Proceedings, Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016)

Parameterized Complexity Results for
Symbolic Model Checking of Temporal Logics

Ronald de Haan and Stefan Szeider
Algorithms and Complexity Group
TU Wien, Vienna, Austria
[dehaan,sz] @ac.tuwien.ac.at

Abstract

Reasoning about temporal knowledge is a fundamental task
in the area of artificial intelligence and knowledge represen-
tation. A key problem in this area is model checking, and
indispensable for the state-of-the-art in solving this problem in
large-scale settings is the technique of bounded model check-
ing. We investigate the theoretical possibilities of this tech-
nique using parameterized complexity theory. In particular, we
provide a complete parameterized complexity classification
for the model checking problem for symbolically represented
Kripke structures for various fragments of the temporal logics
LTL, CTL and CTL". We argue that a known result from the
literature for a restricted fragment of LTL can be seen as an
fpt-reduction to SAT, and show that such reductions are not
possible for any of the other fragments of the temporal logics
that we consider. As a by-product of our investigation, we
develop a novel parameterized complexity class that can be
seen as a parameterized variant of the Polynomial Hierarchy.

Introduction

Temporal reasoning is an important part of knowledge rep-
resentation and reasoning, and of artificial intelligence in
general, and has applications for topics such as agent-based
systems and planning (Fisher, Gabbay, and Vila 2005). For
example, temporal logics can be used to express desired be-
havior of agents in multi-agent systems. A core problem
related to temporal logics is the problem of model checking.
(see, e.g., Fisher 2008). The problem consists of checking
whether a model, given in the form of a labelled relational
structure (a Kripke structure), satisfies a temporal property,
given as a logic formula. Underlining the importance of tem-
poral logic model checking, the ACM 2007 Turing Award
was given for foundational research on the topic (Clarke,
Emerson, and Sifakis 2009). Indispensable for the state-of-
the-art in solving this problem in industrial-size settings is
the algorithmic technique of symbolic model checking us-
ing propositional satisfiability (SAT) solvers (called bounded
model checking), where the SAT solvers are employed to
find counterexamples (Biere 2009; Biere et al. 2003; 1999;
Clarke et al. 2004). A theoretical analysis identifying the
cases where this vital technique can be employed is critical
for improving state-of-the-art model checking algorithms.

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

453

Yet no such structured complexity-theoretic investigation has
been done, leaving a significant gap in the guidance offered
to practitioners developing model checking algorithms.

The approach of bounded model checking generally works
well in cases where the Kripke structure is large, but the
temporal logic specification is small. Since the framework
of parameterized complexity is able to distinguish an ad-
ditional measure of the input, that can be much smaller
than the input size, a parameterized complexity approach
would be especially suited for the much-needed theoreti-
cal analysis. However, previous parameterized complexity
analyses have not been able to fill the gap. First of all, exist-
ing parameterized complexity analyses (Demri, Laroussinie,
and Schnoebelen 2006; Flum and Grohe 2006; Goller 2013;
Liick, Meier, and Schindler 2015) have only considered the
problem for settings where the Kripke structure is spelled-out
explicitly (or consists of a small number of explicitly spelled-
out components), which is highly impractical in many cases.
In fact, the so-called state explosion problem is a major ob-
stacle for developing practically useful techniques (Clarke
et al. 2001). For this reason, the Kripke structures are often
described symbolically, for instance using propositional for-
mulas, which allows for exponentially more succinct encod-
ings of the structures. Secondly, whereas parameterized com-
plexity analysis is traditionally focused on fixed-parameter
tractability for positive results, the technique of bounded
model checking revolves around encoding the problem as an
instance of SAT. Therefore, the standard parameterized com-
plexity analysis is bound to concentrate on very restrictive
cases in order to obtain fixed-parameter tractability, unaware
of some of the more liberal settings where bounded model
checking can be applied.

In this paper, we contribute to closing the gap by means of
a more advanced parameterized complexity analysis that re-
veals the possibilities and limits of the technique of bounded
model checking. More specifically, we analyze the complex-
ity of the model checking problem for fragments of vari-
ous temporal logics, where we take the size of the tempo-
ral logic formula as parameter. In our formalization of the
problem, the Kripke structures are represented symbolically
(and can thus be of size exponential in the size of their de-
scription). Moreover, our complexity analysis focuses on
whether a reduction of the model checking problem to SAT
is fixed-parameter tractable or not, rather than whether the

model checking problem itself is fixed-parameter tractable.
Such fixed-parameter tractable reductions (fpt-reductions, for
short) to SAT can be used in many cases where polynomial-
time reductions cannot be used (De Haan and Szeider 2014a;
2014b). For instance, fpt-reductions have been used to re-
duce problems related to answer set programming and ab-
ductive reasoning, which are located at the second level of
the Polynomial Hierarchy, to SAT (Fichte and Szeider 2013;
Pfandler, Riimmele, and Szeider 2013).

Contributions We consider the model checking prob-
lem for three of the most widespread temporal logics, LTL,
CTL and CTL". These are linear-time and branching-time
propositional modal logics that lie at the basis of more ex-
pressive formalisms used in many settings in knowledge
representation and reasoning (see, e.g., Fisher 2008). More-
over, for each of these logics, we consider also the fragments
where several temporal operators (namely, U and/or X) are
disallowed. Using non-standard parameterized complexity
methods, we give a complete complexity classification of the
problem of checking whether a given Kripke structure, speci-
fied symbolically using a propositional formula, satisfies a
given temporal logic specification, parameterized by the size
of the temporal logic formula.

e We show that the problem is para-PSPACE-complete for
all logics and all fragments if the recurrence diameter of the
structure (the size of the largest loop-free path) is allowed
to be exponentially large (Proposition 2).

Due to this result that without bounds on the recurrence
diameter of the structure the problem is intractable even in
the simplest cases, we direct our attention to the setting where
the recurrence diameter is polynomially bounded.

e We identify a known result from the literature on bounded
model checking (Kroening et al. 2011) as a para-co-NP-
membership result for the logic LTL where both operators
U and X are disallowed, and we extend this to a complete-
ness result (Proposition 3).

e We show that the problem is para-PSPACE-complete for
LTL (and so also for CTL") when at least one of the opera-
tors U and X is allowed (Theorems 6 and 7).

e We show that in all remaining cases (all fragments of
CTL, and the fragment of CTL* without the operators U
and X) the problem is complete for PH(LEVEL) (Theo-
rems 9 and 10).

The prime difficulty for the latter completeness results was
to identify the parameterized complexity class PH(LEVEL),
and to characterize it in various ways. The main technical
obstacle that we had to overcome to show para-PSPACE-
hardness was to encode satisfiability of quantified Boolean
formulas without having explicit quantification available in
the logic.

In short, we show that the only case (given these fragments
of temporal logics) where the technique of bounded model
checking can be applied is the fragment of LTL without the
operators U and X. An overview of all the completeness
results that we develop in this paper can be found in Table 1.

