers, and is therefore
not likely to uniquely identify an individual, a “key” issue
that is our main focus.

We address this issue by developing a framework in which
the variety of referring expressions occurring in certain an-
swers may be controlled by attaching so-called referring ex-
pression types to the free variables of a query. This is neces-
sary in order to obtain feasible cases for the problem of com-
puting singular R-answers, and will also allow us to charac-
terize compile-time identification properties of such typed
queries with respect to knowledge bases that consist of an
ontology or a mediated database schema, that is, knowledge
bases K in which ground data is left out. For the remainder
of the paper, we write K to refer to such cases, and write
K ∪ K′ when referring to a full knowledge base consisting
of an ontological component K and a data component K′.

Definition 2 (Referring Expression Types)
A referring expression type Rt is a recursive pattern that
starts from individual names (denoted by “?”’ in the gram-
mar below) and uses paths, conjunctions and conditionals to
build more complex patterns for allowed referring expres-
sions. For example, the pattern Person → (name.last =
{?} ∧ phone# = {?} indicates that an object x in class
Person may be identified by a pair of constants s and b
such that ∃y.(name(x, y) ∧ last(y, s)) ∧ phone#(x, p). In
the grammar below Ai and Rj denote unary and binary pred-
icate symbols, respectively:

Pd ::= id | R1. · · · .Rm /* paths */

Cs ::= {?} | 〈?〉 /* individual matcher */

T ::= {A1, . . . , An} /* conjoined concepts */

Rt ::= Pd = Cs | Rt1 ∧Rt2 | T → Rt | Rt1;Rt2
A referring expression type Rt is homogeneous if it is free
of any occurrence of the constructor “;”, which expresses
preference in descriptions.
We define the semantics of Rt with respect to an ontologi-
cal knowledge base K. In particular, we write RE(Rt ,K) to
associate a set of referring expressions with the free variable
x to each Rt , in the context of K. In defining RE(Rt ,K)

321

and for the remainder of the paper, we assume the following
notation for various well-formed formulas:

• T(x) to denote
∧

A∈T A(x);

• Pd(x, y) to denote x = y when Pd = “ id ”, and

∃z1, . . . , zn : (R1(x, z1)∧(
∧

1<i≤n

Ri(zi−1, zi))∧zn = y)

when Pd = “R1. · · · .Rm”; and

• for homogeneous Rt , Rt(x, y) to denote Pd(x, y) when
Rt = “Pd = Cs ”, Rt1(x, y) ∧ Rt2(x, y) when Rt =
“Rt1 ∧Rt2 ”, and T(x) ∧ Rt1(x, y) when Rt = “ T →
Rt1 ”.

In the following, we assume [Cs] denotes all constant sym-
bols when Cs = “{?}”, and all constants in D when Cs =
“〈?〉”. We also use Si as shorthand for RE(Rt i,K).
RE(Rt ,K) is inductively defined as follows:

1. RE(Pd = Cs,K) =
{∃y : (Pd(x, y) ∧ y = a) | a ∈ [Cs]}3

2. RE(Rt1 ∧Rt2,K) = {φ1 ∧ φ2 | φ1 ∈ S1 ∧ φ2 ∈ S2};

3. RE(T → Rt1,K) = {T(x) ∧ φ | φ ∈ S1}; and

4. RE(Rt1;Rt2,K) =
S1 ∪ {φ2 ∈ S2 | ¬∃φ1 ∈ S1 s.t. K |= ∀x : (φ1 ≡ φ2)}.

�

Definition 3 (Typed Queries)
Let ψ{x1, . . . , xk} be a query. A head for ψ, written HD(ψ),
associates a referring expression type with each free variable
of ψ:

{x1 : Rt1, . . . , xk : Rtk}.
We say that a query is typed if it has a head. A certain an-
swer θ for a typed query with respect to a consistent knowl-
edge base K must also satisfy the condition that φ{xi/x} ∈
RE(Rt i,K) whenever (xi �→ φ{xi}) ∈ θ. �

Before proceeding any further, we illustrate the use of refer-
ring concepts/types to resolve the issues raised in the intro-
duction. A conjunctive query ψ with a head HD(ψ) will be
written in an SQL-like style “select HD(ψ) where ψ”:

Q.1 (expressing the current case) “Places in which journals
are published”

select x2 : {?}
where ∃x1 : Journal(x1) ∧ publishedIn(x1, x2)

Q.2 (reference via single key) “The ssn# of any person with
phone 12345567”

select x : ssn# = {?}
where Person(x) ∧ phone#(x, 1234567)

Q.3 (multiple attribute key) “The title and publisher of any
journals”

select x : title = {?} ∧ publishedBy = {?}
where Journal(x)

3When Pd is id, we abbreviate x = y ∧ y = a as a in answers.

Q.4 (choice of identification in heterogeneous set) “Any
legal entity”

select x : Person → ssn# = {?} ;
Company → tickerSymbol = {?}

where LegalEntity(x)

For this query, a certain answer might be

{x �→ Person(x) ∧ ssn#(x, 7654)}

while another might be

{x �→ Company(x) ∧ tickerSymbol(x, “IBM”)}.

