
On the Functional Completeness of Argumentation Semantics

Massimiliano Giacomin
Department of Information Engineering

University of Brescia, Italy
massimiliano.giacomin@unibs.it

Thomas Linsbichler and Stefan Woltran
Institute of Information Systems

TU Wien, Vienna, Austria
{linsbich,woltran}@dbai.tuwien.ac.at

Abstract

Abstract argumentation frameworks (AFs) are one of
the central formalisms in AI; equipped with a wide
range of semantics, they have proven useful in several
application domains. We contribute to the systematic
analysis of semantics for AFs by connecting two recent
lines of research – the work on input/output frameworks
and the study of the expressiveness of semantics. We do
so by considering the following question: given a func-
tion describing an input/output behaviour by mapping
extensions (resp. labellings) to sets of extensions (resp.
labellings), is there an AF with designated input and
output arguments realizing this function under a given
semantics? For the major semantics we give exact char-
acterizations of the functions which are realizable in this
manner.

1 Introduction

Dung’s argumentation frameworks (AFs) have been exten-
sively investigated, mainly because they represent an ab-
stract model unifying a large variety of specific formalisms
ranging from nonmonotonic reasoning to logic program-
ming and game theory (Dung 1995). After the develop-
ment and analysis of different semantics (Verheij 1996;
Caminada, Carnielli, and Dunne 2012; Baroni, Caminada,
and Giacomin 2011), recent attention has been drawn to
their expressive power, i.e. determining which sets of exten-
sions (Dunne et al. 2015) and labellings (Dyrkolbotn 2014)
can be enforced in a single AF under a given semantics.
Such results have recently been facilitated in order to ex-
press AGM-based revision in the context of abstract argu-
mentation (Diller et al. 2015).

In (Baroni et al. 2014), it has been shown that an AF can
be viewed as a set of partial interacting sub-frameworks each
characterized by an input/output behavior, i.e. a semantics-
dependent function which maps each labelling of the “in-
put” arguments (the external arguments affecting the sub-
framework) into the set of labellings prescribed for the “out-
put” arguments (the arguments of the sub-framework affect-
ing the external ones). It turns out that under the major se-
mantics, i.e. complete, grounded, stable and (under some
mild conditions) preferred semantics, sub-frameworks with

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the same input/output behavior can be safely exchanged, i.e.
replacing a sub-framework with an equivalent one does not
affect the justification status of the invariant arguments: se-
mantics of this kind are called transparent (Baroni et al.
2014).

As a simple example, consider an argumentation frame-
work including a chain of 4 arguments a1, . . . , a4 where for
i ∈ {2, 3, 4}, ai−1 attacks ai and ai does not receive other
attacks, and a1 is unattacked. This chain can be seen as a
sub-framework with input argument a1 and output argument
a4, which under any transparent semantics can be replaced
with any even-length chain without affecting the justification
status of the arguments outside the sub-framework.

Then, somewhat resembling functional completeness of a
specific set of logic gates, a natural question concerns the
expressive power of transparent semantics in the context of
an interacting sub-framework: given a so-called I/O specifi-
cation, i.e. a function describing an input/output behaviour
by mapping extensions (resp. labellings) to sets of exten-
sions (resp. labellings), is there an AF with designated input
and output arguments realizing this function under a given
semantics?

Turning to the example above, the sub-framework includ-
ing the 4-length chain realizes the mapping where {a1} is
mapped to ∅ (i.e. if a1 belongs to an extension then a4 does
not belong to it) and ∅ is mapped to {a4} (i.e. if a1 does
not belong to an extension then a4 belongs to it): we call
this kind of mapping a two-valued I/O specification. On the
other hand, one may want to distinguish between out argu-
ments (i.e. attacked by an extension) and undecided argu-
ments (i.e. neither belonging to the extension nor attacked by
it). Considering the sub-framework above, if a1 is accepted
then a4 is out, if a1 is out then a4 is accepted, if a1 is unde-
cided then a4 is undecided too. We call this kind of mapping
a three-valued I/O specification. As it will be shown in the
following, not all three-valued I/O specifications are realiz-
able, e.g. there is no sub-framework realizing the variant of
the mapping above where a1 undecided yields a4 accepted.

In this paper, we answer the question of realizability as
follows:

• For the stable, preferred, semi-stable, stage, complete,
ideal, and grounded semantics we exactly characterize all
realizable two-valued I/O specifications.

Proceedings, Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016)

43

• For the preferred and grounded labellings we exactly
characterize all realizable three-valued I/O specifications.

Answering this question is essential in many aspects.
First, it adds to the analysis and comparison of semantics
(see e.g. (Caminada and Amgoud 2007; Baroni and Gi-
acomin 2007)), by providing an absolute characterization
of their functional expressiveness, which holds indepen-
dently of how the abstract argumentation framework is in-
stantiated. Second, it lays foundations towards a theory of
dynamic and modular argumentation. More specifically, a
functional characterization provides a common ground for
different representations of the same sub-framework, as in
metalevel argumentation (Modgil and Bench-Capon 2011)
where meta-level arguments making claims about object-
level arguments allow for equivalent characterizations of the
same framework at different levels of abstraction, or to de-
vise a summarized version of a sub-framework in order to
simplify a given argumentation framework. One may also
translate a different formalism to an AF or vice versa, e.g. to
express a logical system as an AF or provide an argument-
free representation of a given AF for human/computer inter-
action issues. In all of these cases, it is important to know
whether an input/output behavior is realizable under a given
argumentation semantics. Finally, our results are important
in the dynamic setting of strategic argumentation, where a
player may exploit the fact that for some set of arguments
certain labellings are achievable (or non achievable) inde-
pendently of the labelling of other arguments, or more gen-
erally she/he may exploit knowledge on the set of realizable
dependencies. For example, an agent may desire to achieve
some goal, i.e., ensure that a certain argument is justified.
Considering arguments brought up by other agents as input
arguments, our results enable the agent to verify whether the
goal is achievable and provide one particular way for the
agent to bring up further arguments in order to succeed.

The paper is organized as follows. After providing the
necessary background in Section 2, Section 3 introduces
the notion of an I/O-gadget to represent a sub-framework,
and tackles the above problem with extension-based two-
valued specifications. Labelling-based three-valued specifi-
cations are investigated in Section 4 while Section 5 consid-
ers partial specifications where for some inputs the output is
not specified. Section 6 concludes the paper.

2 Background

We assume a countably infinite domain of arguments A. An
argumentation framework (AF) is a pair F = (A,R) where
A ⊆ A and R ⊆ A × A. We assume that A is non-empty
and finite. For an AF F = (A,R) and a set of arguments
S ⊆ A, we define S+

F = {a ∈ A | ∃s ∈ S : (s, a) ∈ R},
S⊕F = S ∪ S+

F , and S−F = {a ∈ A | ∃s ∈ S : (a, s) ∈ R}.
Given F = (A,R), a set S ⊆ A is conflict-free (in F), if

there are no arguments a, b ∈ S : (a, b) ∈ R. An argument
a ∈ A is defended (in F) by a set S ⊆ A if ∀b ∈ A :
(b, a) ∈ R ⇒ b ∈ S+

F . A set S ⊆ A is admissible (in F) if
it is conflict-free and defends all of its elements. We denote
the set of conflict-free and admissible sets in F as cf(F) and
ad(F), respectively.