454

In addition, as mentioned, we introduce the parameterized
complexity class PH(LEVEL), which is based on the satisfia-
bility problem of quantified Boolean formulas parameterized
by the number of quantifier alternations. We show that this
class can also be characterized by means of an analogous
parameterized version of first-order logic model checking, as
well as by alternating Turing machines that alternate between
existential and universal configurations only a small number
of times (depending only on the parameter).

Related work Computational complexity analysis has
been a central aspect in the study of the model check-
ing problem for temporal logics (Emerson and Lei 1987;
Kupferman, Vardi, and Wolper 2000; Sistla and Clarke 1985;
Vardi and Wolper 1986). Naturally this problem has been
analyzed from a parameterized complexity point of view.
For instance, LTL model checking parameterized by the
size of the logic formula features as a textbook example
for fixed-parameter tractability (Flum and Grohe 2006). For
the temporal logic CTL, parameterized complexity has also
been used to study the problems of model checking and
satisfiability (Demri, Laroussinie, and Schnoebelen 2006;
Goller 2013; Liick, Meier, and Schindler 2015). As the
SAT encoding techniques used for bounded LTL model
checking yield an incomplete solving method in general,
limits on the cases in which this particular encoding can
be used as a complete solving method have been studied
(Bundala, Ouaknine, and Worrell 2012; Clarke et al. 2004;
Kroening et al. 2011).

Outline We begin with reviewing relevant notions from
(parameterized) complexity theory. Then, we introduce the
different temporal logics that we consider, we review known
complexity results for their model checking problems, and
we interpret a known result for bounded model checking
for the fragment of LTL without U and X operators using
notions from parameterized complexity. Next, we introduce
the new parameterized complexity class PH(LEVEL). Finally,
we provide the parameterized complexity results that indicate
that bounded model checking cannot be applied efficiently for
all other fragments of the temporal logics that we consider.

Due to space restrictions, we omit (technical details in) the
proofs of several results. Results for which a proof is entirely
omitted, we mark with an asterisk. Full detailed proofs can
be found in a recent technical report (De Haan and Szeider
2015).

Preliminaries

Polynomial Space The class PSPACE consists of all de-
cision problems that can be solved by an algorithm that uses
a polynomial amount of space (memory). Alternatively, one
can characterize the class PSPACE as all decision problems
for which there exists a polynomial-time reduction to the
problem QSAT, that is defined using quantified Boolean for-
mulas as follows. A quantified Boolean formula (in prenex
form) is a formula of the form Q121 Q2xs . . . Q, T, .1, Wwhere
all z; are propositional variables, each @); is either an exis-
tential or a universal quantifier, and v is a (quantifier-free)

logic £ | LTL CTL CTL*

L para-PSPACE-complete PH(LEVEL)-complete para-PSPACE-complete
L\X para-PSPACE-complete PH(LEVEL)-complete para-PSPACE-complete
L\U para-PSPACE-complete PH(LEVEL)-complete para-PSPACE-complete
L\UX para-co-NP-complete PH(LEVEL)-complete PH(LEVEL)-complete

Table 1: Parameterized complexity results for the problem SYMBOLIC-MC*[L] for the different (fragments of) logics £. In
this problem, the recurrence diameter of the structure is polynomially bounded. The problem SYMBOLIC-MC[L], where the
recurrence diameter is unbounded, is para-PSPACE-complete in all cases.

propositional formula over the variables x4, ..., x, (called
the matrix). Truth for such formulas is defined in the usual
way. The problem QSAT consists of deciding whether a given
quantified Boolean formula is true.

Alternatively, the semantics of quantified Boolean formu-
las can be defined using QBF models (Samulowitz, Davies,
and Bacchus 2006). Let ¢ = Q121 . . . @, 2,0 be a quanti-
fied Boolean formula. A QBF model for ¢ is a tree of (partial)
truth assignments where (1.) each truth assignment assigns
values to the variables x1, . .., x; forsome 1 < i < n, (2.) the
root is the empty assignment, and for all assignments « in
the tree, assigning truth values to the variables x4, ..., x; for
some 1 < ¢ < n, the following conditions hold: (3.) if i < n,
every child of « agrees with « on the variables z1, ..., z;,
and assigns a truth value to x;4; (and to no other variables);
(4.) if ¢ = n, then « satisfies ¢, and « has no children;
(5.)if i < mand Q; = 3, then « has one child o that assigns
some truth value to z;11; and (6.) if i < nand Q; =V,
then « has two children «; and a» that assign different truth
values to x;1. It is straightforward to show that a quantified
Boolean formula ¢ is true if and only if there exists a QBF
model for ¢. Note that this definition of QBF models is a
special case of the original definition (Samulowitz, Davies,
and Bacchus 2006).

Fixed-parameter tractable reductions to SAT We as-
sume the reader to be familiar with basic notions from param-
eterized complexity theory, such as fixed-parameter tractabil-
ity and fpt-reductions. For instance, a parameterized problem
is a subset L C ¥* x N and is said to be fixed-parameter
tractable if there is a computable function f, a constant c,
and an algorithm that for each (x,k) € ¥* x N decides
whether (x,k) € L in time f(k)n°. For more details, we
refer to textbooks on the topic (Downey and Fellows 2013;
Flum and Grohe 2006; Niedermeier 2006). We briefly high-
light some notions that are useful for investigating fpt-
reductions to SAT. The propositional satisfiability prob-
lem (SAT) consists of deciding whether a given proposi-
tional formula in CNF is satisfiable. When we consider SAT
as a parameterized problem, we consider the trivial (con-
stant) parameterization. The parameterized complexity class
para-NP consists of all problems that can be fpt-reduced
to SAT. More generally, for each non-parameterized com-
plexity class K, the parameterized class para-K is defined as
the class of all parameterized problems L C ¥* x N, for
which there exist a computable function f : N — >* and
a problem P C 3* x ¥* such that P € K and for all in-

455

stances (z, k) € ¥* x N of L we have that (z, k) € L if and
only if (z, f(k)) € P (Flum and Grohe 2003). Intuitively,
the class para-K consists of all problems that are in K af-
ter a precomputation that only involves the parameter. For
all classical complexity classes K, K’ it holds that K C K’
if and only if para-K C para-K’. Therefore, in particular,
problems that are para-PSPACE-hard are not in para-NP, un-
less NP = PSPACE.

Model Checking for Temporal Logics

In this section, we review the definition of the temporal logics
that we consider in this paper, and we introduce the prob-
lem of model checking for symbolically represented Kripke
structures. In addition, we argue why the polynomial bound
on the recurrence diameter of the Kripke structures is nec-
essary to obtain an fpt-reduction to SAT. Finally, we iden-
tify a para-co-NP-membership result from the literature on
bounded model checking.

