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Abstract

Bayesian deduction is the process of deriving the probabil-
ity distribution of a random variable given the distribution of
another variable when the relevant conditional distributions
are available. We present an extension of Bayesian deduction
to the framework of subjective logic. The latter represents
uncertain probabilistic information in the form of subjective
opinions, which allow for explicitly modelling and operat-
ing with degrees of uncertainty about the probability distri-
butions. We discuss how the defined deduction operation can
be used for predictive reasoning in subjective Bayesian net-
works.

A Bayesian network (BN) is a compact representation of a
joint probability distribution in the form of a directed acyclic
graph (DAG) with random variables as nodes, and a set
of conditional probability distributions associated with each
node representing the probabilistic connection of the node
and its parents in the graph. Bayesian networks reasoning
algorithms provide a way to propagate probabilistic infor-
mation through the graph from an evidence to a target set of
variables, in that way updating the probability of the target
upon observation of the evidence. One serious limitation of
the BNs reasoning methods is that all the input probabilities
must be assigned a precise value in order for the inference
algorithms to work and the model to be analysed. This is
problematic in situations of uncertain or incomplete infor-
mation, where probabilities can not be reliably estimated and
the inference needs to be based on what is available while
providing the most accurate conclusions possible.

In the literature, many different approaches have been
proposed for dealing with incomplete Bayesian networks
and uncertain probabilistic information in general, like for
example, Bayesian logic (Andersen and Hooker 1994),
credal networks (Cozman 2000), the probabilistic logics
and networks discussed in (Haenni et al. 2011), the log-
ics of likelihood in (Fagin, Halpern, and Megiddo 1990)
and later in (Ivanovska and Giese 2011), imprecise prob-
abilities (Walley 1991), (Walley 1996), interval probabili-
ties (Tessem 1992), etc. None of the mentioned approaches
models the degree of uncertainty about a probability distri-
bution as a particular numerical value that can be propagated
through the network in the process of inference.
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Subjective logic (Jøsang 2001) is a formalism that offers
explicit treatment of the uncertainty about probabilities in
both representation and inference. The basic entities in sub-
jective logic are subjective opinions on random variables. A
subjective opinion includes a belief mass distribution over
the states of the variable, complemented with an uncertainty
mass, which together reflect a current analysis of the prob-
ability distribution of the variable by an expert, based on a
test, etc; and a base rate probability distribution of the vari-
able, reflecting a prior domain knowledge that is relevant to
the current analysis. Subjective opinions can represent un-
certain probabilistic information of any kind, minor or major
imprecision and even total ignorance about the probability
distribution, by varying the uncertainty mass between 0 and
1. By simply substituting every input conditional probabil-
ity distribution in a BN with a subjective opinion, we obtain
what we call a subjective Bayesian network. An introduction
to subjective networks along with a brief discussion about
the perspectives and challenges of the reasoning in them can
be found in (Ivanovska et al. 2015).

This paper focuses on extending Bayesian deduction from
random variables to subjective opinions, as a first step in
solving the problem of inference in subjective networks. We
call Bayesian deduction the process of deriving the proba-
bility distribution of a variable Y based on available condi-
tional probabilities p(y|x), for the states x of another vari-
able X , and the distribution of the variable X itself. In
the context of Bayesian networks, this amounts to deriv-
ing the marginal probability distribution of Y in a two-node
Bayesian network where X is the parent and Y is the child
node. In this sense, Bayesian deduction is the reasoning from
the cause to the effect (under assumption that the arrow from
X to Y denotes a causal relation between the variables).