An extension-based semantics σ associates to any F =
(A,R) the (possibly empty) set σ(F) ⊆ 2A of subsets of A
called σ-extensions, where 2A denotes the powerset of A. In
this paper we focus on complete, grounded, preferred, ideal,
stable, stage and semi-stable semantics, with extensions de-
fined as follows:

• S ∈ co(F) iff S ∈ ad(F) and a ∈ S for all a ∈ A
defended by S;

• S ∈ gr(F) iff S is the least element in co(F);

• S ∈ pr(F) iff S ∈ ad(F) and �T ∈ ad(F) s.t. T ⊃ S;

• S ∈ id(F) iff S ∈ ad(F), S ⊆ ⋂
pr(F) and �T ∈ ad(F)

s.t. T ⊆ ⋂
pr(F) and T ⊃ S;

• S ∈ st(F) iff S ∈ cf(F) and S⊕F = A;

• S ∈ sg(F) iff S ∈ cf(F) and �T ∈ cf(F) s.t. T⊕F ⊃ S⊕F ;

• S ∈ se(F) iff S ∈ ad(F) and �T ∈ ad(F) s.t. T⊕F ⊃ S⊕F .

Given F = (A,R) and a set O ⊆ A, the restriction of σ(F)
to O, denoted as σ(F)|O, is the set {E ∩O | E ∈ σ(F)}.

Given a set of arguments A, a labelling L is a function
assigning each argument a ∈ A exactly one label among
t, f and u, i.e. L : A �→ {t, f ,u}. If the arguments
A = {a1, . . . , an} are ordered, then we denote a labelling of
A as a sequence of labels, e.g. the labelling tuf of arguments
{a1, a2, a3} maps a1 to t, a2 to u, and a3 to f . We denote the
set of all possible labellings of A as L(A). Likewise, given
an AF F , we denote the set of all possible labellings of (the
arguments of) F as L(F). Given a labelling L and an argu-
ment a, L(a) denotes the labelling of a wrt. L; finally in(L),
out(L), and undec(L) denotes the arguments labeled to t, f ,
and u by L, respectively. By ¬L we denote the inverse la-
belling of L, i.e. in(¬L) = out(L), out(¬L) = in(L), and
undec(¬L) = undec(L).

Definition 1. Given a set of arguments A and labellings L1,
L2 thereof, L1 L2 iff in(L1) ⊆ in(L2) and out(L1) ⊆
out(L2). As usual, L1 � L2 holds iff L1 L2 but L2 � L1.
Moreover, we call L1 and L2

• comparable if L1 L2 or L2 L1

• compatible if in(L1) ∩ out(L2) = out(L1) ∩ in(L2) = ∅.

Note that if L1 and L2 are comparable then they are also
compatible, while the reverse does not hold in general.

An argumentation semantics can be defined in terms of
labellings rather than of extensions, i.e. the labelling-based
version of a semantics σ associates to F a set Lσ(F) ⊆
L(F), where any labelling L ∈ Lσ(F) corresponds to an
extension S ∈ σ(F) as follows: an argument a ∈ A is la-
beled to t iff a ∈ S, is labeled to f iff a ∈ S+

F , is labeled to
u if neither of the above conditions holds. Given F and a set
O ⊆ A, the restriction of Lσ(F) to O, denoted as Lσ(F)|O,
is the set {L ∩ (O × {t, f ,u}) | L ∈ Lσ(F)}.

The following well-known result can be deduced e.g.
from the semantics account given in (Caminada and Gabbay
2009).

Proposition 1. For an AF F , Lpr(F) = max�(Lco(F)).

44

3 Extension-based I/O-gadgets

An I/O-gadget represents a (partial) AF where two sets of
arguments are identified as input and output arguments, re-
spectively, with the restriction that input arguments do not
have any ingoing attacks1.
Definition 2. Given a set of input arguments I ⊆ A and a set
of output arguments O ⊆ A with I ∩O = ∅, an I/O-gadget
is an AF F = (A,R) such that I,O ⊆ A and I−F = ∅.

The injection of a set J ⊆ I to an I/O-gadget F simulates
the input J in the way that all arguments in J are accepted
(none of them has ingoing attacks since F is an I/O-gadget)
and all arguments in (I \ J) are rejected (each of them is
attacked by the newly introduced argument z, which has no
ingoing attacks).
Definition 3. Given an I/O-gadget F = (A,R) and a set
of arguments J ⊆ I , the injection of J to F is the AF

�(F, J) = (A ∪ {z}, R ∪ {(z, i) | i ∈ (I \ J)}) ,
where z is a newly introduced argument.

An I/O-specification describes a desired input/output be-
haviour by assigning to each set of input arguments a set of
sets of output arguments.
Definition 4. A two-valued2 I/O-specification consists of
two sets I,O ⊆ A and a total3 function f : 2I �→ 22

O

.
In order for an I/O-gadget F to satisfy f under a seman-

tics σ, the injection of each J ⊆ I to F must have f(J) as
its σ-extensions restricted to the output arguments. So, infor-
mally, with input J applied the set of outputs under σ should
be exactly f(J).
Definition 5. Given I,O ⊆ A, a semantics σ and an I/O-
specification f, the I/O-gadget F satisfies f under σ iff ∀J ⊆
I : σ(�(F, J))|O = f(J).

The following example illustrates these basic concepts.
Example 1. Consider the sets I = {a, b} and O = {c, d}.
A possible I/O-specification is the function f : 2I �→ 22

O

such that

f(∅) = {{d}}
f({a}) = {{c, d}}
f({b}) = {{c}, {d}}

f({a, b}) = {{c, d}, {c}}
Considering, for instance, the case of input {b}, the intended
meaning of f is that if b is accepted and a is not, then either
c or d, but not both, should be accepted. On the other hand,
in the case of input {a}, i.e. a is accepted and b is not, both

1Differently from an I/O-gadget, the notion of argumentation
multipole in (Baroni et al. 2014) assumes a fixed set of incoming
and outgoing attacks rather than of input and output arguments.
However, for the purposes of the present paper the two notions are
equivalent insofar as input (output) arguments of an I/O-gadget
are identified with the sources (destinations) of incoming (outgo-
ing) attacks of the corresponding argumentation multipole.