Temporal Logics

We begin with defining the semantical structures for all tem-
poral logics. In the remainder of the paper, we let P be a
finite set of propositions. A Kripke structure is a tuple M =
(S,R,V, sp), where S is a finite set of states, R C S x §
is a binary relation on the set of states called the transition
relation, V : S — 2P is a valuation function that assigns
each state to a set of propositions, and where so € S is the
initial state. An example of a Kripke structure is given in Fig-
ure 1. We say that a finite sequence s; . .. s, of states s; € S
is a finite path in M if (s;,s;,41) € Rforeach 1 < i < {.
Similarly, we say that an infinite sequence $1S953... of
states s; € S is an infinite path in M if (s;,s;11) € R for
each? > 1.

/Nlﬁpz P1, P2
—).4).\.7023
—P1, P2 TP1,P2

Figure 1: An example Kripke structure M for the set P =
{p1,p2} of propositions.

Now, we can define the syntax of the logic LTL. LTL
formulas over the set P of atomic propositions are formed
according to the following grammar (here p ranges over P),
given by ¢ == p [=p | (p Ap) | Xp | Fo | (¢Up).
We consider the usual abbreviations, such as 1 V @9
—(—1 A —2). In addition, we let the abbreviation Gy de-
note “F—¢. Intuitively, the formula X¢ expresses that ¢ is

true in the next (time) step, Fy expresses that ¢ becomes
true at some point in the future, Gy expresses that ¢ is true
at all times from now on, and ¢ Uy, expresses that @9 be-
comes true at some point in time, and until then the for-
mula ¢; is true at all points. Formally, the semantics of
LTL formulas are defined for Kripke structures, using the
notion of (infinite) paths. Let M = (S, R, V, s¢) be a Kripke
structure, and §; = s1S283 ... be a path in M. Moreover,
lets; = s;8;41Si+2 ... foreach ¢ > 2. Truth of LTL formu-
las ¢ on paths 5 (denoted 5 |= ¢) is defined inductively as
follows (for the sake of brevity, we omit the straightforward
Boolean cases):

S): X if

5; = Fp if

5iF p1Ups if

Siv1
for some j > 0,5,4; = ¢
there is some j > 0 such that
Sitj = p2and 5
foreach0 < j' < j
Then, we say that an LTL formula ¢ is true in the Kripke
structure M (denoted M |= ¢) if for all infinite paths 5
starting in sq it holds that s |= ¢. For instance, considering
the example M from Figure 1, it holds that M; |= FGps.
Next, we can define the syntax of the logic CTL", which
consists of two different types of formulas: state formulas
and path formulas. When we refer to CTL* formulas without
specifying the type, we refer to state formulas. Given the
set P of atomic propositions, the syntax of CTL* formulas
is defined by the following grammar (here ® denotes CTL"
state formulas, ¢ denotes CTL* path formulas, and p ranges
over P), givenby ® =:=p | =@ | (P A D) | Jp, and ¢ =
O |- |(pAe)]| Xe|Fol (¢Ugp). Again, we consider the
usual abbreviations, such as @1 V w2 = —(—p1 A —2), for
state formulas as well as for path formulas. Moreover, we let
the abbreviation Gy denote —F—¢, and we let the abbrevia-
tion V¢ denote —3—¢. Path formulas have the same intended
meaning as LTL formulas. State formulas, in addition, allow
quantification over paths, which is not possible in LTL.
Formally, the semantics of CTL" formulas are defined in-
ductively as follows. Let M = (S, R,V, sq) be a Kripke
structure, s € S be a state in M and 51 = s18253... be a
path in M. Again, let 5; = s;5;415;42... for each i >
2. The truth of CTL* state formulas ® on states s (de-
noted s = ®) is defined as follows (again, we omit the
Boolean cases): s = i if and only if there is some path 5
in M starting in s such that 5 |= . The truth of CTL* path
formulas ¢ on paths 5 (denoted 5 |=) is defined as follows:

3i = Xop if Si1fFe
5; = Fp if forsomej> 0,54, =¢
5 = ¢1Ups if there is some j > 0 such that

Siyj [paand Sip o |=
foreach0 < 5/ < j
Then, we say that a CTL" formula & is true in the Kripke
structure M (denoted M = ®) if 5o = ®. For example,
again taking the structure M, it holds that M; = 3(Xp; A
VGXXPQ).

Next, the syntax of the logic CTL is defined similarly to
the syntax of CTL". Only the grammar for path formulas ¢
differs, namely ¢ == X® | F® | (PU®). In particular, this
means that every CTL state formula, (CTL formula for short)

456

is also a CTL" formula. The semantics for CTL formulas is
defined as for their CTL* counterparts.

For each of the logics £ € {LTL,CTL,CTL"}, we con-
sider the fragments £\X, £\U and £\U,X. In the frag-
ment £\X, the X-operator is disallowed. Similarly, in the
fragment £\U, the U-operator is disallowed. In the frag-
ment £\U,X, neither the X-operator nor the U-operator
is allowed. Note that the logic LTL\X is also known as
UTL, and the logic LTL\U,X is also known as UTL\X (see,
e.g., Kroening et al. 2011).

We review some known complexity results for the model
checking problem of the different temporal logics. Formally,
we consider the problem MC|L], for each of the temporal
logics £, where the input is a Kripke structure M and an £
formula ¢, and the question is to decide whether M = .
Note that in this problem the Kripke structure M is given
explicitly in the input. As parameter, we will always take
the size of the logic formula. It is well known that the prob-
lems MC|LTL] and MC[CTL"] are PSPACE-complete, and
that the problem MC[CTL] is polynomial-time solvable (see,
e.g., Baier and Katoen 2008). It is also well known that
the problems MC|LTL] and MC[CTL"] are fixed-parameter
tractable when parameterized by the size of the logic formula
(see, e.g., Baier and Katoen 2008; Flum and Grohe 2006).

Symbolically Represented Kripke Structures

A challenge occurring in practical verification settings is that
the Kripke structures are too large to handle. Therefore, these
Kripke structures are often not written down explicitly, but
rather represented symbolically by encoding them succinctly
using propositional formulas.

Let P = {p1,...,pm} be a finite set of propositional vari-
ables. A symbolically represented Kripke structure over P is

/ !/
atuple M = (¢gr, ap), where 0r(T1, ..., T, Thy ., Th,)
is a propositional formula over the variables 1, ..., Zm,,

,x,,, and where ap € {0,1}™ is a truth assignment

to the variables in P. The Kripke structure associated with M
is (S, R, V, ap), where S = {0, 1}™ consists of all truth as-
signments to P, where (o, &) € R if and only if pg[a, &']
is true, and where V(o) = {p; : a(p;) =1 }.

Example 1. Let P = {p1,p2}. The Kripke structure M,
from Figure 1 can be symbolically represented by (¢r, ao),
where pgr(x1,z9,2),2h) = [(~21 A ~ze) — (2]
I A[(~w1 > 22) — (21 Aag)] A (2) — (a5 Az,
and ap = (0,0) !