Q.5 (preferred identification) “Any publication, identified
by its most specific identifier, when available.”

select x : Journal → (title = {?} ∧ publisher = {?});
EditedCollection → isbn# = {?} ; {?}

where Publication(x)

Q.6 (multiple forms of reference, including intensional)
“Any person”

select x : {?} ; spouseOf = {?} ;
motherOf = {?} ; fatherOf = {?}

where Person(x)

In this case, a certain answer such as

{x �→ fatherOf = Fred}

is a particularly good illustration of answers to queries
that describe individuals whose identity is not known but
can be inferred to exist and have the property of being a
person, that is, of answers that would not be returned in
the standard setting.

These examples also illustrate the need to determine at
compile-time that certain answers for a query should always
uniquely identify individuals. In particular, one should be
assured, regardless of the data component of a knowledge
base, that people are uniquely identified by ssn# values in
query (2), that journals are uniquely identified by a combina-
tion of title values and publishedBy values in query (3), and
so on. We formally characterize this requirement in terms of
the ontological component K of a knowledge base by link-
ing the notion of a certain answer with the stronger notion
of a singular answer, as we have defined them:

Definition 4 (Weak Identification)
Let K be a consistent knowledge base and ψ a typed query.
Then HD(ψ) is weakly identifying for ψ with respect to K
iff, for all K′ consistent with K, every certain answer θ of ψ
with respect to K ∪ K′ is also singular. �

Note that this formulation of weak identification is not algo-
rithmic. We now address this issue, starting with the intro-
duction of a normal form for referring expression types. The
normal form will lead to a formulation of weak identifica-
tion as an inference problem in FOL. (Later on in Section 3,
we show how this problem reduces to inference problems
and knowledge base consistency checks for DL dialects and
conjunctive queries.)

322

Lemma 5 (Normal Form)
For every referring expression type Rt , there is an equivalent
normal form

Rt1; · · · ;Rtn,
denoted NORM(Rt), that consists of tagged record types Rt i
that are, in turn, homogeneous referring concept types of the
form

Ti → (Pd i,1 = Csi,1) ∧ · · · ∧ (Pd i,mi
= Csi,mi

).

Here, the “;” referring type constructor is assumed to be left
associative, and equivalent means that, for any knowledge
base K, RE(Rt ,K) coincides with RE(NORM(Rt),K).
A typed query ψ is normalized whenever (x : Rt) ∈ HD(ψ)
implies Rt is in normal form.

Proof (sketch): By associativity of “;” and by a straight-
forward induction involving the application of the following
equivalence preserving rewrites.

Pd = Cs � { } → (Pd = Cs)
(T → Rt1) ∧ Rt2 � T → (Rt1 ∧Rt2)
Rt1 ∧(T → Rt2) � T → (Rt1 ∧Rt2)
(Rt1 ;Rt2) ∧ Rt3 � (Rt1 ∧Rt3) ; (Rt2 ∧Rt3)
Rt1 ∧ (Rt2 ;Rt3) � (Rt1 ∧Rt2) ; (Rt1 ∧Rt3)
T → (Rt1 ;Rt2) � (T → Rt1) ; (T → Rt2)

T1 → (T2 → Rt) � (T1 ∪ T2) → Rt
�

Thus, a normalized typed query will associate a sequence of
tagged records Rt i,1; · · · ;Rt i,ni

with each free variable xi

in a query head. In order to deal only with “homogeneous
queries” in some proofs, we want to consider all possible
combinations of homogeneous types, one for each variable
xi.

Definition 6 (Induced Homogeneous Heads)
Let ψ{x1, . . . , xk} be a normalized typed query, where
HD(ψ) = {x1 : Rt1, . . . , xk : Rtk}, in which each Rt i,
for each 0 < i ≤ k, is given by

Rt i,1; · · · ;Rt i,ni
,

and, in turn, each Rt i,j , 0 < i ≤ k, 0 < j ≤ ni, by

Ti,j → (Pd i,j,1 = Csi,j,1 ∧ · · · ∧ Pd i,j,mi,j
= Csi,j,mi,j

).

For any k-tuple 〈j1, . . . , jk〉 for which 0 < ji ≤ ni, we write
Hj1,...,jk (where ψ will be clear from context) to denote a
homogeneous head:

{x1 : Rt1,j1 , . . . , xk : Rtk,jk}.
We write Hj′1,...,j

′
k
< Hj1,...,jk for a pair of distinct homoge-

neous heads whenever j′i ≤ ji, for 0 < i ≤ k. �

To characterize weak identification in terms of KB reason-
ing, it will be useful to have the following lemma:

Lemma 7 Let K be a consistent knowledge base, ψ a typed
query, and θ an R-substitution for ψ of the form (1) above.
Then if

K∪{(∃x1, . . . , xk : Cθ∧ψ)∧(∀x1, . . . , xk : Cθ → ψ)} (4)

is consistent then there is a K′ consisting of ground liter-
als only such that θ is a certain answer of ψ with respect
to K ∪ K′. In addition, K′ can be finite whenever ψ and
φi are range-restricted formulas (Abiteboul, Hull, and Vianu
1995), and can consist of positive ground atoms only when-
ever ψ and φi are positive.