Every subjective opinion can be “projected” to a single
probability distribution, called projected probability distri-
bution which is an important characteristic of the opinion
since it unifies all of its defining parameters. The starting
point in defining the operation of deduction with subjective
opinions is deriving the projected probability distribution of
the deduced opinion applying standard Bayesian deduction.
Then the deduced opinion is fully determined by applying
additional constrains on its beliefs and uncertainty mass. The
whole process is motivated and illustrated by the geometri-
cal representation of subjective opinions in barycentric co-
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ordinate systems.
The operation of deduction in subjective logic was first in-

troduced for binomial opinions in (Jøsang, Pope, and Daniel
2005), and then for multinomial opinions in (Jøsang 2008).
The deduction procedure for multinomial opinions proposed
here is a generalised version of the one given in (Jøsang
2008). In this paper we also provide a way to apply the de-
duction operation to hyper opinions, which are subjective
opinions that assign beliefs to sets of values of the variable.

We explore the use of the introduced deduction operation
for predictive reasoning in subjective Bayesian networks.
Predictive reasoning in Bayesian networks is the reasoning
from causes to effects, which propagates “downwards” the
new information to the target variables from their ancestors,
using only the available input conditionals. We propose a
method for predictive reasoning in subjective Bayesian net-
works that considers evidence in the form of a subjective
opinion. The method combines the introduced operation of
deduction and the operation for multiplication of subjective
opinions on independent variables introduced in (Jøsang and
McAnally 2004).

This paper is structured as follows: In Section 1 we
give the necessary preliminaries from probability theory and
Bayesian networks. In Section 2 we provide the definition
of subjective opinion and its representation in a barycentric
coordinate system. In Section 3 we introduce Bayesian de-
duction for subjective opinions and its geometrical interpre-
tation and we demonstrate its application in an intelligence
analysis example. In Section 4 we discuss the use of the
introduced deduction operation for predictive reasoning in
subjective BNs. In Section 5 we summarize the results of
the paper and topics for future work.

1 Bayesian Deduction

This section introduces Bayesian deduction for random vari-
ables, providing the necessary definitions from probability
theory.

We assume a simplified definition of a random variable
as a variable that takes its values with certain probabilities.
For example, the weather today is a random variable, that
can be cloudy with probability 0.4, or sunny with probability
0.6. More formally, let X be a variable with a domain X =
{x1, . . . , xk}. A probability distribution p of X is a function
p : X → [0, 1], such that:

∑
x∈X

p(x) = 1 . (1)

The domain X is the set of values, or states of the variable,
which are assumed to be mutually exclusive and exhaustive.
k = |X| is the cardinality of the variable. If k = 2, X is a
binary random variable and X = {x, x̄}, where x̄ denotes
the state “not x”. p(x) is the probability that the variable X
takes the value x.

A joint probability distribution of a set of variables
X1, . . . , Xn is a probability distribution defined on the
Cartesian product of their domains. Given two random vari-
ables X and Y , a conditional probability distribution of Y
given that X takes the value x, p(Y |x), is a function from Y

to [0, 1] defined by the following equation:

p(y|x) = p(y, x)

p(x)
, (2)

where p(x, y) is a joint probability distribution value. p(y|x)
is the probability that Y takes the value y, given that the
value of X is x. The expressions y|x and p(y|x) are called
conditionals, where x is the antecedent, and y is the conse-
quent.

Let X and Y be two random variables. Let us assume
that the analyst knows the probabilities p(y|x) for every
y ∈ Y and x ∈ X, i.e. the set of conditional distributions
p(Y |X) = {p(Y |x) | x ∈ X} is available. Assume fur-
ther that a probability distribution of the variable X , p(X),
is also available. The above information determines a two-
node Bayesian network where X is the parent and Y is the
child node. Given this information, we can determine the
probability distribution of Y , p(Y ), as follows:

p(y) =
∑
x∈X

p(y|x)p(x) . (3)

The process of deriving p(Y ) from p(X) and p(Y |X) we
call a Bayesian deduction. This type of reasoning follows
the direction of the available conditionals in the sense that
the direction of reasoning is from the antecedent to the con-
sequent. Assuming that the connection X → Y is causal,
we can say that Bayesian deduction is reasoning from the
cause to the effect.