2In the following we omit this specification.
3The case of a partial function will be discussed in Section 5.

a

b x2 x3

x1 c

d

Figure 1: I/O-gadget with I = {a, b} and O = {c, d}
satisfying the I/O-specification given in Example 1 under
{st, pr, se, sg}.

c and d should be accepted. The AF F in Figure 1, where
nodes and edges stand for arguments and attacks, respec-
tively, represents an I/O-gadget. It turns out that F satisfies
f under stable semantics. In order to show this we have to
check, for each J ⊆ I , whether the injection of J to F ,
�(F, J), has exactly f(J) as stable extensions restricted to O,
i.e. st(�(F, J))|O = f(J). Considering J = ∅, we have that
�(F, ∅) is F together with a new argument z attacking both
a and b. Hence we have st(�(F, ∅)) = {{z, x1, d}}, mean-
ing that st(�(F, ∅))|O = {{d}}, which is as specified by
f. Moreover we get st(�(F, {a})) = {{z, a, x2, c, d}},
st(�(F, {b})) = {{z, b, x3, c}, {z, b, x1, d}}, and
st(�(F, {a, b})) = {{z, a, b, c, d}, {z, a, b, x3, c}}. This
shows that for all possible inputs, the extensions restricted
to the output-arguments are as specified by f, hence F
satisfies f under stable semantics.

While it is easy to verify that F also satisfies f under pre-
ferred, semi-stable and stage semantics, it does not satisfy f
under grounded, ideal and complete semantics. For J = {b}
we have that gr(�(F, ∅))|O = id(�(F, ∅))|O = {∅} and
co(�(F, ∅))|O = {∅, {c}, {d}}, being not in line with f.

The question we want to address is the following: which
conditions must f fulfill in order to be satisfiable by some
I/O-gadget and how can such an I/O-gadget be con-
structed? The following generic gadget will be the key con-
cept for the forthcoming characterization results.

Definition 6. Given an I/O-specification f, let Y = {yi |
i ∈ I} and X = {xS

J | J ⊆ I, S ∈ f(J)}. The canonical
I/O-gadget (for f) is defined as

C(f) = (I ∪O ∪ Y ∪X ∪ {w},
{(i, yi) | i ∈ I} ∪
{(yi, xS

J) | xS
J ∈ X, i ∈ J} ∪

{(i, xS
J) | xS

J ∈ X, i ∈ (I \ J)} ∪
{(x, x′) | x, x′ ∈ X,x �= x′} ∪
{(x,w) | x ∈ X} ∪ {(w,w)} ∪
{(xS

J , o) | xS
J ∈ X, o ∈ (O \ S)}).

Intuitively, the argument xS
J shall enforce output S for in-

put J . Moreover, w ensures that any stable extension of (an
injection to) C(f) must contain an argument in X .

The following theorem shows that any I/O-specification
is satisfiable under stable semantics.

Theorem 1. Every I/O-specification f is satisfied by C(f)
under st.

45

Proof. Let I,O ⊆ A and f be an arbitrary I/O-
specification. We have to show that st(�(C(f), J))|O = f(J)
holds for any J ⊆ I . Consider such a J ⊆ I .

First let S ∈ f(J). We show that E = {z} ∪ J ∪ {yi |
i ∈ (I \ J)} ∪ {xS

J} ∪ S ∈ st(�(C(f), J)), thus S ∈
st(�(C(f), J))|O. E is conflict-free in �(C(f), J) since z only
attacks the arguments (I \ J), a yi with i ∈ (I \ J) is only
attacked by i /∈ E, xS

J is only attacked by other x ∈ X ,
i ∈ (I \ J) and yj with j ∈ J , and arguments in S are only
attacked by arguments from X but not from xS

J . E is stable
in �(C(f), J) since xS

J attacks w, all other x ∈ X and all
o ∈ (O \ S); z attacks all i ∈ (I \ J); each yj with j ∈ J is
attacked by j.

It remains to show that there is no S′ ∈ st(�(C(f), J))|O
with S′ /∈ f(J). Towards a contradiction assume there is
some S′ ∈ st(�(C(f), J))|O with S′ /∈ f(J). Hence there
must be some E′ ∈ st(�(C(f), J)) with S′ ⊂ E′. Since w
attacks itself, w /∈ E′, thus by construction of C(f) there
must be some xS′

J′ ∈ (X ∩ E′) attacking w, and xS′
J′ must

attack all o ∈ (O \ S′). Since S′ /∈ f(J) by assumption, it
must hold that J ′ �= J . Now note that z ∈ E′ and j ∈ E′
for all j ∈ J , since they are not attacked by construction of
�(C(f), J). Now if J ′ ⊂ J then there is some j ∈ (J \ J ′)
attacking xS′

J ′ , a contradiction to conflict-freeness of E′. On
the other hand if J ′ �⊆ J there is some j′ ∈ (J ′ \ J) which
is attacked by z. Therefore also yj′ ∈ E′, which attacks xS′

J ′ ,
again a contradiction.

As to preferred, semi-stable and stage semantics, any
I/O-specification is satisfiable, provided that a (possibly
empty) output is prescribed for any input.

Proposition 2. Every I/O-specification f such that ∀J ⊆
I, f(J) �= ∅ is satisfied by C(f) under σ ∈ {pr, se, sg}.

Proof (Sketch). Note that ∀J ⊆ I , stable, preferred, stage
and semi-stable extensions coincide in �(C(f), J), thus the
result follows from Theorem 1.

Theorem 2. An I/O-specification f is satisfiable under σ ∈
{pr, se, sg} iff ∀J ⊆ I, f(J) �= ∅.

Proof. The if-direction is a consequence of Proposition 2.
The only-if-direction follows directly by the fact that in any
AF, particularly in any injection of some set of arguments to
an I/O-gadget, a σ-extension always exists.

Example 2. Consider the I/O-specification f with I =
{a, b} and O = {c, d, e} defined as follows:

f(∅) = {∅}
f({a}) = {{c, e}}
f({b}) = {{c, d, e}, {d, e}}

f({a, b}) = {{c, d, e}, {c, d}}
The canonical I/O-gadget C(f) is depicted in Fig-
ure 2 (without the dotted part)4. Let σ be a seman-
tics in {st, pr, se, sg}. One can verify that for every

4Argument names such as x{c,d}
{a,b} are abbreviated by xcd

ab.

b yb ya a z

xcd
ab xcde

ab x∅
∅ xce

a xde
b xcde

b

e

w

d c

Figure 2: I/O-gadget satisfying the I/O-specification given
in Example 2 under {st, pr, se, sg}. The dotted part illus-
trates the injection of {b}.

possible input J ⊆ I , the injection of J to C(f)
has exactly f(J) as σ-extensions restricted to O. As
an example let J = {b}. �(C(f), {b}) adds to C(f)
the argument z attacking a. Now σ(�(C(f), {b})) =

{{z, b, ya, x{d,e}{b} , d, e}, {z, b, ya, x{c,d,e}{b} , c, d, e}}, hence
σ(�(C(f), {b}))|O = {{d, e}, {c, d, e}} = f({b}).