Proof (sketch): Literals in K′ fix part of the model of (4)
that makes Cθ ∧ ψ true. Note that, in general, we may need
a constant for every element of the domain of such a model.
However, for range-restricted formulas we only need con-
stants that correspond to Skolem constants originating from
ψ and φi. For positive queries, due to their monotonicity, it
is not necessary to use any negated literals. �

The lemma tells us that all answer R-substitutions that are
consistent with K w.r.t. a typed ψ can become certain an-
swers to ψ. This property is essential to proving complete-
ness of our characterization theorem below.

The following theorem characterizes weak identification
in terms of logical implication with respect to the ontological
component K of our KB. Note that the condition must take
into account the situation in which R-answers for a more
preferred head completely supersede those for a less pre-
ferred head (e.g., due to closure of predicates imposed by
K). For heads that are not completely superseded by more
preferred heads, singularity relies on a functional-like con-
straint holding in models of K.

Theorem 8 (Characterizing Weak Identification)
Let K be a consistent knowledge base and ψ{x1, . . . , xk} a
normalized typed query, where HD(ψ) is as given in Defini-
tion 6. Then HD(ψ) is weakly identifying for ψ with respect
to K iff, for every homogeneous head Hj1,...,jk and every
0 < p ≤ k, it holds that

K |= ∀y1, . . . , yk, z1, . . . zk : (

ψ(x1/y1, . . . , xk/yk) ∧ ψ(x1/z1, . . . , xk/zk)

∧ ¬
∨

Hj′
1
,...,j′

k
<Hj1,...,jk

C(Hj′1,...,j
′
k
)

∧ C(Hj1,...,jk)

∧
∧

0<q≤k;q �=p(yq = zq))

→ (yp = zp)

where C(Hj1,...,jk) denotes
∧

0<i≤k(Ti,ji(yi) ∧ Ti,ji(zi)

∧
∧

0<l≤mi,ji
(∃w : Pd i,ji,l(yi, w) ∧ Pd i,ji,l(zi, w))).

Proof (sketch): Consider a head Hj1,...,jk . Whenever the
logical implication above does not hold we can find a model
of K and a valuation for y1, . . . , yk and z1, . . . zk that dis-
agree on the value of yp and zp. Due to Lemma 7 and the
observation that none of the preferred heads apply to this
valuation we can create K′ such that in K ∪ K′ there will
be a certain answer whose p-th component is not singular
since it refers to the distinct values assigned to yp and zp.
Conversely, non-singularity of any component of an certain
answer immediately yields a counterexample to the logical
implication required to hold by the theorem. �

323

The notion of weak identification satisfies what we believe
are the minimum requirements for a referring expression in
a certain answer: that the expression will hold of exactly one
individual for any interpretation of a knowledge base. Recall
from our introductory comments, however, that a stronger
notion of identification is also desirable, one in which it be-
comes possible to reason about equality between differing
referring expressions for the same variable when comparing
certain answers. To reiterate, some capacity to reason about
equality is necessary, for example, in aggregate queries. We
formally characterize this stronger notion of identification as
follows:

Definition 9 (Strong Identification) Let K be a consistent
knowledge base and ψ{x1, . . . , xk} a typed query. Then
HD(ψ) is strongly identifying for ψ with respect to K iff it
is weakly identifying, and, for all K′ consistent with K and
every pair of certain answers θ1 and θ2 to ψ with respect to
K ∪ K′ and every 0 < i ≤ k,

θ1(xi) is syntactically distinct from θ2(xi) (5)
implies

K ∪ K′ |= ¬∃xi : (θ1(xi) ∧ θ2(xi))

(assuming θ(x) denotes φ for each (x �→ φ) ∈ θ). �

Note that condition (5) can be easily determined in our
framework. In particular, introducing set notation for con-
junctions in a straightforward manner reduces the condition
to a simple syntactic check for set equality. Regardless, as
with weak identification, this definition of strong identifica-
tion is also not algorithmic, and there remains the problem
of finding an equivalent formulation as inference problems
in FOL. The following provides a sufficient condition:

Theorem 10 (Recognizing Strong Identification)
Let K be a consistent knowledge base and ψ{x1, . . . , xk} a
normalized typed query, where HD(ψ) is as given in Defini-
tion 6. Then HD(ψ) is strongly identifying for ψ with respect
to K if it is weakly identifying and satisfies the following
two conditions for every 0 < i ≤ k:

1. Csi,j,k = “〈?〉”, for every 0 < j ≤ ni and 0 < k ≤ mi,j ,
and

2. K |= ¬∃x : (Ti,j(x) ∧ Ti,l(x)), for every 0 < j, l ≤ ni

when j �= l.