/
IR

We can now consider the symbolic variant SYMBOLIC-
MC|L] of the model checking problem, for each of the tem-
poral logics L.

SyMBoLIC-MC[L]
Input: a symbolically represented Kripke structure M,
and an £ formula .

Question: M = p?

Similarly to the case of MC[L], we will also consider
SYMBOLIC-MC[L] as a parameterized problem, where
the parameter is |p|. Interestingly, for the logics LTL
and CTL', the complexity of the model checking prob-
lem does not change when Kripke structures are repre-

sented symbolically: SYMBOLIC-MC[LTL] and SYMBOLIC-
MC|CTL"] are PSPACE-complete (see Kupferman, Vardi,
and Wolper 2000; Vardi and Wolper 1986). However, for
the logic CTL, the complexity of the problem does show an
increase. In fact, the problem is already PSPACE-hard for
very simple formulas.

Proposition* 2. SYMBOLIC-MC|LTL] is PSPACE-hard
even when restricted to the case where o = Gp. SYMBOLIC-
MC|CTL] and SYMBOLIC-MC[CTL'] are PSPACE-hard
even when restricted to the case where p = YGp.

An Fpt-Reduction to SAT for LTL\U,X

The result of Proposition 2 seems to indicate that the model
checking problem for the temporal logics LTL, CTL and
CTL" is intractable when Kripke structures are represented
symbolically, even when the logic formulas are extremely
simple. However, in the literature further restrictions have
been identified that allow the problem to be solved by means
of an encoding into SAT, which allows the use of practi-
cally very efficient SAT solving methods. In the hardness
proof of Proposition 2, the Kripke structure has only a sin-
gle path, which contains exponentially many different states.
Intuitively, such exponential-length paths may be the cause
of PSPACE-hardness. To circumvent this source of hardness,
and to go towards the mentioned setting where the problem
can be solved by means of a SAT encoding, we need to restrict
the recurrence diameter. The recurrence diameter rd(M) of
a Kripke structure M is the length of the longest simple (non-
repeating) path in M. We consider the following variant of
SYMBOLIC-MC|[L], where the recurrence diameter of the
Kripke structures is restricted. !

SYMBOLIC-MC*[£]

Input: a symbolically represented Kripke structure M,
rd(M) in unary, and an £ formula ¢.

Parameter: ||

Question: M = ©?

This restricted setting has been studied by Kroening et
al. (Kroening et al. 2011). In particular, they showed that the
model checking problem for LTL\U,X allows an encoding
into SAT that is linear in rd(M), even when the Kripke
structure M is represented symbolically, and can thus be
of exponential size. Using the result of Kroening et al., we
obtain para-co-NP-completeness.

Proposition 3. SYMBOLIC-MC*[LTL\U,X] is para-co-NP-
complete.

Proof (sketch). Kroening et al. (2011) use the technique of
bounded model checking (Biere 2009; Biere et al. 1999;
Clarke et al. 2004), where SAT solvers are used to find a
‘lasso-shaped’ path in a Kripke structure that satisfies an LTL
formula . They show that for LTL\U,X formulas, the largest
possible length of such lasso-shaped paths that needs to be
considered (also called the completeness threshold) is linear
in rd(M). However, the completeness threshold depends

! An equivalent way of phrasing the problem is to require that
the recurrence diameter of the Kripke model M is polynomial in
the size of its description (¢r, ao).

457

0,1, 1)
e >
2 (0,1, ap)
* >
e —— 0>
20 1) (11 apyy)

(0,0, o) /
/

N

Figure 2: (The reachable part of) the structure M in the proof
of Proposition 3.

(1,1,)

linearly on the size of a particular type of generalized Biichi
automaton expressing ¢, which in general is exponential in
the size of . Therefore, this SAT encoding does not run in
polynomial time, but it does run in fixed-parameter tractable
time when the size of ¢ is the parameter. Their encoding
of the problem of finding a counterexample into SAT can
be seen as an encoding of the model checking problem into
UNSAT.

We show para-co-NP-hardness by showing that the prob-
lem SYMBOLIC-MC*[LTL\U,X] is co-NP-hard already for
formulas of constant size. We do so by a reduction from
UNSAT. Let) be a propositional formula over the vari-
ables z1, ..., x,. We construct an instance of SYMBOLIC-
MC*[LTL\U,X] as follows. We consider the set P
{v0,41,21, ...,y } of propositional variables. We construct
the symbolically represented Kripke structure M = (¢r, ag)
as depicted in Figure 2. Here ag = 0, i.e., the all-zeroes
assignment to Var(y). Moreover, aq, . . ., ap are the assign-
ments to Var(t)) that satisfy v, and ag4q,. .., a, are the
assignments to Var(v) that falsify ¢. The transition relation
given by @ p allows a transition from « to the state (0, 1, o)
for any truth assignment « to the variables x1, ..., x,. Then,
if this assignment « satisfies ¢, a transition is allowed to the
looping state (1, 1,). Otherwise, if « does not satisfy v, the
only transition from state (0, 1, «) is to itself. For a detailed
description of ¢, we refer to the technical report (De Haan
and Szeider 2015). Finally, we define the LTL formula to
be ¢ = G—yp.

Moreover, rd(M) = 2, and the LTL formula ¢ is of con-
stant size, and contains only the temporal operator G. It is
straightforward to verify that M = ¢ if and only if ¢ is
unsatisfiable. O

In the remainder of this paper, we give parameterized com-
plexity results that give evidence that this is the only case in
this setting where such an fpt-reduction to SAT is possible. In
order to do so, we first make a little digression to introduce
a new parameterized complexity class, that can be seen as a
parameterized variant of the Polynomial Hierarchy (PH).

A Parameterized Variant of the PH

In order to completely characterize the parameterized com-
plexity of the problems SYMBOLIC-MC*[L], we need to
introduce another parameterized complexity class, that is a
parameterized variant of the PH. The PH consists of an in-
finite hierarchy of classes ¥! and II? (see, e.g., Arora and
Barak 2009, Chapter 5). For each 7 > 0, the complexity

class XP consists of closure of the problem QSAT; under
polynomial-time reductions, where QSAT; is the restriction
of the problem QSAT where the input formula starts with
an existential quantifier and contains at most ¢ quantifier
alternations. The class II” is defined as co-XF.

In other words, for each level of the PH, the number of
quantifier alternations is bounded by a constant. If we al-
low an unbounded number of quantifier alternations, we get
the complexity class PSPACE (see, e.g., Arora and Barak
2009, Theorem 5.10). Parameterized complexity theory al-
lows a middle way: neither letting the number of quanti-
fier alternations be bounded by a constant, nor removing
all bounds on the number of quantifier alternations, but
bounding the number of quantifier alternations by a func-
tion of the parameter. We consider the parameterized prob-
lem QSAT(LEVEL), where the input is a quantified Boolean
formula p = IX1VX23X3. .. Qr Xk, where each X is a
sequence of variables. The parameter is k, and the question
is whether ¢ is true. We define the parameterized complex-
ity class PH(LEVEL) to be the class of all parameterized
problems that can be fpt-reduced to QSAT(LEVEL).