An important probability theory concept, especially in the
context of Bayesian networks, is that of probabilistic inde-
pendence. Let V = {X1, . . . , Xn} be the set of all random
variables that are of interest in a given context and let X ,
Y , and Z be disjoint subsets of V . Then X is conditionally
independent of Y given Z, denoted I(X,Y |Z), if the fol-
lowing holds:

p(x|y, z) = p(x|z) whenever p(y, z) > 0 , (4)

for every choice of assignments x, y, and z to the variables
in the corresponding sets.1

A Bayesian network (Pearl 1988) with n variables is
a directed acyclic graph (DAG) with random variables
X1, . . . , Xn as nodes, and a set of conditional prob-
ability distributions p(Xi|Pa(Xi)) associated with each
node Xi containing one conditional probability distribution
p(Xi|pa(Xi)) of Xi for every assignment of values pa(Xi)
to its parent nodes Pa(Xi). If we assume that the Markov
property holds: Every node is conditionally independent on
its non-descendant nodes given its parent nodes in the graph,

I(Xi, ND(Xi)|Pa(Xi)) , (5)

for the given DAG and the joint distribution p of the vari-
ables X1, . . . , Xn, then p is determined by:

p(x1, . . . , xn) =
n∏

i=1

p(xi|pa(Xi)) , (6)

1A set of variables Y = {Y1, . . . , Yk} can also be considered a
variable with a domain Y = Y1×· · ·×Yk. As standard in Bayesian
networks literature, we use the notation of a variable also for a set
of variables, making the obvious identifications (see (Pearl 1988)).
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where pa(Xi) is the assignment of the parents of Xi that
corresponds to the tuple (x1, . . . , xn).

Having the joint probability distribution of the variables
determined by Eq.(6), we can condition it upon new infor-
mation - observed values of some of the variables (evidence
variables) - to obtain an updated probability distribution of
a set of target variables. This process is called probabilistic
inference or belief update in BNs. Predictive reasoning in
Bayesian networks (Korb and Nicholson 2010) is the proba-
bilistic inference that generalizes Bayesian deduction in the
sense that it goes from new information about causes to new
beliefs about effects: If we imagine we have a causal BN (all
the arrows are causal), this type of reasoning follows the di-
rection of the arrows, i.e. the target variables are descendant
of the evidence variables.

2 Subjective Opinions

Let X be a random variable. A (multinomial) subjective
opinion on X (Jøsang 2008) is a tuple:

ωX = (bX , uX , aX), (7)

where bX : X → [0, 1] is a belief mass distribution,
uX ∈ [0, 1] is an uncertainty mass, and aX : X → [0, 1]
is a base rate distribution of X , satisfying the following ad-
ditivity constraints:

uX +
∑
x∈X

bX(x) = 1 , (8)

∑
x∈X

aX(x) = 1 . (9)

The beliefs and the uncertainty mass reflect the results of a
current analysis of the random variable obtained by apply-
ing expert knowledge, experiments, or a combination of the
two. bX(x) is the belief that X takes the value x expressed
as a degree in [0, 1]. It represents the amount of experimental
or analytical evidence in favour of x. uX is a single value,
representing the degree of uncertainty about the probability
distribution of X . It represents lack of evidence in the anal-
ysis that can be due to lack of knowledge or expertise, or in-
sufficient experimental analysis. The base rate aX is a prior
probability distribution of X that reflects domain knowledge
relevant to the current analysis, most usually relevant statis-
tical information. Hence, subjective opinion is a composite
representation of our uncertain knowledge about the prob-
ability distribution of a variable that combines (subjective)
beliefs, uncertainty, and statistical information.