Proof (sketch): Consider two certain answers θ1 and θ2
of ψ such that θ1(xi) is syntactically distinct from θ2(xi).
Due to (2) the answers cannot originate from different (ho-
mogeneous) heads in NORM(HD(ψ)). Then, however, the
answers must differ in one of their path components, say
Csi,j,k = a1 in θ1 and Csi,j,k = a2 in θ2. Thus, HD(ψ)
being weakly identifying and (a1)

I �= (a2)
I due to (1)

contradicts the possibility of finding a witness for xi in
K ∪ K′ |= ∃xi : θ1(xi) ∧ θ2(xi). �

Observe that condition (1) is a simple syntactic check, and
that, for the tractable DL dialects considered later on, con-
dition (2) translates as a check for knowledge base consis-
tency.

Query Answering with Referring Expressions

We now present a characterization of query answering in our
framework in terms of an oracle. In particular, we assume
the oracle can decide, given some query ψ{x1, . . . , xk},
knowledge base K ∪ K′ and constants ai, 0 < i ≤ k, if
K ∪ K′ |= ψ(x1/a1, . . . , xk/ak), written

ANS((x1/a1, . . . , xk/ak), ψ,K ∪ K′).
Recall that the equivalent R-substitution to the substitution
(x1/a1, . . . , xk/xk) in our framework is given by

{x1 �→ (x1 = a1), . . . , xk �→ (xk = ak)}.
This characterization, given by Theorem 13 below, relies on
extracting so-called induced queries from ψ, and on a com-
pletion of a given knowledge base. In the former case, we
essentially “lift” the notion of induced homogeneous heads
given by Definition 6 above to define queries for which all
referring expressions are tagged record types that have addi-
tional free variables and conditions for Pd -paths. The com-
pletion consists of additional sentences that introduce fresh
constant symbols, when necessary, as a way of ensuring sat-
isfaction of preference conditions in the referring expression
types in HD(ψ).

Definition 11 (Induced Homogeneous Queries)
Let ψ{x1, . . . , xk} be a normalized typed query. For every
homogeneous head Hj1,...,jk given by

{x1 : Rt1, . . . , xk : Rtk},
where each Rt i is in turn given by

Ti → (Pd i,1 = Csi,1 ∧ · · · ∧ Pd i,�i = Csi,�i),

we write ψ(Hj1,...,jk) to denote the following query with ad-
ditional free variables xi,j , for 0 < i ≤ k and 0 < j ≤ �i:

ψ ∧
∧

0<i≤k

(Ti(xi) ∧
∧

0<j≤�i

Pd i,j(xi, xi,j)).

�

Definition 12 (Knowledge Base Completion)
Let K ∪ K′ be a consistent knowledge base, and
ψ{x1, . . . , xn} a normalized typed query such that ψ is
weakly identifying for ψ in K. We define the completion
of K ∪ K′ relative to ψ, written COMPL(K ∪ K′, ψ), as the
knowledge base K′′ obtained by an exhaustive application
of the following rule to an initially empty K′′:
if there exists a homogeneous head Hj1,...,jk with tagged
record type

T → (Pd1 = Cs1 ∧ · · · ∧ Pd � = Cs�)

and constants aj occurring in K ∪ K′ for which

(K ∪ K′ ∪ K′′) |= ∃x :
∧

0<i≤�

∃y : Pd i(x, y) ∧ (y = ai)

but where there is no constant b occurring in K ∪ K′ ∪ K′′
for which

(K ∪ K′ ∪ K′′) |=
∧

0<i≤�

∃y : Pd i(b, y) ∧ (y = ai),

then add
∧

0<i≤� ∃y : Pd i(b, y) ∧ y = ai to K′′, where
constant b is fresh and does not occur in D.

324

Induced homogeneous queries and the completion of a
knowledge base now enable us to present our final result of
this section, a characterization of query answering that re-
duces the task to an oracle for “standard” query answering
for certain answers over a knowledge base:

Theorem 13 (Query Evaluation)
Let K ∪ K′ be a consistent knowledge base, and
ψ{x1, . . . , xn} a normalized typed query such that ψ is
weakly identifying for ψ in K. Also assume K′′ is given by
COMPL(K∪K′, ψ). Then θ is a certain answer for ψ with re-
spect to K∪K′ iff there is some homogeneous head Hj1,...,jk
for ψ and (appealing to notation used in Definition 11 above)
θ has the form⋃
0<i≤k

{xi �→ Ti(xi)∧
∧

0<j≤�i

∃y : Pd i,j(xi, y)∧(y = ai,j)}

in which the ai,j are constant symbols occurring in K ∪ K′
and, if Csi,j = “〈?〉”, also in D, and for which there ex-
ists constants bi, 0 < i ≤ k, for which the following two
conditions hold:

1. ANS(s1, ψ(Hj1,...,jk),K ∪ K′ ∪ K′′) returns true for the
substitution s1 given by

(x1/b1, . . . , xk/bk, x1,1/a1,1, . . . , xk,�k/ak,�k),

and,

2. there is no Hj′1,...,j
′
k
< Hj1,...,jk and substitution s2 with

respective forms

{x1 : Rt ′1, . . . , xk : Rt ′k},
in which each Rt ′i is in turn given by

T′
i → (Pd ′

i,1 = Cs ′i,1 ∧ · · · ∧ Pd ′
i,�i = Cs ′i,�i),

and

(x1/b1, . . . , xk/bk, x1,1/a
′
1,1, . . . , xk,�k/a

′
k,�k

),

in which the a′i,j are constant symbols occurring in K∪K′,
for which ANS(s2, ψ(Hj′1,...,j

′
k
),K∪K′∪K′′) returns true.