Alternative Characterizations

Alternatively, we can characterize the class PH(LEVEL) us-
ing Alternating Turing machines (ATMs), which generalize
regular (non-deterministic) Turing machines (see, e.g., Chan-
dra, Kozen, and Stockmeyer 1981). We will use this charac-
terization below to show membership in PH(LEVEL).

The states of an ATM are partitioned into existential and
universal states. Intuitively, if the ATM M is in an existential
state, it accepts if there is some successor state that accepts,
and if M is in a universal state, it accepts if all successor
states accept. We say that M is Z-alternating for a problem @,
for £ > 0, if for each input x of @, for each run of M on z,
and for each computation path in this run, there are at most ¢
transitions from an existential state to a universal state, or
vice versa. The class PH(LEVEL) consists of all problems
that can be solved in fixed-parameter tractable time by an
ATM whose number of alternations is bounded by a function
of the parameter.

Proposition* 4. Let QQ be a parameterized problem.
Then Q € PH(LEVEL) if and only if there exist a com-
putable function f : N — N and an ATM M such that: (1) M
solves Q) in fixed-parameter tractable time, and (2) for each
slice Qi of Q, MLis f(k)-alternating.

As a direct consequence of this definition, we get that the
class PH(LEVEL) is closed under fpt-reductions. Next, to
further illustrate the robustness of the class PH(LEVEL), we
characterize this class using first-order logic model check-
ing (which has also been used to characterize the classes
of the well-known W-hierarchy and the A-hierarchy, see,
e.g. Flum and Grohe 2006). Consider the problem MC[FO],
where the input consists of a relational structure A4, and a
first-order formula ¢ = 3X VX353 X3 ... Qi X in prenex
form, where Q; = V if k is even and @, = 3 if k is odd.
The question is whether A |= ¢. The problem MC[FO] is
PH(LEVEL)-complete when parameterized by k.

458

Proposition* 5. MC[FO| parameterized by the number k
of quantifier alternations in the first-order formula is
PH(LEVEL)-complete.

Relation to other parameterized variants of the PH

In the parameterized complexity literature, more variants
of the Polynomial Hierarchy have been studied. We briefly
consider how the class PH(LEVEL) relates to these. Firstly,
for each i > 1, the parameterized complexity classes para-3."
and para-II” (which are parameterized variants of the classes
¥? and I1?) are contained in the class PH(LEVEL). Moreover,
PH(LEVEL) is contained in para-PSPACE. These inclusions
are all strict, unless the PH collapses.

Another parameterized variant of the PH that has been
studied is the A-hierarchy (Flum and Grohe 2006, Chapter 8),
containing the parameterized complexity classes A[t] for
each t > 1. Each class A[t] is defined as the class of all
problems that can be fpt-reduced to MC[FO], restricted to
first-order formulas ¢ (in prenex form) with a quantifier prefix
that starts with an existential quantifier and that contains ¢
quantifier alternations, parameterized by the size of . From
this definition, it directly follows that A[t] is contained in
PH(LEVEL), for each ¢t > 1. The A-hierarchy also contains
the parameterized classes AW[x] C AW[SAT] C AW[P],
each of which contains all classes A[t]. These classes are
also contained in PH(LEVEL). Moreover, the inclusion of all
these classes in PH(LEVEL) is strict, unless P = NP.

Completeness for PH(LEVEL) and
para-PSPACE

In this section, we provide a complete parameterized com-
plexity classification for the problem SYMBOLIC-MC*[L].
We already considered the case for £ = LTL\U,X in Sec-
tion , which was shown to be para-co-NP-complete. We give
(negative) parameterized complexity results for the other
cases. An overview of the results can be found in Table 1.
Firstly, we show that for the case of LTL, allowing at least
one of the temporal operators U or X leads to para-PSPACE-
completeness.

Theorem 6. SYMBOLIC-MC*[LTL\U] is para-PSPACE-
complete.

Proof. Membership follows from the PSPACE-membership
of SYMBOLIC-MCJ[LTL]. We show hardness by showing
that the problem is already PSPACE-hard for a constant pa-
rameter value. We do so by giving a reduction from QSAT.
Let g = Vz1.325 ... Qpx,.1 be a quantified Boolean for-
mula. We may assume without loss of generality that (n
mod 4) = 1, and thus that), = V. We construct a Kripke
structure M symbolically represented by (¢ g, ag), whose
reachability diameter is polynomial in the size of ¢q, and
an LTL formula ¢ that does not contain the U operator, in
such a way that ¢y is true if and only if M = —p. (So tech-
nically, we are reducing to the co-problem of SYMBOLIC-
MC*[LTL\U]J. Since PSPACE is closed under complement,
this suffices to show PSPACE-hardness.)
The idea is to construct a full binary tree (of exponential

size), with bidirectional transitions between each parent and

(1,1,0),7 = (0,1,0)

~

Y=

’
€2, a4y - _Tesd}
, , [] []
el,az/ie’l,alr 7
[] [] ®€,a

ec,a
, 2N ey, a1 IN 7N 7N
eh,ar® @ e o e o o o
7N
el,a, f® ® @ej,af
e1,ar, f

!
€1:9

’
ai,e
\1.2/>OD

~
S al,el/ \a“el
NN ° e

’
€2,y

’
€2, aq

° °
e’l,a;o/e'l,a"}o 6,1’(42\601’%
7N 7N 7N 7N
o o o o o o o o

Figure 3: (The reachable part of) the structure M in the proof of Theorem 6.

child, and to label the nodes of this tree in such a way that a
constant-size LTL formula can be used to force paths to be
a traversal of this tree corresponding to a QBF model of the
formula . The idea of using LTL formulas to force paths
to be traversals of exponential-size binary trees was already
mentioned by Kroening et al. (2011). We construct the Kripke
structure M as depicted in Figure 3. For a detailed treatment
of how to construct ¢ and « to get this structure M, we
refer to the technical report (De Haan and Szeider 2015). It is
straightforward to check that the recurrence diameter rd (M)
of M is bounded by 2n as the longest simple path in M is
from some leaf in the tree to another leaf.

More concretely, the intuition behind the construction
of M is as follows. Every transition from the i-th level
to the (¢ + 1)-th level (where the root is at the O-th level)
corresponds to assigning a truth value to the variable x; .
We use variables T = (x1,...,%,) to keep track of the
truth assignment in the current position of the tree, and
variables ¥ = (y1,...,Yn) to keep track of what level in
the tree the current position is (at level i, exactly the vari-
ables y1, ..., y; are set to true). At the even levels ¢, we use
the variables a1, a;, a, (and a},a},a).) to ensure that (in a
single path) both possible truth assignments to the (univer-
sally quantified) variable x;,; are used. At the odd levels 1,
we use the variables eq, e; (and e, €}) to ensure that one of
both possible truth assignments to the (existentially quanti-
fied) variable x;; is used. We need the copies af, €], ...
to be able to enforce the intended (downward and upward)
traversal of the tree. Then, the variable f is used to signal that
a leaf has been reached, and the variable g is used to signal
that the path is in the sink state. For a detailed specification
of how to construct the LTL formula ¢ in such a way that it
enforces such a traversal of the structure M, we refer to the
technical report (De Haan and Szeider 2015).