Also for complete, grounded and ideal semantics we are
able to identify a necessary and sufficient condition for sat-
isfiability. While we show sufficiency of these conditions in
more detail, their necessity is by the well-known facts that
the intersection of all complete extensions is always a com-
plete extension too and ideal and grounded semantics always
yield exactly one extension. We define the former property
for I/O-specifications:

Definition 7. An I/O-specification f is closed iff for each
J ⊆ I it holds that f(J) �= ∅ and

⋂
f(J) ∈ f(J).

Example 3. Again considering the I/O-specification f
given in Example 2, we observe that f is closed. For instance,⋂
f({b}) = {d, e} and, indeed, {d, e} ∈ f({b}).

Proposition 3. Every closed I/O-specification f is satisfied
by C(f) under co.

Proof. Let J ⊆ I . By construction of �(C(f), J), E∗ =
{z} ∪ J ∪ {yi | i ∈ (I \ J)} is contained in all complete
extensions, while the elements of (I \ J) ∪ {yi | i ∈ J} are
attacked by E∗ and thus by all complete extensions. All xS′

J ′
with J ′ �= J are attacked by J or some yi with i ∈ (I \ J),
thus they are attacked by E∗, while all xS

J with S ∈ f(J)
attack each other, and the other attacks they receive come
from elements attacked by E∗. Two cases can then be dis-
tinguished. If |f(J)| = 1 then by construction of �(C(f), J)
there is just one xS

J defended by E∗, thus the only com-
plete extension is E∗ ∪ {xS

J} ∪ S. If, on the other hand,
|f(J)| > 1, any xS

J with S ∈ f(J) can be included, giving
rise to the complete extension E∗ ∪ {xS

J} ∪ S, or none of
xS
J can be included, giving rise to the complete extension

E∗ ∪ ⋂
f(J) since an xS

J attacks all o ∈ (O \ S). Taking
into account that

⋂
f(J) ∈ f(J), in both cases we have that

co(�(C(f), J))|O = f(J).

46

Theorem 3. An I/O-specification f is satisfiable under co
iff f is closed.

Proof. The if-direction is a consequence of Proposition 3.
The only-if-direction follows directly by the fact that in any
AF, particularly in any injection of some extension to an
I/O-gadget, the intersection of all complete extensions is
always a complete extension too.

Proposition 4. Every I/O-specification f with |f(J)| = 1
for each J ⊆ I is satisfied by C(f) under gr and id.

Proof (Sketch). This follows the same idea as the proof of
Proposition 3. Since |f(J)| = 1, f(J) is closed and therefore,
by Proposition 3, co(�(C(f), J)) = f(J) for each J ⊆ I . By
|co(�(C(f), J))| = 1 we get that complete, grounded and
ideal extensions of �(C(f), J) coincide, hence the result fol-
lows.

Theorem 4. An I/O-specification f is satisfiable under gr
and id iff |f(J)| = 1 for each J ⊆ I .

Proof. The if-direction is a consequence of Proposition 4.
The only-if-direction follows directly by the fact that in any
AF, particularly in any injection of some extension to an
I/O-gadget, the grounded and ideal extension are uniquely
defined.

4 Labelling-based I/O-gadgets
In the previous section we have dealt with I/O-
specifications mapping extensions to sets of extensions. In
general, there are two reasons why an argument does not be-
long to an extension, i.e. either because it is attacked by the
extension (ı.e. it is labelled f in a labelling-based version of
the semantics) or because it is undecided due to insufficient
justification (ı.e. it is labelled u). This distinction impacts
on the justification status of arguments, since attacks from
undecided arguments can prevent attacked arguments from
belonging to an extension, while attacks from arguments la-
belled f are ineffective. In order to take into account this
distinction, we first provide a labelling-based counterpart of
the notions introduced in Section 3.
Definition 8. A 3-valued I/O-specification consists of two
sets I,O ⊆ A and a total function f : L(I) �→ 2L(O).
Definition 9. Given an I/O-gadget F = (A,R) and a la-
belling L of I , the labelling-injection of L to F is the AF

�(F,L) = (A ∪ {z}, R ∪ {(z, a) | L(a) = f}
∪ {(b, b) | L(b) = u}),

where z is a newly introduced argument.
Definition 10. Given I,O ⊆ A, a semantics σ and a 3-
valued I/O-specification f, the I/O-gadget F satisfies f un-
der σ iff ∀L ∈ L(I) : Lσ(�(F,L))|O = f(L).
Example 4. A possible 3-valued I/O-specification for I =
{a, b} and O = {c, d} is the function f : L(I) �→ 2L(O) such
that:

f(uu) = {ut} f(tu) = {tt} f(ut) = {ut, tf}
f(fu) = {ft} f(uf) = {ut} f(tt) = {tt, tf}
f(tf) = {tt} f(ft) = {tf , ft} f(ff) = {ft}

a

b x2 x3

x1 c

d

z

Figure 3: Labelling-injection of fu to the I/O-gadget from
Figure 1.

For instance, setting a to f and b to u shall have the ef-
fect that c is set to f and d is set to t. Setting both input-
arguments to t shall have two possible outputs, namely one
where both output-arguments are accepted and one with c
accepted and d rejected. It turns out that the I/O-gadget F
depicted in Figure 1 satisfies f under preferred semantics. As
an example, the labelling-injection of fu to F , i.e. �(F, fu),
is depicted in Figure 3. Since pr(�(F, fu)) = {{z, x1, d}}
it indeed holds that Lpr(�(F, fu))|O = {ft} = f(fu).

By definition of the stable semantics it is clear that in
order to be satisfied under st, a 3-valued I/O-specification
must have empty output for all inputs including a u-labelled
argument and, as can be derived from the two-valued case,
no output argument labelled to u for inputs with each argu-
ment labelled to t or f .
Theorem 5. A 3-valued I/O-specification f is satisfiable
under st iff for each L ∈ L(I) it holds that
• if ∃i ∈ I : L(i) = u then f(L) = ∅, and
• otherwise K(o) �= u for all K ∈ f(L) and o ∈ O.

Proof. For the only-if-direction consider the case where
∃i ∈ I : L(i) = u. Then for any I/O-gadget F , �(F,L)
contains a self-attacking argument otherwise unattacked,
hence Lst(�(F,L)) = ∅. In the other case, by definition
of the stable semantics it is clear that each o ∈ O must be
labelled either t or f by any stable labelling.
For the if-direction we get that if ∃i ∈ I : L(i) = u then
st(�(C(f), L)) = ∅. Otherwise the labelling-injection coin-
cides with the injection from the two-valued case and the
result follows from Theorem 1.

In order to characterize those 3-valued I/O-specifications
which are satisfiable under the other semantics we need the
following concept of monotonicity.
Definition 11. A 3-valued I/O-specification f is monotonic
iff for all L1 and L2 such that L1 L2 it holds that

∀K1 ∈ f(L1) ∃K2 ∈ f(L2) : K1 K2.

The intuitive meaning of monotonicity is the following:
if K1 is an output for input L1, then for every input which
is more committed than L1 there must be an output more
committed than K1.