Proof (sketch): Whenever conditions (1) and (2) hold the
constants b1, . . . , bk denote a tuple of objects that are re-
ferred to by θ. Conversely, whenever θ is a certain answer,
due to the completion of K there must be (possibly new)
constant symbols b1, . . . , bk such that (1) holds. Moreover,
for θ to be a certain answer, there cannot be another head
that, for the same b1, . . . , bk also produces an R-answer and
dominates the head corresponding to θ. Hence (2) holds. �

3. Description Logics

The Description Logics we will consider are subsets of FOL
where the unary and binary predicates, called concepts and
roles, are constructed from atomic names using a variety
concept and role constructors. The general goal is to find lan-
guages (sets of constructors) that lead to good computational
properties for problems like consistency checking or query
answering. The syntax of DLs eliminates explicit FOL vari-
ables, so we use translation functions τx(C) and τx,y(R)

to express the semantics of various constructors by recon-
structing the corresponding FOL formulas. These bottom
out at atomic concepts/roles like Person and hasSpouse,
for which τx(Person) = Person(x) and τx,y(hasSpouse)
= hasSpouse(x, y).

DL KBs are separated into two parts. The first part is
called the terminology/ontology (TBox), and has generic ax-
ioms such as inclusion dependencies of the form E1 � E2.
These translate to FOL axioms ∀x.τx(E1) → τx(E2) in
which the Ei are concepts. The second part is called the as-
sertion box (ABox), and provides bindings of concept and
role variables to individual constants to describe the state of
the world, much like a database.

We consider the application of the material developed in
Section 2 to KB’s described using two specific DLs, queried
using conjunctive queries. (This is the standard problem of
ontology-based data access for DLs.)

We do so by taking the FOL translation of the TBox as
the ontological K, the FOL translation of the ABox as the
database, conjunctive queries with heads, and then show
how the decision problems in Theorems 8, 10 and 13 can
be translated back to decision problems over the DLs, for
which there are algorithms of known good complexity. To
continue with the spirit of OBDA, R-answers x �→ φ(x)
will be represented as x �→ Cφ, where Cφ is a DL concept,
thereby eliminating the free variables in answers.

Description Logic DL-LiteFcore(idc)
We introduce DL-LiteFcore(idc), a member of DL-Lite fam-
ily for which positive existential query answering is in AC0

for data complexity (under the unique name assumption).
For more details and the relation to other DL-Lite logics,
we refer the interested reader to (Calvanese et al. 2008a).

Definition 14 (DL-LiteFcore(idc) Knowledge Bases)
DL-LiteFcore(idc) uses basic roles R, which are either
atomic roles P or their inverses P−, with meaning
τx,y(P−) = τy,x(P). Basic concepts B are either unary
predicates A or expressions ∃R, where R is a basic role,
and τx(∃R)=∃y.τx,y(R).
TBoxes in DL-LiteFcore(idc) have inclusion axioms involv-
ing basic concepts, where the subsumer may be negated.
In addition, of central interest to us are (i) functionality
axioms (funct R) and (ii) path-based identification asser-
tions/constraints (id B π1, ..., πk)), where B is a basic con-
cept, and each path πi is of the form

π ::= R | π ◦ π
for basic roles R.4 The semantics of (funct R) is given by
the assertion

∀u, v, w : τu,v(R) ∧ τu,w(R) → v = w.

The semantics of IdC’s starts with semantics for paths,
which defines composition over binary relations for ◦:

τx,y((π1 ◦ π2)) = ∃z.τx,z(π1) ∧ τz,y(π2).

4The full syntax of paths in (Calvanese et al. 2008b) also allows
for role B?, which is identity over concept B, but we ignore these
here for simplicity.

325

(Observe that π has exactly the same semantics as Pd
in referring expression (types).) Finally, the semantics of
identification constraints, (id B π1, ..., πk), is given by the
following assertion:

∀w,w′ : (τw(B) ∧ τw
′
(B)

∧
∧

0<i≤k(∃z : τw,z(πi) ∧ τw
′,z(πi))) → w = w′.

�

We now extend the syntax DL-LiteFcore(idc) in a natural
manner to enable capturing referring expressions as con-
cepts:

Definition 15 (Referring Expressions in DL-LiteFcore(idc))
The concept constructors for DL-LiteFcore(idc) available to
express referring concepts include the following:

1. atomic concepts A, and concept conjunction �, which al-
low the representation of T = {A1, A2, ...} as the con-
cept “A1 � A2 � ...”, and φ1(x) ∧ φ2(x) as the concept
“φ1 � φ2”;

2. nominals {a}, whose meaning τx({a}) is (x = a); and

3. qualified existential restrictions, ∃π.B, where π is a path,
as introduced above. These capture referring expressions
of the form

∃y : Pd(x, y) ∧ y = a

as concept ∃Pd.{a}. (In the case when Pd = id, this
abbreviates to {a}.) �

To illustrate, consider the two example certain answers to
query Q.4 in the previous section. The referring expressions
in these answers would now be given in a variable-free form
as DL-LiteFcore(idc) concepts, as in

{x �→ Person � ∃ssn#.{7654}}, and

{x �→ Company � ∃tickerSymbol .{“IBM”}}.