We can then show that ¢ is true if and only if M =
—p. By construction of M and ¢, all paths starting in the
initial state of M that satisfy ¢ naturally correspond to a
QBF model of ¢g, and all QBF models of ¢ correspond
to such a path. Assume that ¢ is true. Then there exists a
QBF model of (. Then there exists a path satisfying ¢, and
thus M F~ —¢. Conversely, assume that M F~ —¢. Then
there exists a path that satisfies . Therefore, there exists a
QBF model of ¢, and thus ¢y is true. O

Theorem 7. SYMBOLIC-MC*[LTL\X] is para-PSPACE-
complete.

459

Proof. Membership follows from the PSPACE-membership
of SyMBOLIC-MC[LTL]. We show para-PSPACE-hardness
by modifying the reduction in the proof of Theorem 6. The
idea is to simulate the X operator using the U operator. Given
an instance of QSAT, we construct the Kripke structure M
and the LTL formula ¢ as in the proof of Theorem 6. Then,
we modify M and ¢ as follows. Firstly, we add a fresh
variable z(to the set of propositions P, we ensure that x(
is false in the initial state g, and we modify r so that in
each transition, the variable xy swaps truth values. Then, it is
straightforward to see that any LTL formula of the form X¢'
is equivalent to the LTL formula (2o — 2oU(—zo A ¢)) A
(mxo = —zoU(xg A ¢')), on structures where x shows
this alternating behavior. Using this equivalence, we can
recursively replace all occurrences of the X operator in the
LTL formula (. This leads to an exponential blow-up in the
size of ¢, but since ¢ is of constant size, this blow-up is
permissible. O

Next, we show that for the case of CTL, the problem is
complete for PH(LEVEL), even when both temporal opera-
tors U and X are disallowed. In order to establish this result,
we need the following technical lemma.

Lemma 8. Given a symbolically represented Kripke struc-
ture M given by (¢g,) over the set P of propositional
variables, and a propositional formula 1) over P, we can
construct in polynomial time a Kripke structure M’ given
by (¢'p, o)) over the set P U{z} of variables (where z ¢ P)
such that:

e there exists an isomorphism p between the states in the
reachable part of M and the states in the reachable part
of M’ that respects the initial states and the transition
relations,

e cach state s in the reachable part of M agrees with p(s)
on the variables in P, and
e for each state s in the reachable part of M it holds
that p(s) |= z if and only if s |= .
Proof. Intuitively, the required Kripke structure M’ can be
constructed by adding the variable z to the set P of proposi-
tions, and modifying the formula @ specifying the transition
relation and the initial state oy appropriately. In the new ini-
tial state «, the variable z gets the truth value 1 if and only
if o |= 1. Moreover, the transition relation specified by ¢';
ensures that in any reached state «, the variable z gets the
truth value 1 if and only if o = 9.

I / \ L

l

2
[]
1.
I3

o

012
o/-\‘o

3 3

l2.
o/ \o

l3 I3

Figure 4: (The reachable part of) the structure M in the proof of Theorem 9.

Concretely, we define M’ = (¢, o)) over the set PU{z}
as follows. We let oy (p) = ao(p) for allp € P, and we
let o) (z) = 1 if and only if ag [= 9. Then, we define ¢/, by
letting:

OR(@ 2,7, 2") = pr(T,T") A (2 < ¥(T)).
The isomorphism p can then be constructed as follows. For

each state o in M, p(«) aU{zHl}lfabzw
and p(a) = a U {z — 0} if o [~ 4.

Theorem 9. SYMBOLIC-MC*[CTL] is PH(LEVEL)-
complete. Moreover, hardness already holds for SYMBOLIC-
MC*[CTL\U,X].

Proof. In order to show hardness, we give an fpt-reduction
from QSAT(LEVEL). Let ¢ = X VX5 ... QX be an in-
stance of QSAT(LEVEL). We construct a Kripke structure M
over a set P of propositional variables represented symboli-
cally by (¢r, «g), with polynomial recurrence diameter, and
a CTL formula ® such that ¢ is true if and only if M | ®.

The idea is to let M consist of a (directed) tree of ex-
ponential size, as depicted in Figure 4. The tree consists
of k levels (where the root is at the 0-th level). All nodes
on the i-th level are labelled with proposition /;. Moreover,
each node is associated with a truth assignment over the vari-
ables in X = (J, ;<. X;. For each node n at the i-th level
(for 0 < ¢ < k) with corresponding truth assignment c,,, and
for each truth assignment « to the variables in X;;, there
is a child node of n (at the (i + 1)-th level) whose corre-
sponding assignment agrees with « on the variables in X ;.
Also, the truth assignment corresponding to each child of n
agrees with «, on the variables in X, ..., X;. Moreover,
by Lemma 8, we may assume without loss of generality that
there is a propositional variable z, in P that in each state
is set to 1 if and only if this state sets the propositional for-
mula 1) (over X) to true.

We show how to construct the Kripke structure M =
(¢r, o). Remember that P X1 U -+ U X, U
{lo, 11, ..., 1} (for the sake of simplicity, we leave treatment
of the propositional variable 2, to the technique discussed in
the proof of Lemma 8). We let o be the truth assignment that
sets only the propositional variable [, to true, and all other
propositional variables to false. Then, we define pg(p,7’) as
the conjunction of several subformulas. The first conjuncts
ensure that in each level of the tree, the propositional vari-
ables [; get the right truth value:

/\ (L AL).

/ li
N L=l (k—1) and
0<i<k 0<i<i’<k

460

The following conjunct ensures that the partial truth assign-
ment of a node at the i-th level of the tree agrees with its
parent on all variables in Xq,..., X;_1.

/\ 1 — /\ (z < 2')).

1<i<n @€X U--UX;_;

This concludes our construction of the Kripke structure M as
depicted in Figure 4. Clearly, the longest simple path in M
is a root-to-leaf path, which has length k.

Then, using this structure M, we can express the quanti-
fied Boolean formula ¢ in CTL as follows. We define & =
JF(ly AVF(la ATF(I3 A - - - QuF(lg A zy) - - -). By construc-
tion of ¢, we get that those subtrees of M that naturally
correspond to witnesses for the truth of this CTL formula ¢
exactly correspond to the QBF models for ¢. From this, we
directly get that ¢ is true if and only if M = ®.