Coming to necessary conditions for 3-valued I/O-speci-
fications we start with a rather obvious observation:
Proposition 5. For every 3-valued I/O-specification f
which is satisfiable under gr, |f(L)| = 1 for all L ∈ L(I).

Monotonicity is a necessary condition for grounded and
preferred semantics

47

Proposition 6. Every 3-valued I/O-specification which is
satisfiable under {gr, pr} is monotonic.

Proof. Let f be a 3-valued I/O-specification and sup-
pose it is satisfied by the I/O-gadget F under gr (resp.
pr). Moreover let L1 L2 be labellings of I . Propo-
sition 7 of (Baroni et al. 2014) says that ∀K2 ∈
Lco(�(F,L2))|O ∃K1 ∈ Lco(�(F,L1))|O : K1 K2 and
∀K1 ∈ Lco(�(F,L1))|O ∃K2 ∈ Lco(�(F,L2))|O : K1
K2. By the facts that |f(L1)|=|f(L2)|=1 (cf. Proposition 5)
and Lpr(F) = max�(Lco(F)) for each AF F (cf. Proposi-
tion 1), the result follows for gr and pr, respectively.

In Propositions 5 and 6 we have given necessary condi-
tions for 3-valued I/O-specifications to be satisfiable under
gr and pr. In the following we show that these conditions are
also sufficient in the sense that we can find a satisfying I/O-
gadget. The constructions of these I/O-gadgets will depend
on the given 3-valued I/O-specification and on the seman-
tics, but they will share the same input- and output-part. The
semantics-specific parts, denoted by Xσ

f and Rσ
f in the fol-

lowing definition, will be given later.
Definition 12. Given a 3-valued I/O-specification f we de-
fine I ′ = {i′ | i ∈ I}, O′ = {o′ | o ∈ O}, RI =
{(i, i′) | i ∈ I} and RO = {(o′, o′), (o′, o) | o ∈ O}. The
3-valued canonical I/O-gadget for semantics σ and the 3-
valued I/O-specification f is defined as

Dσ
f = (I ∪ I ′ ∪Xσ

f ∪O′ ∪O,RI ∪Rσ
f ∪RO).

with Rσ
f ⊆ ((I∪I ′)×Xσ

f)∪(Xσ
f ×Xσ

f)∪(Xσ
f ×(O′∪O)).

The semantics-independent part of Dσ
f guarantees that the

labelling of I coincides with the injected labelling and the
labelling of I ′ is just the inverse.
Lemma 1. Given a 3-valued I/O-specification f and a se-
mantics σ ∈ {gr, pr} it holds for every L ∈ L(I) that

σ(�(Dσ
f , L))|I = L, and

σ(�(Dσ
f , L))|I′ = ¬L.

Proof. By the fact that arguments in I∪I ′ are not allowed to
be attacked by the semantics-specific arguments Xσ

f , it fol-
lows that, in �(Dσ

f , L), an argument a ∈ I is unattacked
if L(a) = t, attacked by the unattacked argument z if
L(a) = f , and self-attacking if L(a) = u. Hence the re-
sult for I follows. The result for I ′ is then immediate by the
fact that each a′ ∈ I ′ is only attacked by a ∈ I and therefore
has the inverse labelling of a.

Now we turn to the semantics-specific constructions. For
grounded semantics we need the concept of determining in-
put labellings. An input labelling L is determining for output
argument o if L is a minimal (w.r.t.) input labelling where
o gets a concrete value (t or f) according to f.

With abuse of notation, in the following we may identify
a set including a single labelling with the labelling itself.
Definition 13. Given a 3-valued I/O-specification f with
|f(L)| = 1 for all L ∈ L(I) and an argument o ∈ O, a
labelling L of I is determining for o (in f), if f(L)(o) �= u
and ∀L′ � L : f(L′)(o) = u. We denote the set of labellings
which are determining for o (in f) as df(o).

Note that for 3-valued I/O-specifications which are
monotonic, two different labellings which are determining
for a certain output argument cannot be comparable. The
following example illustrates the concept of determining la-
bellings.

Example 5. Let f be the following 3-valued I/O-specifi-
cation with I = {a, b} and O = {c, d}:

f(uu) = {uu} f(tu) = {tu} f(ut) = {ut}
f(uf) = {uf} f(fu) = {uu} f(tt) = {tt}
f(tf) = {tf} f(ft) = {ut} f(ff) = {tf}

We have the following sets of determining labellings:
df(c) = {tu,ff} and df(d) = {ut,uf}. Consider, for in-
stance, the input labelling ff . We have f(ff) = tf . In order
to check if ff is determining for c we have to look at all
input labellings being less committed than ff . Now we ob-
serve f(uf) = uf , f(fu) = f(uu) = uu. In all of these
desired output labellings c has value u, so ff is determining
for c. On the other hand ff is not determining for d, since
f(uf)(d) = f .

The semantics-specific construction for grounded seman-
tics is defined as follows.

Definition 14. Given a 3-valued I/O-specification f with
|f(L)=1| for all L ∈ L(I), the gr-specific part of Dgr

f is
given by

Xgr
f ={xL

o | o ∈ O,L ∈ df(o)}, and

Rgr
f ={(i, xL

o) | xL
o ∈ Xgr

f , L(i) = f} ∪
{(i′, xL

o) | xL
o ∈ Xgr

f , L(i) = t} ∪
{(xL

o , o
′) | xL

o ∈ Xgr
f , f(L)(o) = t} ∪

{(xL
o , o) | xL

o ∈ Xgr
f , f(L)(o) = f}.

For every o ∈ O and each input-labelling L which is de-
termining for o, there is the argument xL

o . This argument can
be labelled t if L is the labelling of I (recall Lemma 1) and
intuitively enforces the labelling of o to be as given by f(L).

The next results, requiring two preliminary lemmata,
characterize satisfiability of grounded semantics.

Lemma 2. Let f be a 3-valued I/O-specification which is
monotonic and s.t. |f(L)| = 1 for each L ∈ L(I). Moreover
let o ∈ O and L,L′ ∈ L(I) be such that f(L)(o) = t and
f(L′)(o) = f . Then L and L′ are not compatible.

Proof. Towards a contradiction assume that L and L′ are
compatible, and let V ∈ L(I) such that for each i ∈ I ,
V (i) = t iff L(i) = t ∨ L′(i) = t, V (i) = f iff L(i) = f ∨
L′(i) = f , V (i) = u iff L(i) = L′(i) = u. It holds that L
V , thus f(V)(o) = t since f is monotonic. However, it also
holds that L′ V , thus f(V)(o) = f , a contradiction.

Lemma 3. Given a 3-valued I/O-specification f which is
monotonic and s.t. |f(L)| = 1 for each L ∈ L(I), let o ∈ O
and L,L′ ∈ L(I) be such that L is determining for o. Then
Lgr(�(Dgr

f , L
′))(xL

o) is

1. t if L L′;

48

2. f if L and L′ are not compatible; and
3. u if L and L′ are compatible but L � L′.