Theorem 16 (Weak Identification)
Let T be a DL-LiteFcore(idc) TBox and ψ a typed conjunc-
tive query. Then HD(ψ) is weakly identifying for ψ with
respect to T if and only if, for each homogeneous head in
NORM(HD(ψ)), consisting of

xi : Ti → (Pd i,1 = Csi,1 ∧ · · · ∧ Pd i,�i = Csi,�i),

for 0 < i ≤ k, K = (T ,Ap) is inconsistent for each ABox
Ap (0 < p ≤ k), defined as

Ap = {ψ(x1/a1, . . . , xk/ak), ψ(x1/b1, . . . , xk/bk)}
∪ {Ti(ai), Ti(bi) | 0 < i ≤ k}
∪ {Pd i,j(ai, ci,j),Pd i,j(bi, ci,j) | 0 < i ≤ k, 0 < j ≤ �i}
∪ {A(ap),¬A(bp)}

where ψ(x1/d1, . . . , xk/dk) is a set of ABox assertions cor-
responding to the atoms in the body of conjunctive query ψ
in which answer variables xi were replaced by constants di
and quantified variables by fresh distinct constants, A is a
fresh primitive concept and ai, bi and ci,j distinct constants
except for ai and bi being identical for i �= p.

Proof (sketch): A model for K defined above provides a
counterexample to singularity of HD(ψ). Note that, unlike
in the general FOL case, we do not need to test whether a
more preferred head captures all answers to the head under
consideration, as in DL-LiteFcore(idc) concept/role closure
cannot be expressed. Conversely, if a particular certain an-
swer violated the singularity condition, we could construct
an ABox A that would violate the condition above. Note
that since such an answer exists it must conform to one of
the heads in NORM(HD(ψ)). �

The sufficient conditions for strong identification required
in Theorem 10 can be similarly expressed as a consistency
question in DL-LiteFcore(idc).

Theorem 17 (Query Answering)
Let K = (T ,A) be a DL-LiteFcore(idc) knowledge base and
ψ a typed conjunctive query. Then certain answers can be
computed in AC0 data complexity.

Proof (sketch): It is sufficient to observe that each of the
uses of ANS in the construction in Theorem 13 is with re-
spect to (T ,A′) for A′ a completion of A that depends only
on T and ψ. Applying Theorem 13 completes the proof. �

To prove the above theorem, we reduced the problem to the
general FOL case. However, in the case of description logics
(and logics with the tree model property in general) it is not
difficult to show that the structure of models outside of the
ABox can be restricted to tree shaped structures. In such a
setting, the additional constants bi introduced in the comple-
tion of A can be proxied by already existing named objects
in A, namely those that are the last in A before the path Pd
exits the ABox (as for an b, such object is unique). The full
construction is beyond the limits of this paper.

Description Logic CFD ∀
nc

We now introduce CFD ∀
nc, a member of the CFD family

of description logics that also have tractable reasoning and
query answering. For more details on this dialect, we refer
the reader to (Toman and Weddell 2014a).

Definition 18 (CFD ∀
nc Knowledge Bases)

The syntax of CFD ∀
nc starts with constants a, atomic con-

cepts A, and features f , which are roles that must be to-
tal functions. Paths Pf are either id , denoting identity, or
have the form f1. · · · .fk, and have semantics aligning with
that of a Pd in referring expression types and with π in
DL-LiteFcore(idc).
TBoxes in CFD ∀

nc can have inclusion dependencies resem-
bling any of the following forms, where B is a possibly
negated atomic concept:

A � B , A � ∀Pf.B , ∀Pf.A � B ,

A � (Pf1 = Pf2) or
A1 � A2 : Pf1, . . . ,Pfk → Pf.

Inclusions dependencies occurring in a TBox that are given
by the final two possibilities are also assumed to satisfy ad-
ditional syntactic conditions: that A does not appear on the

326

right-hand-side of any other dependencies in the TBox in the
former case, and, in the latter case, that Pf is a prefix of Pf1
or has the form Pf0.f where Pf0 is a prefix of Pf1.
The semantics of the constituent concept constructors are
given as follows: τx(∀Pf.C) and τx(Pf1 = Pf2), respec-
tively, by

∀y : Pf(x, y) → τy(C) and
∀y : (Pf1(x, y) ↔ Pf2(x, y)),

and τx(A : Pf1, . . . ,Pfk → Pf) by
∀y, z1, . . . , zk, w : (A(y) ∧

∧
i(Pfi(x, zi) ↔ Pfi(y, zi)))