For example, a GP wants to determine whether a patient
suffers from depression through a series of different tests.
Based on the test results, the GP concludes that the collected
evidence is 10% inconclusive, but is still two times more in
support of the diagnosis that the patient suffers from depres-
sion than of the opposite one. As a result, the GP assigns 0.6
belief mass to the diagnosis that the patient suffers from de-
pression and 0.3 belief mass to the opposite diagnosis, com-
plemented by 0.1 uncertainty mass. The probability that a
random person in the population suffers from depression is
5% and this fact determines the base rate distribution in the
GPs subjective opinion on the condition of the patient.

In some cases of modelling it is useful to be able to dis-
tribute belief mass to set of values, subsets of X. This leads
to generalization of multinomial subjective opinions to hy-
per opinions, in which the belief mass distribution bX is
a function defined on a restricted power set of the domain
R(X) = P(X)\{X,∅}. We call R(X) a hyperdomain of X .
The sets X and ∅ are excluded from the hyperdomain since
they do not represent specific observations which discrim-
inate among the values of the domain and which therefore
can be assigned a belief mass.

Technically, if we ignore the reduction of the hyperdo-
main, the beliefs and the uncertainty mass of a subjective
opinion correspond to a basic belief assignment in belief
theory (Shafer 1976). This correspondence gives the same
interpretation of the beliefs, but a rather different interpreta-
tion of uX , namely as bX(X), a belief mass in support of the
whole X, while we interpret uX as a measure for the lack of
evidence. The last can be more clearly seen from the corre-
spondence between multinomial opinions and multinomial
Dirichlet models, for details see (Jøsang and Elouedi 2007).

A subjective opinion in which uX = 0, i.e. an opinion
without any uncertainty, is called a dogmatic opinion. Dog-
matic multinomial opinions correspond to probability distri-
butions. A dogmatic opinion for which bX(x) = 1, for some
x ∈ X, is called an absolute opinion. Absolute multinomial
opinions correspond to assigning values to variables, i.e. to
observations. In contrast, an opinion for which uX = 1, and
consequently bX(x) = 0, for every x ∈ R(X), i.e. an opin-
ion with complete uncertainty, is called a vacuous opinion.
Vacuous opinions correspond to complete ignorance about
the probability distribution, where the only relevant infor-
mation is the base rate.

A multinomial opinion ωX is “projected” to a probability
distribution PX : X → [0, 1], defined in the following way:

PX(x) = bX(x) + aX(x) uX . (10)
We call the function PX a projected probability distribution
of ωX . According to Eq.(10), PX(x) is the belief mass in
support of x increased by a portion of the base rate of x
determined by uX . It provides an estimate of the probabil-
ity of x which varies from the base rate value, in the case
of complete ignorance, to the actual belief in the case of
zero uncertainty. The projected probability is an important
characteristic of the opinion since it unifies all of the opin-
ion parameters in a single probability distribution and thus
enables reasoning about subjective opinions in the classical
probability theory.

We call focal elements the elements of R(X) that are as-
signed a non-zero belief mass. In the case of a hyper opin-
ion, there can be focal elements that have a non-empty inter-
section. For that reason, for hyper opinions the definition of
projected probability distribution is generalized as follows:

PX(x) =
∑

x′∈R(X)

aX(x|x′) bX(x′) + aX(x) uX , (11)

for x ∈ X, where aX(x|x′)2 is a conditional probability if
2Note that we make an abuse of the notation using the same type

of letters for the elements of X and R(X), identifying the elements
of X with the singletons of R(X).
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aX is extended to P(X) additively (and aX(x′) > 0). If we
denote the sum in Eq.(11) by b′X :

b′X(x) =
∑

x′∈R(X)

aX(x|x′) bX(x′) , (12)

then it is easy to check that b′X : X → [0, 1], and that b′X
together with uX satisfies the additivity property in Eq.(8),
i.e. ω′

X = (b′X , uX , aX) is a multinomial opinion. From
Eq.(11) and Eq.(12) we obtain PX = P′

X . This means that
every hyper opinion can be approximated with a multino-
mial opinion which has the same projected probability dis-
tribution as the initial hyper one.