Proof. Let G = Lgr(�(Dgr
f , L

′)) and note that, by
Lemma 1, we know that G|I = L′ and G|I′ = ¬L′.
(1) If L L′ then all attackers of xL

o are f in G, hence
G(xL

o) = t. (2) If L and L′ are not compatible then there
is some i ∈ I such that either L(i) = t and L′(i) = f or
L(i) = f and L′(i) = t. In the first case xL

o is attacked by
i′ and G(i′) = t, in the second case xL

o is attacked by i and
G(i) = t, both entailing G(xL

o) = f . (3) If L and L′ are
compatible then, by construction of Dgr

f and Lemma 1, all
attackers of xL

o are either f or u. Moreover, since L � L′
there is some i ∈ I with L′(i) = u and L(i) �= u. But then
G(i) = G(i′) = u and xL

o is attacked by either i or i′, hence
G(xL

o) = u.

Proposition 7. Every 3-valued I/O-specification f which is
monotonic and s.t. |f(L)| = 1 for each L ∈ L(I), is satisfied
by Dgr

f under gr.

Proof. Consider some input labelling L. We have to show
Lgr(�(Dgr

f , L))|O = f(L). To this end let o ∈ O.
Assume f(L)(o) = u. Then, since f is monotonic,

f(L′)(o) = u for all L′ L. Therefore, there is no L′ L
with L′ ∈ df(o). By Lemma 3 we get that for all L′′ ∈ df(o)

it holds that Lgr(�(Dgr
f , L))(x

L′′
o) �= t. Since, by construc-

tion of Dgr
f , such xL′′

o with L′′ ∈ df(o) are the only attackers
of o and o′, Lgr(�(Dgr

f , L))(o) = u.
Next assume f(L)(o) = t. Then there is some L′ L

with L′ ∈ df(o) and f(L′)(o) = t. By Lemma 3 we get
Lgr(�(Dgr

f , L))(x
L′
o) = t. Moreover, xL′

o attacks o′, hence
Lgr(�(Dgr

f , L))(o
′) = f . Towards a contradiction assume

there is some xL′′
o attacking o with Lgr(�(Dgr

f , L))(x
L′′
o) ∈

{t,u}. Then, by Lemma 3, L′′ and L are compatible and
as L′ L also L′′ and L′ are compatible. However, xL′′

o

attacking o and xL′
o attacking o′ means, by construction of

Dgr
f , f(L′′)(o) = f and f(L′)(o) = t, respectively. But then,

by Lemma 2, L′′ and L′ are not compatible, a contradiction.
Therefore all attackers of o are labelled f by Lgr(�(Dgr

f , L)),
hence Lgr(�(Dgr

f , L))(o) = t.
Finally assume f(L)(o) = f . Then there is some L′ L

with L′ ∈ df(o) and f(L′)(o) = f . By Lemma 3 we get
Lgr(�(Dgr

f , L))(x
L′
o) = t. Moreover, xL′

o attacks o, hence
Lgr(�(Dgr

f , L))(o) = f .

Example 6. Again consider the 3-valued I/O-specification
f from Example 5. We have seen the determining labellings
there. The I/O-gadget Dgr

f is depicted in Figure 4. Con-
sider for example the labelling-injection of fu to Dgr

f ,
which is indicated by the dotted part of the figure. We get
gr(�(Dgr

f , fu)) = {z, a′}, hence Lgr(�(Dgr
f , fu))|O = uu,

satisfying f. One can check that this holds for all possible
labelling-injections, hence Dgr

f satisfies f under the grounded
semantics.

z a a′ b′ b

xtu
c xut

d xuf
d xff

c

c c′ d′ d

Figure 4: I/O-gadget satisfying the 3-valued I/O-specifi-
cation f given in Example 5 under gr, as discussed in Exam-
ple 6. The dotted part shows the injection of fu.

Theorem 6. A 3-valued I/O-specification f is satisfiable
under gr iff f is monotonic and for each L ∈ L(I), |f(L)|=1.

Proof. The if-direction is a direct consequence of Propo-
sition 7. The only-if-direction follows by Propositions 5
and 6.

Now we present the part of the 3-valued canonical I/O-
gadget which is specific to the preferred semantics.

Definition 15. Given a 3-valued I/O-specification f, the pr-
specific part of Dpr

f is given by

Xpr
f ={xL

K | L ∈ L(I),K ∈ f(L)}, and

Rpr
f ={(i, xL

K) | xL
K ∈ Xpr

f , L(i) = f} ∪
{(i′, xL

K) | xL
K ∈ Xpr

f , L(i) = t} ∪
{(xL

K , o′) | xL
K ∈ Xpr

f ,K(o) = t} ∪
{(xL

K , o) | xL
K ∈ Xpr

f ,K(o) = f} ∪
{(xL

K , xL′
K′) | ¬(L � L′ ∧K K ′)∧

¬(L′ � L ∧K ′ K)}.
Every input-output-combination is represented by an ar-

gument xL
K in Dpr

f . The way the input-arguments are linked
to xL

K makes sure that, with input-labelling L, xL
K is not at-

tacked by any argument among I ∪ I ′ which can be t in a
preferred labelling (cf. Lemma 1). Therefore each such ar-
gument xL

K can act as a representative for a preferred la-
belling, enforcing output-labelling K. We first show a tech-
nical lemma, giving sufficient conditions on the labelling-
status of the arguments in Xpr

f to get the desired labelling of
the output arguments.

Lemma 4. Given a 3-valued I/O-specification f and an in-
put labelling L ∈ L(I), it holds for each preferred labelling
P ∈ pr(�(Dpr

f , L)) that P |O = K if

• P (xL
K) = t and

• for all xL′
K′ ∈ Xpr

f ,

– K � K ′ implies P (xL′
K′) �= t and

– K and K ′ not comparable implies P (xL′
K′) = f .

49

Proof. Consider some K ∈ f(L) and an arbitrary o ∈ O.
We show that P (o) = K(o).

First assume K(o) = u. By the hypothesis P (xL′
K′) �= t

for all K ′ � K. Moreover, for all K ′ K we have that
K ′(o) = u since K(o) = u, thus by construction of Dpr

f

xL′
K′ does not attack either o or o′. Summing up, neither o

nor o′ is attacked by an argument which is t in P . Hence
P (o) = u.

Next let K(o) = t. Since P (xL
K) = t we must have

that P (o′) = f . Besides that, o is attacked by all xL′
K′ with

K ′(o) = f . But this means that K and K ′ are not compara-
ble, hence P (xL′

K′) = f by assumption. Now we know that
all attackers of o are f in P , therefore P (o) = t.

Finally let K(o) = f . Since P (xL
K) = t and xL

K attacks o
we get that P (o) = f .

We proceed by showing that every monotonic function f
is satisfied by Dpr

f under the preferred semantics.

Proposition 8. Every 3-valued I/O-specification f which is
monotonic is satisfied by Dpr

f under pr.