→ (Pf(x,w) ↔ Pf(y, w))

A CFD ∀
nc ABox contains assertions of the form A(a) and

so-called path assertions of the form a.Pf1 = b.Pf2. The
semantics of path assertions, τx(a.Pf1 = b.Pf2) is given by
∃y : (Pf1(a1, y) ∧ Pf2(a2, y)). �

Definition 19 (Referring Expressions in CFD ∀
nc)

As in DL-LiteFcore(idc), we add nominal concepts {a} and
concept conjunction �. In this case, referring expressions
∃y : (Pd(x, y) ∧ y = a) are represented by concepts
∀Pd.{a}, because the universal and existential quantifiers
are equivalent when all the path elements are total functions.
�

To illustrate, consider again the two example certain answers
to query Q.4 in the previous section. The referring expres-
sions in these answers would now be given in a variable-free
form as CFD ∀

nc concepts, as in
{x �→ Person � ∀ssn#.{7654}}, and

{x �→ Company � ∀tickerSymbol .{“IBM”}}.
In preparation to formulating the weak identification theo-
rem for CFD ∀

nc, we need the following mapping of con-
junctive queries to CFD ∀

nc concepts, where w.l.o.g., query
variables and constants are treated as functional role names:

σ(ψ) =

⎧⎪⎨
⎪⎩

∀x.C if ψ = “C(x)”;
(x1.f = x2) if ψ = “f(x1, x2)”;
σ(ψ1) � σ(ψ2) if φ = “ψ1 ∧ ψ2”; and
σ(ψ0) if ψ = “∃xk+1, . . . , ∃xm : ψ0”.

Theorem 20 (Weak Identification)
Let T be a CFD ∀

nc TBox and ψ a typed conjunctive query.
Then HD(ψ) is weakly identifying for ψ with respect to T
if and only if

T ∪ {A � (∀x1.T1 � . . . � ∀xk.Tk � σ(ψ))}
|= A � A : xi.Pfi,1, . . . , xi.Pfi,mi

→ xi

for each homogeneous head H in NORM(HD(ψ)) consisting
of

xi : Ti → (Pd i,1 = Csi,1 ∧ · · · ∧ Pd i,�i = Csi,�i),

and for each 0 < i ≤ k, where A is a fresh primitive con-
cept.

Proof (sketch): A counterexample to the above entailment
yields a knowledge base in which a certain answer to ψ con-
forming to H is not singular. Conversely, a knowledge base
K yielding non-singular R-answer to ψ to ψ is a counterex-
ample to the above entailment. �

The sufficient conditions for strong identification required in
Theorem 10 can be expressed as a logical implication ques-
tion in CFD ∀

nc.

Theorem 21 (Query answering)
Let K = (T ,A) be a CFD ∀

nc knowledge base and ψ a typed
conjunctive query. Then computing certain answers is com-
plete for PTIME in data complexity.

Proof (sketch): Let A′ be an ABox obtained from A by
explicitly naming all intermediate objects involved in path
assertions ∃x : Pf1(a1, x) ∧ Pf2(a2, x) ∈ A. For CFD ∀

nc
TBoxes and typed conjunctive queries, it is easy to see that
applying KB completion to (T ,A′) does not introduce any
additional constants. Thus, applying Theorem 13 completes
the proof for ANS given by the query answering algorithm
for CFD ∀

nc presented in (Toman and Weddell 2013). �

The approach can be extended to a more expressive dialect
of the CFD family CFDI∀−

nc (Toman and Weddell 2014b),
that subsumes DL-LiteFcore, with the help of Theorem 13
and a query answering algorithm for CFDI∀−

nc .

4. Conclusions

The paper’s contributions are as follows.
First, on the non-technical side, it recognized and moti-

vated the utility of “singular referring expressions” (formu-
las with a single free variable) as query answers, which are
more complex than just nominals, and it argued for the need
for a new separation of concerns in query writing: qualifi-
cation (what the query body searches for) vs. identification
(how results are presented).

On the specification side, the paper defined formally the
notion of “query answering using singular referring expres-
sions” for certain answers to general FOL queries over FOL
knowledge bases. It introduced one particular language for
referring expression formulas and types (the types are nec-
essary to limit the set of referring expression formulas to be
finite) which allows us to handle all the motivating exam-
ples in Section 1. This language generalizes the notion of
constant/nominal, currently used in OBDA, to handle keys
(as found in both the database and DL literature), and sup-
ports (i) heterogeneous sets of values (as in the case of
LegalEntity), (ii) preferential choice of referring expres-
sions (as in the EditedCollection example), as well as (iii)
descriptive answers of individuals (as in “Fred’s mother”).
The latter allow new answers to be returned by queries, ones
for which there were no names in the database.

The notion of “singularity of reference” is the one aspect
of nominals that we wanted to carry over in this work. There-
fore, in the general FOL framework, we considered how
compile-time analysis, using a given ontology and query
body, can ensure the singularity property. We also consid-
ered a stronger notion of singularity that ensures syntacti-
cally distinct singular expressions for a query variable must
always denote distinct individuals. Finally, we reformulated
query evaluation with referring expressions in terms of ora-
cles capable of “traditional” query answering with constant
names.