A special type of a multinomial opinion is the subjective
opinion on a binary random variable called a binomial opin-
ion. A binomial opinion ωX = (bX , uX , aX) on a variable
X with a domain X = {x, x̄} can be represented as a tuple:

ωX = (bx, dx, u, ax) , (13)

where bx = bX(x) is the belief in X = x, dx = bX(x̄)
is the disbelief in it (the belief in the opposite), u = uX is
the uncertainty, and the base rate of x, ax = aX(x), deter-
mines the base rate probability distribution of X . According
to Eq.(8), the parameters of a binomial opinion satisfy:

bx + dx + u = 1, (14)

and the projected probability distribution is fully determined
by the value Px = PX(x) obtained according to Eq.(10):

Px = bx + axu. (15)

For example, if a reviewer of a paper scores a paper
with 70% of acceptance, but is just partially relevant to
judge the paper (is 50% uncertain in her expertise), then
this reviewer’s score can be described by the binary opin-
ion ωX = (0.35, 0.15, 0.50, 0.20), where the base rate 0.20
represents the 20% acceptance rate of the conference.

2.1 Geometrical Representation of Subjective
Opinions

Multinomial opinions on variables with cardinality k can be
represented in a barycentric coordinate system (Ungar 2010)
of dimension k, which is a regular k-simplex where the coor-
dinates of each point specify the distances of the point to the
sides of the simplex. In that way binomial opinions are rep-
resented in an equilateral triangle and trinomial in a tetrahe-
dron as shown in Fig.1 and Fig.2. The belief and uncertainty
masses of the opinion are represented as a point ωX inside
of the simplex, and the base rate distribution is represented
with a point aX on one designated side of the simplex called
a base. The distance of the point ωX to the base equals the
uncertainty mass, while its distances to the other sides of the
simplex equal the belief masses.3

For a given variable X of cardinality k, we denote by ΩX

the k-simplex with a designated base side where we can rep-
resent all the possible opinions on X , and we call it an opin-
ion simplex or opinion space of X . An apex of the opinion

3Note that the opinion notation ωX in the figures refers to
the belief and uncertainty masses of the represented opinion only,
while the base rate distribution is represented separately by the
point aX on the base.

simplex is the vertex opposite the base side. It corresponds
to a vacuous opinion on X . The other vertices correspond to
absolute opinions. The points on the base represent dogmatic
opinions. A strong positive opinion, for example, would be
represented by a point towards the bottom right belief vertex
in Fig.1, etc.

Figure 1: Graphical representation of binomial opinions

The line that joins the apex of the simplex and the base
rate point aX is called a director line or a director. The line
parallel to the director that passes through the opinion point
ωX is called a projector. It can be checked that the inter-
section of the projector with the base side is a point with
coordinates that correspond to the projected probability dis-
tribution of the opinion ωX .

Figure 2: Graphical representation of trinomial opinions

3 Deduction Operation for Subjective

Opinions

In this section we extend the Bayesian deduction for ran-
dom variables from Section 1 to a deduction operation for
subjective opinions on random variables.

3.1 Deduction Problem

Let X and Y be random variables with domains X =
{xi|i = 1, . . . , k} and Y = {yj |j = 1, . . . , l} respectively.
Assume we are given an opinion ωX = (bX , uX , aX) on X
and conditional opinions ωY |xi

on Y , one for each xi ∈ X:

ωY |xi
= (bY |xi

, uY |xi
, aY ) . (16)

bY |xi
: Y → [0, 1] is a belief mass distribution and uY |xi

∈
[0, 1] is an uncertainty mass, such that Eq.(8) holds, and the
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base rate distribution aY : Y → [0, 1] is a probability distri-
bution of Y .