In order to prove membership in PH(LEVEL), we show
that SYMBOLIC-MC*[CTL] can be decided in fpt-time by
an ATM M that is f(k)-alternating. The algorithm imple-
mented by M takes a different approach than the well-known
dynamic programming algorithm for CTL model checking
for explicitly encoded Kripke structures (see, e.g., Baier and
Katoen 2008, Section 6.4.1). Since symbolically represented
Kripke structures can be of size exponential in the input,
this bottom-up algorithm would require exponential time.
Instead, we employ a top-down approach, using (existential
and universal) non-determinism to quantify over the possibly
exponential number of states.

We consider the function CTL—-MC, given in pseudo-code
in Algorithm 1, which takes as input the Kripke structure M
in form of its representation (pg,ag), a state « in M, a
CTL formula ® and the recurrence diameter rd(M) of M
(in unary), and outputs 1 if and only if o makes & true.
The algorithm only needs to check for paths of length at
most m = rd(M) in the case of the U operator, because any
path longer than m must cycle. Note that in this algorithm, we
omit the case for the operator F, as any CTL formula FF® is
equivalent to 3T U®D. It is readily verified that this algorithm
correctly computes whether M, o = ®@. Therefore, M = @
if and only if CTL-MC (M, ag, ®, m) returns 1, where m
is the unary encoding of rd(M).

It remains to verify that the algorithm CTL-MC can be
implemented in fpt-time by an f(k)-alternating ATM M. We
can construct M in such a way that the existential guesses
are done using the existential non-deterministic states of M,
and the universal guesses by the universal non-deterministic
states. Note that the recursive call in the case for —®; is

Algorithm 1: Recursive CTL model checking using
bounded alternation.
function CTL-MC (M, «, ¢, m):
switch ¢ do
case p € P: return a(p) ;
case —=®; : return not CTL-MC (M, o, 1, m) ;
case $; A Py return CTL-MC (M, o, ®1, m)
and CTL-MC (M, «, ®5, m) ;
case X :
(existentially) pick a state o’ in M ;
/* guess successor state x/
if or(a, ') is false then return 0 ;
/+ check transition =/
| return CTL-MC (M, o/, 1, m)
case 30, UD,:
(existentially) pick some m’ < m ;
/* guess length of path x/
(existentially) pick states v, . .., @y in M
/* guess path =/
(universally) pick some 1 < j < m/';
/+ check all states in path */
if or(ey, aj11) is false then return 0 ;
/* check transition x/
if CTL-MC (M, aj, 1, m) =0
then return O ;
return CTL-MC (M, o, o, m)

preceded by a negation, so the existential and universal non-
determinism swaps within this recursive call. The recursion
depth of the algorithm is bounded by |®| = k, since each
recursive call strictly decreases the size of the CTL formula
used. Moreover, in each call of the function CTL—MC, at most
two recursive calls are made (not counting recursive calls at
deeper levels of recursion). Therefore, the running time of M
is bounded by 2*poly(n), where n is the input size. Also,
since in each call of the function at most two alternations
between existential and universal non-determinism are used
(again, not counting at deeper levels of recursion), we know
that M is 2*-alternating. (This bound on the number of alter-
nations needed can be improved with a more careful analysis
and some optimizations to the algorithm.) O

Finally, we complete the parameterized complexity classi-
fication of the problem SYMBOLIC-MC* by showing mem-
bership in PH(LEVEL) for the case of CTL"\U,X.

Theorem 10. SYMBOLIC-MC*[CTL*\U,X] is PH(LEVEL)-
complete.

Proof. Hardness for PH(LEVEL) follows from Theorem 9.
We show membership in PH(LEVEL), by describing an al-
gorithm A to solve the problem that can be implemented by
an ATM M that runs in fpt-time and that is f(k)-alternating.
The algorithm works similarly to Algorithm 1, described in
the proof of Theorem 9, and recursively decides the truth of
a CTL* formula in a state. The difference with Algorithm 1
is that it does not look only at the outermost temporal oper-
ators of the CTL* formula in a recursive step, but considers

461

possibly larger subformulas in each recursive step. Let 3 be
a CTL* formula, and let s be a state in M. The algorithm A
then considers all maximal subformulas 1)1, . .., 1, of ¢ that
are CTL" state formulas as atomic propositions p, . .., Py,
turning the formula ¢ into an LTL formula. Since ¢ does
not contain the operators U and X, we know that in order to
check the existence of an infinite path satisfying ¢, it suf-
fices to look for lasso-shaped paths of bounded length (linear
in rd(M) and exponential in the size of ¢), i.e., a finite path
followed by a finite cycle (Kroening et al. 2011). The algo-
rithm A then uses (existential) nondeterminism to guess such
a lasso-shaped path 7, and to guess for each state which of
the propositions pi, ..., py are true, and verifies that 7 wit-
nesses truth of Jp. Then, in order to ensure that it correctly
determines whether ¢ is true, the algorithm needs to verify
that it guessed the right truth values for py,...,pe in 7. It
does so by recursively determining, for each state s’ in the
lasso-shaped path 7, and each p;, whether v); is true in s’ if
and only if it guessed p; to be true in s’. (In order to ensure
that in each level of recursion there are only a constant num-
ber of recursive calls, like Algorithm 1, the algorithm A uses
universal nondeterminism iterate over each p; and each s’.)
The algorithm then reports that 3¢ is true in s if and only
if (1) the guesses for 7 and the truth values of py,...,p¢
together form a correct witness for truth of 3, and (2) for
each p; and each s’ it holds that p; was guessed to be true
in " if and only if 1); is in fact true in s’. The recursive cases
for CTL* formulas where the outermost operator is not tem-
poral are analogous to Algorithm 1. Like Algorithm 1, the
algorithm runs in fpt-time and is 2*-alternating. O

Conclusion

An essential technique for solving the fundamental problem
of temporal logic model checking is the SAT-based approach
of bounded model checking. Even though its good perfor-
mance in settings with large Kripke structures and small
temporal logic specifications provides a good handle for a pa-
rameterized complexity analysis, the theoretical possibilities
of the bounded model checking method have not been struc-
turally investigated. We contributed to closing this gap by
providing a complete parameterized complexity classification
of the model checking problem for fragments of the temporal
logics LTL, CTL and CTL", where the Kripke structures are
represented symbolically, and have a restricted recurrence
diameter. In particular, we showed that the known case of
LTL\U,X is the only case that allows an fpt-reduction to
SAT, by showing completeness for the classes PH(LEVEL)
and para-PSPACE for all other cases. We hope that providing
a clearer theoretical picture of the settings where the powerful
technique of bounded model checking can be applied helps
guide engineering efforts for developing algorithms for the
problem of temporal logic model checking.