327

Finally, we applied the above general theorems to two
“lightweight” DLs that can be used for OBDA and that
have fast algorithms for consistency checking and conjunc-
tive query answering. By using the oracles, we showed that
query answering with referring expressions of the types in-
troduced here can be done without any increase in data com-
plexity.

Related work: The problem of finding referring expres-
sions that identify an element in a given knowledge base is a
basic problem in natural language generation. For example,
(van Deemter et al. 2012) considers so-called incremental
algorithms that address this problem (and provides an ex-
tensive review of related work). Indeed, some authors have
considered the problem in the context of logic-based knowl-
edge bases (Areces, Figueira, and Gorı́n 2011), including the
case where the underlying logic is a description logic (Are-
ces, Koller, and Striegnitz 2008). In finding referring expres-
sions, the basic problem assumes that the full knowledge
base is available as input. The problems we have addressed
involve a referring expression type language, the compile
time analysis of identification properties relative to an on-
tological component of a knowledge base, and of efficient
query evaluation, are quite distinct from the above, and, so
far as we are aware, constitute a new area of exploration.
To reiterate, our framework views the issue of referring ex-
pressions as more of a programming task to be undertaken
during query formulation.

For future work, an obvious problem to consider is al-
ternative/extended referring expression (types), especially as
motivated by DLs to which they can be applied.

The reader may also have observed that so far it was up to
the programmer to select the referring expression(s) to con-
sider for each variable. A form of type inference on the query
variables would be useful, as the basis of a tool which would
suggest to the user a (bounded) list of possible referring ex-
pressions that are guaranteed to have the singular reference
property with respect to a particular TBox.

Alternatively, the ontology designer may associate with
concepts referring types, and the head of the query could be
constructed (semi)automatically using this information. (A
similar approach, for over-loading print functions, was used
in industrial applications of the CLASSIC DL.)

References

Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Areces, C.; Figueira, S.; and Gorı́n, D. 2011. Using logic in
the generation of referring expressions. In Pogodalla, S., and
Prost, J., eds., Logical Aspects of Computational Linguis-
tics - 6th International Conference, LACL 2011, Montpellier,
France, June 29 - July 1, 2011. Proceedings, volume 6736
of Lecture Notes in Computer Science, 17–32. Springer.
Areces, C.; Koller, A.; and Striegnitz, K. 2008. Referring
expressions as formulas of description logic. In White, M.;
Nakatsu, C.; and McDonald, D., eds., INLG 2008 - Proceed-
ings of the Fifth International Natural Language Generation
Conference, June 12-14, 2008, Salt Fork, Ohio, USA. The
Association for Computer Linguistics.

Bergamaschi, S.; Sartori, C.; and Vincini, M. 1995. Dl
techniques for intensional query answering in oodbs. In
Working Notes of the KI’95 Workshop: KRDB-95 Reasoning
about Structured Objects: Knowledge Representation Meets
Databases, 3 pages.
Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Taylor,
J. 2008. Freebase: a collaboratively created graph database
for structuring human knowledge. In ACM SIGMOD Inter-
national Conference on Management of Data, 1247–1250.
ACM.
Borgida, A. 1995. Description logics in data management.
Knowledge and Data Engineering, IEEE Transactions on
7(5):671–682.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2008a. Path-Based Identification Constraints
in Description Logics. In Principles of Knowledge Repre-
sentation and Reasoning, 231–241.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2008b. Path-based identification constraints
in description logics. In KR, 231–241.
Elmasri, R., and Navathe, S. B. 2000. Fundamentals of
Database Systems, 3rd Edition. Addison-Wesley-Longman.
Imielinski, T. 1987. Intelligent query answering in
rule based systems. The Journal of Logic Programming
4(3):229–257.
Motro, A. 1994. Intensional answers to database queries.
Knowledge and Data Engineering, IEEE Transactions on
6(3):444–454.
Silberschatz, A.; Korth, H. F.; and Sudarshan, S. 2005.
Database System Concepts, 4th Edition. McGraw-Hill Book
Company.
Toman, D., and Weddell, G. E. 2013. Conjunctive Query
Answering in CFDnc: A PTIME Description Logic with
Functional Constraints and Disjointness. In Australasian
Conference on Artificial Intelligence, 350–361.
Toman, D., and Weddell, G. E. 2014a. Answering Queries
over CFD∀

nc Knowledge Bases. Technical Report CS-2014-
14, Cheriton School of Computer Science, University of Wa-
terloo.
Toman, D., and Weddell, G. E. 2014b. On adding inverse
features to the description logic CFD∀

nc. In PRICAI 2014:
Trends in Artificial Intelligence - 13th Pacific Rim Inter-
national Conference on Artificial Intelligence, Gold Coast,
QLD, Australia, December 1-5, 2014., 587–599.
van Deemter, K.; Gatt, A.; van der Sluis, I.; and Power, R.
2012. Generation of referring expressions: Assessing the
incremental algorithm. Cognitive Science 36(5):799–836.

328