Proof. Consider an arbitrary input labelling L ∈ L(I). We
have to show that Lpr(�(Dpr

f , L))|O = f(L).
By construction of Dpr

f , those xL′
K′ ∈ Xpr

f with L′ L

are the only arguments in Xpr
f which can be t in a preferred

labelling of �(Dpr
f , L), since their attackers in I ∪ I ′ are all

f , while the other arguments in Xpr
f are attacked by an argu-

ment t of I∪I ′. Now the arguments xL
K with K ∈ f(L) form

a clique in �(Dpr
f , L). Moreover each of these xL

K defends
itself, hence there is a preferred labelling of �(Dpr

f , L) for
each K ∈ f(L) identified by xL

K . Let PK be the preferred
labelling with PK(xL

K) = t where K ∈ f(L). All xL′
K′ with

K ′ �K ∧K �K ′ are attacked by xK
L , hence PK(xL′

K′) = f .
Assume K � K ′. If L �� L′, then xL′

K′ is again attacked by
xK
L and PK(xL′

K′) = f . If L � L′, PK(xL′
K′) �= t since it is

attacked by some i or i′ (i ∈ I) which is u in PK . Therefore,
by Lemma 4, PK |O = K.

It remains to show that there is no other preferred labelling
besides these PK with K ∈ f(L). Towards a contradiction,
assume that there is a preferred labelling P ′ where no xL

K

with K ∈ f(L) is t. By our initial considerations, those xL′
K′

with L′ � L are the only arguments in Xpr
f which can be t

in P ′. It cannot be the case that none of them is t, since P ′
would not be preferred. Then there is at least one xL′

K′ which
is t in P ′, with L′ � L, and without loss of generality we
can assume that there is no xL′′

K′′ which is t and L′ � L′′.
Now, since f is monotonic there has to be a K ∈ f(L) such
that K ′ K. We prove that no argument in Xpr

f attacking
xL
K is t in P ′.
First, the only arguments in Xpr

f that can be t are those
xL′′
K′′ with L′′ � L. Note that, according to Definition 15,

xL′
K′ does not attack xL

K , since L′ � L ∧ K ′ K. If an
attacker xL′′

K′′ is attacked in turn by xL′
K′ then it is f , otherwise

either L′′ � L′∧K ′′ K ′ or L′ � L′′∧K ′ K ′′. The first

a a′

xf
ft xu

ut xt
uf xt

tt

c c′ d′ d

Figure 5: 3-valued canonical I/O-gadget Dpr
f for the 3-

valued I/O-specification f given in Example 7.

case is impossible, since we would have L′′ � L∧K ′′ K,
entailing that xL′′

K′′ does not attack xL
K . In the other case, by

the assumption on xL′
K′ it holds that xL′′

K′′ is not t.
Now, xL

K defends itself against all arguments in Xpr
f and

none of them is t, moreover by construction of �(Dpr
f , L),

all attackers from I and I ′ are f . But then, consider the la-
belling P ′′ obtained from P ′ by assigning to xL

K the label t,
and by assigning to all the attackers of xL

K the label f . P ′′
is admissible and P ′ P ′′, contradicting the maximality of
P ′.

Example 7. Consider the 3-valued I/O-specification for
I = {a} and O = {c, d} given by

f(u) = {ut} f(t) = {tt,uf} f(f) = {ft}.
It is easy to see that f is monotonic, since ut ∈ f(u) has a
successor wrt. in both f(t) and f(f).

The AF in Figure 5 depicts the 3-valued canonical I/O-
gadget Dpr

f . Observe the symmetric attacks between ar-
guments xL

K , xL′
K′ ∈ Xpr

f whenever L = L′ (xt
uf and

xt
tt), L and L′ are not comparable (e.g. xf

ft and xt
uf), or

L � L′ but K � K ′ (xu
ut and xt

uf). However, there
is no attack if both L � L′ and K K ′ holds, as
for instance between xu

ut and xt
tt. To see the motivation

behind this consider the injection of t to Dpr
f . We get

pr(�(Dpr
f , t)) = {{z, a, xu

ut, x
t
tt, c, d}, {z, a, xt

uf}}, giving
rise to pr(�(Dpr

f , t))|O = {tt,uf}, therefore satisfying f

under pr. A (symmetric) attack between xu
ut and xt

tt would
give ut as output-labelling, which is not as specified by f(t).

Theorem 7. A 3-valued I/O-specification f is satisfiable
under pr iff f is monotonic.

Proof. The if-direction was shown in Proposition 8
while the only-if-direction directly follows from Proposi-
tion 6.

As to the remaining semantics, note that Propositions 7
and 8 also apply to ideal and semi-stable semantics, respec-
tively, since for each L the grounded labelling of �(Dgr

f , L)
coincides with the ideal labelling, and the preferred la-
bellings of �(Dpr

f , L) coincide with semi-stable labellings.

50

a

x2

x1 c

Figure 6: I/O-gadget satisfying a 3-valued I/O-specifi-
cation under semi-stable (resp. ideal) semantics which is not
satisfiable under preferred (resp. grounded) semantics.

However, this does not allow to derive a complete character-
ization, since there are non-monotonic 3-valued I/O-speci-
fications, satisfiable by ideal and semi-stable semantics, re-
spectively.

Example 8. Consider the AF F in Figure 6 which represents
an I/O-gadget with I = {a} and O = {c}. The semi-stable
and ideal extensions of the various labelling-injections are
se(�(F,u)) = id(�(F,u)) = {{c}}, se(�(F, t)) =
id(�(F, t)) = {{a, c}}, and se(�(F, f)) = {{z, x1}} �=
id(�(F, f)) = {{z}}. This means that F satisfies the 3-
valued I/O-specification given by u �→ {t}, t �→ {t},
and f �→ {u} under ideal semantics, and the one given by
u �→ {t}, t �→ {t}, and f �→ {f} under semi-stable seman-
tics which are both clearly not monotonic.

An exact characterization of 3-valued I/O-specifications
which are satisfiable under semi-stable and ideal semantics,
respectively, requires weaker notions of monotonicity. Com-
plete semantics, on the other hand, imposes necessary con-
ditions which are more restrictive. The following is a direct
consequence of Proposition 7 in (Baroni et al. 2014).

Proposition 9. Every 3-valued I/O-specification f which
is satisfiable under co is monotonic and for all L1 and L2

such that L1 L2 it holds that ∀K2 ∈ f(L2)∃K1 ∈ f(L1) :
K1 K2.

Exact characterizations of satisfiable 3-valued I/O-speci-
fications for complete, semi-stable and ideal semantics are
subject of future work.

5 Partial I/O-specifications

In the previous sections we restricted our considerations
to total I/O-specifications, where the output is defined for
each input. One can also think of situations where we do
not care about the output for some inputs, i.e. we are only
interested in satisfiability of a partial function.