Future research includes extending the parameterized com-
plexity investigation to further restrictions on the fragments
of the temporal logics that we consider, with the aim of identi-
fying more settings where bounded model checking can be ap-
plied efficiently. This can be done, for instance, by taking into
account more input parameters. Additionally, the complexity
investigation can be extended to other temporal logics that are

used in knowledge representation and reasoning, such as the
alternating-time temporal logics ATL and ATL" (Fisher 2008;
Alur, Henzinger, and Kupferman 2002). For this setting, it
would be important to identify further restrictions, because
ATL and ATL* generalize CTL and CTL", respectively. More-
over, it would be valuable to investigate to what extent the
complexity results hold in settings where structures are de-
scribed symbolically using other formalisms (see, e.g., Van
der Hoek, Lomuscio, and Wooldridge 2006).

Acknowledgments

This work is supported by the Austrian Science Fund (FWF),
project P26200 (Parameterized Compilation).

References

Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002. Alternating-
time temporal logic. J. of the ACM 49(5):672-713.

Arora, S., and Barak, B. 2009. Computational Complexity — A
Modern Approach. Cambridge University Press.

Baier, C., and Katoen, J.-P. 2008. Principles of Model Checking.
MIT Press.

Biere, A.; Cimatti, A.; Clarke, E. M.; and Zhu, Y. 1999. Symbolic
model checking without BDDs. In Cleaveland, R., ed., Proceed-
ings of TACAS 1999, volume 1579 of Lecture Notes in Computer
Science, 193-207. Springer Verlag.

Biere, A.; Cimatti, A.; Clarke, E. M.; Strichman, O.; and Zhu, Y.
2003. Bounded model checking. Advances in computers 58:117—
148.

Biere, A. 2009. Bounded model checking. In Biere, A.; Heule,
M.; van Maaren, H.; and Walsh, T., eds., Handbook of Satisfiabil-
ity, volume 185 of Frontiers in Artificial Intelligence and Appli-
cations. 10S Press. 457-481.

Bundala, D.; Ouaknine, J.; and Worrell, J. 2012. On the mag-
nitude of completeness thresholds in bounded model checking.
In Proceedings of the 27th Annual IEEE Symposium on Logic in
Computer Science (LICS), 155-164. IEEE Computer Society.

Chandra, A. K.; Kozen, D. C.; and Stockmeyer, L. J. 1981. Alter-
nation. J. of the ACM 28(1):114-133.

Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H. 2001.
Progress on the state explosion problem in model checking. In
Informatics, volume 2000 of Lecture Notes in Computer Science,
176-194. Springer Verlag.

Clarke, E. M.; Kroening, D.; Ouaknine, J.; and Strichman, O.
2004. Completeness and complexity of bounded model checking.
In Proceedings of VM CAI 2004, volume 2937 of Lecture Notes in
Computer Science, 85-96. Springer Verlag.

Clarke, E. M.; Emerson, E. A.; and Sifakis, J. 2009. Model check-

ing: algorithmic verification and debugging. Communications of
the ACM 52(11):74-84.

Demri, S.; Laroussinie, F.; and Schnoebelen, P. 2006. A paramet-
ric analysis of the state-explosion problem in model checking. J.
of Computer and System Sciences 72(4):547-575.

Downey, R. G., and Fellows, M. R. 2013. Fundamentals of Pa-
rameterized Complexity. Texts in Computer Science. Springer
Verlag.

Emerson, E. A., and Lei, C.-L. 1987. Modalities for model check-

ing: branching time logic strikes back. Science of computer pro-
gramming 8:275-306.

462

Fichte, J. K., and Szeider, S. 2013. Backdoors to normality for
disjunctive logic programs. In Proceedings of the 27th AAAI Con-
ference on Artificial Intelligence (AAAI), 320-327. AAAI Press.

Fisher, M.; Gabbay, D.; and Vila, L. 2005. Handbook of Temporal
Reasoning in Artificial Intelligence. Elsevier Science Publishers,
North-Holland.

Fisher, M. 2008. Temporal representation and reasoning. In
Handbook of Knowledge Representation, volume 3 of Founda-
tions of Artificial Intelligence. Elsevier. 513-550.

Flum, J., and Grohe, M. 2003. Describing parameterized com-
plexity classes. Information and Computation 187(2):291-319.

Flum, J., and Grohe, M. 2006. Parameterized Complexity Theory,
volume XIV of Texts in Theoretical Computer Science. An EATCS
Series. Berlin: Springer Verlag.

Goller, S. 2013. The fixed-parameter tractability of model check-
ing concurrent systems. In Proceedings of CSL 2013, volume 23
of LIPIcs, 332-347.

de Haan, R., and Szeider, S. 2014a. Compendium of param-
eterized problems at higher levels of the Polynomial Hierarchy.
Technical Report TR14-143, Electronic Colloquium on Compu-
tational Complexity (ECCC).

de Haan, R., and Szeider, S. 2014b. The parameterized complex-
ity of reasoning problems beyond NP. In Baral, C.; De Giacomo,
G.; and Eiter, T., eds., Proceedings of the 14th International Con-
ference on Principles of Knowledge Representation and Reason-
ing (KR). AAAI Press.

de Haan, R., and Szeider, S. 2015. Parameterized complexity
results for symbolic model checking of temporal logics. Technical
Report AC-TR-15-002, Algorithms and Complexity Group, TU
Wien.

van der Hoek, W.; Lomuscio, A.; and Wooldridge, M. 2006. On
the complexity of practical ATL model checking. In Proceedings
of the 5th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 201-208. ACM.

Kroening, D.; Ouaknine, J.; Strichman, O.; Wahl, T.; and Wor-
rell, J. 2011. Linear completeness thresholds for bounded model
checking. In Proceedings of CAV 2011, volume 6806 of LNCS,
557-572. Springer Verlag.

Kupferman, O.; Vardi, M. Y.; and Wolper, P. 2000. An automata-
theoretic approach to branching-time model checking. J. of the
ACM 47(2):312-360.

Liick, M.; Meier, A.; and Schindler, I. 2015. Parameterized com-
plexity of CTL. In Proceedings of LATA 2015, volume 8977 of
Lecture Notes in Computer Science. Springer Verlag. 549-560.

Niedermeier, R. 2006. Invitation to Fixed-Parameter Algorithms.
Oxford Lecture Series in Mathematics and its Applications. Ox-
ford: Oxford University Press.

Pfandler, A.; Riimmele, S.; and Szeider, S. 2013. Backdoors to
abduction. In Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence (IJCAI).

Samulowitz, H.; Davies, J.; and Bacchus, F. 2006. Prepro-
cessing QBF. In Proceedings of the 12th International Con-
ference on Principles and Practice of Constraint Programming
(CP), volume 4204 of Lecture Notes in Computer Science, 514—
29. Springer Verlag.

Sistla, A. P., and Clarke, E. M. 1985. The complexity of proposi-
tional linear temporal logics. J. of the ACM 32(3):733-749.
Vardi, M. Y., and Wolper, P. 1986. Automata-theoretic techniques
for modal logics of programs. J. of Computer and System Sci-
ences 32(2):183-221.