The results provided in Section 3 can be directly exploited
to handle partial I/O-specifications in the extension-based
case: “don’t care”-outputs can be assigned arbitrarily, pro-
vided that at least one extension is assigned for pr, se and
sg, a single extension for gr and id, and the specification
is closed for co. Furthermore, all the proofs also work with
a partial I/O-specification by considering only the speci-
fied inputs in the definition of the canonical I/O-gadget, i.e.
neglecting the inputs with undefined output, yielding a con-
siderable simplification. On the other hand, the following
example shows some difficulties in the labelling-based case.

Example 9. Consider the partial 3-valued I/O-specification
f for I = {a, b} and O = {c} with f(uu) = {u},
f(tu) = {t} and undefined, i.e. “don’t care”, for all other
inputs. Clearly, f is satisfied by Dgr

f or, more easily, by the
I/O-gadget ({a, b, x, c}, {(a, x), (x, c)}). Now note that f
is not monotonic according to Definition 11, since �K ∈
f(tt) : t K. It is monotonic for those inputs for which it
is defined though. But this is also the case if we consider f′
which coincides with f on inputs uu and tu but also defines
f′(ut) = {f}. Now one can check that there is no I/O-
gadget satisfying f′ under the grounded semantics. The rea-
son for this is that f cannot be extended to a total specifica-
tion which is still monotonic. In order to be monotonic some
f′′ extending f′ would have to fulfill both t K and f K
for the unique output K ∈ f′′(tt), which is obviously not
possible.

This already leads us to the condition for satisfiability of
partial functions.

Definition 16. Given two (partial) 3-valued I/O-specifi-
cations f and f′, we say that f′ extends f iff for all L ∈ L(I)
such that f(L) is defined, f′(L) = f(L).

Theorem 8. A (partial) 3-valued I/O-specification f is sat-
isfiable under semantics σ iff there is a total function f′ ex-
tending f which is satisfiable under σ.

It may be noted that the extension-based case covered in
Section 3 can be viewed as a particular case of 3-valued par-
tial specification where also the output is partially specified,
i.e. for those inputs without undecided arguments we spec-
ify a set of extensions (i.e. without distinguishing between f
and u arguments).

6 Conclusions

To the best of our knowledge, this is the first characteriza-
tion of the input/output expressive power of argumentation
semantics. In (Dunne et al. 2015), expressiveness has been
studied as the capability of enforcing sets of extensions. The
problem faced in this paper differs in two aspects: on the
one hand, we have to enforce a set of extensions for any in-
put rather than a single set of extensions; on the other hand,
we can exploit non-output arguments that are not seen out-
side a sub-framework. Moreover we also consider labellings
besides extensions. A labelling-based investigation exploit-
ing hidden arguments is carried out in (Dyrkolbotn 2014),
but still in the context of an ordinary AF rather than an I/O-
gadget. Pührer (2015) and Strass (2015) have recently inves-
tigated the expressiveness of abstract dialectical frameworks
(Brewka et al. 2013) under three-valued and two-valued se-
mantics, respectively.

Future work includes the 3-valued I/O-characterization
of complete semantics, being the only transparent semantics
(Baroni et al. 2014) for which this was left open. Moreover,
the investigation of further semantics such as CF2 (Baroni,
Giacomin, and Guida 2005) would be of interest. Another
issue is the construction of I/O-gadgets from compact I/O-
specifications where the function is not explicitly stated but,
for instance, described as a Boolean (or three-valued) circuit.
We conjecture that I/O-gadgets can then be composed from

51

simple building blocks along the lines of the given circuit.
A related question in this direction is the identification of
minimal I/O-gadgets satisfying a given specification.

Acknowledgements

The authors would like to thank the anonymous reviewers
for their helpful comments. This research has been sup-
ported by the Austrian Science Fund (FWF) through projects
I1102 and P25521.

References

Baroni, P., and Giacomin, M. 2007. On principle-based
evaluation of extension-based argumentation semantics. Ar-
tificial Intelligence 171(10-15):675–700.
Baroni, P.; Boella, G.; Cerutti, F.; Giacomin, M.; van der
Torre, L.; and Villata, S. 2014. On the Input/Output be-
haviour of argumentation frameworks. Artificial Intelligence
217:144–197.
Baroni, P.; Caminada, M.; and Giacomin, M. 2011. An
introduction to argumentation semantics. Knowledge Engi-
neering Review 26(4):365–410.
Baroni, P.; Giacomin, M.; and Guida, G. 2005. SCC-
Recursiveness: A general schema for argumentation seman-
tics. Artificial Intelligence 168(1-2):162–210.
Brewka, G.; Ellmauthaler, S.; Strass, H.; Wallner, J. P.; and
Woltran, S. 2013. Abstract Dialectical Frameworks Re-
visited. In Rossi, F., ed., Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2013, 803–809. AAAI Press / IJCAI.
Caminada, M., and Amgoud, L. 2007. On the evaluation
of argumentation formalisms. Artificial Intelligence 171(5-
6):286–310.
Caminada, M., and Gabbay, D. M. 2009. A logical account
of formal argumentation. Studia Logica 93(2):109–145.
Caminada, M.; Carnielli, W. A.; and Dunne, P. E. 2012.
Semi-stable semantics. Journal of Logic and Computation
22(5):1207–1254.
Diller, M.; Haret, A.; Linsbichler, T.; Rümmele, S.; and
Woltran, S. 2015. An extension-based approach to be-
lief revision in abstract argumentation. In Yang, Q., and
Wooldridge, M., eds., Proceedings of the 24th International
Joint Conference on Artificial Intelligence, IJCAI 2015,
2926–2932. AAAI Press.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77(2):321–357.
Dunne, P. E.; Dvořák, W.; Linsbichler, T.; and Woltran, S.
2015. Characteristics of multiple viewpoints in abstract ar-
gumentation. Artificial Intelligence 228:153–178.
Dyrkolbotn, S. K. 2014. How to argue for anything: En-
forcing arbitrary sets of labellings using AFs. In Baral, C.;
De Giacomo, G.; and Eiter, T., eds., Proceedings of the 14th
International Conference on Principles of Knowledge Rep-
resentation and Reasoning, KR 2014, 626–629. AAAI Press.

Modgil, S., and Bench-Capon, T. J. M. 2011. Metalevel ar-
gumentation. Journal of Logic and Computation 21(6):959–
1003.
Pührer, J. 2015. Realizability of Three-Valued Seman-
tics for Abstract Dialectical Frameworks. In Yang, Q.,
and Wooldridge, M., eds., Proceedings of the 24th Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2015, 3171–3177. AAAI Press.
Strass, H. 2015. Expressiveness of two-valued semantics for
abstract dialectical frameworks. J. Artif. Intell. Res. (JAIR)
54:193–231.
Verheij, B. 1996. Two approaches to dialectical argumen-
tation: admissible sets and argumentation stages. In Meyer,
J.-J. C., and van der Gaag, L. C., eds., Proceedings of the
8th Dutch Conference on Artificial Intelligence, NAIC 1996,
357–368.

52