The conditional opinion ωY |xi
is a subjective opinion on

the variable Y given that X takes the value xi. It repre-
sents our uncertain knowledge about the probability dis-
tribution p(Y |xi). In general it has the form ωY |xi

=
(bY |xi

, uY |xi
, aY |xi

), but here we assume aY |xi
= aY , for

every i = 1, . . . , k. As we will see later, this assumption
comes from a mathematical necessity in the deduction pro-
cedure. It implies independence of the variables X and Y
in the knowledge domain that we justify with an assump-
tion that the base rate distribution of the variable Y is ob-
tained independently of X , i.e. the arrow from X to Y rep-
resents just a potential dependence, the content of which is
expressed by the conditional belief and uncertainty masses.

We denote by ωY |X the set of all conditional opinions on
Y given the values of X:

ωY |X = {ωY |xi
| i = 1, . . . , k} . (17)

Given ωX and ωY |X , the goal of the deduction is to derive
a subjective opinion on Y :

ωY ‖X =
(
bY ‖X , uY ‖X , aY

)
, (18)

where bY ‖X : Y → [0, 1] is a belief mass distribution
and uY ‖X ∈ [0, 1] is an uncertainty mass, such that Eq.(8)
holds, and aY is as given in the input conditional opinions
ωY |X . Although aY ‖X = aY may as well be considered
a consequence of the assumption aY |xi

= aY , for every
i = 1, . . . , k (if the base rates form a BN with the given
DAG), assuming aY ‖X = aY here means that the proposed
deduction procedure does not include reasoning about the
base rates, they are just given or obtained separately.

3.2 Deduction Method

In this section we give the idea behind the deduction method
for obtaining ωY ‖X from ωX and ωY |X . Each of the follow-
ing sections focuses on one part of the method.

The deduction method determines the projected proba-
bility distribution and the uncertainty mass of the deduced
opinion first, and then obtains the belief mass distribution as
a consequence applying Eq.(10). While the projected proba-
bility is determined by Bayesian deduction described in Sec-
tion 1, the procedure for determining an appropriate value
for the uncertainty mass of the deduced opinion, uY ‖X , is
inspired by the geometrical analysis of the input opinions
and their interrelations. The idea is that the input condi-
tional opinions ωY |X define a deduction operator from ΩX

to ΩY , which maps ωX into ωY ‖X . This is denoted by the
following expression for multinomial deduction in subjec-
tive logic (Jøsang, Pope, and Daniel 2005):

ωY ‖X = ωX � ωY |X . (19)

The following intuitive constrains are taken into considera-
tion in providing the definition of the deduction operator:

1. The absolute opinions that correspond to the base ver-
tices of the opinion space ΩX map into the respective opin-
ions from the set ωY |X :

ωY |xi
= ωi

X � ωY |X , (20)

where ωi
X = (biX , ui

X , aX) is the absolute opinion on X
such that bixi

= 1 (consequently bixj
= 0, for j �= i, and

ui
X = 0).
2. The apex of ΩX corresponds to the following vacuous

opinion on X:

ω̂X = (̂bX , ûX , aX) , (21)

where ûX = 1, and b̂xi = 0, for every i = 1, . . . , k. Let us
denote the deduction image of ω̂X by ωY ‖ ̂X :

ωY ‖ ̂X = ω̂X � ωY |X . (22)

Now, the idea is that ωY ‖ ̂X is determined as the opinion with
the maximum possible uncertainty mass satisfying certain
constrains imposed on the projected probability and the be-
liefs of the opinion ωY ‖ ̂X .

3. The deduction operator maps the whole opinion space
of X , ΩX , into a sub-space of ΩY , which we call a deduc-
tion sub-space. The deduction sub-space is determined as
the convex closure of the opinion points ωY |xi

, i = 1, . . . , k,
and ωY ‖ ̂X .

4. The deduced opinion ωY ‖X from an arbitrary opinion
ωX is determined as a linear projection of ωX inside the
deduction sub-space.

A visualisation of the above in the case of trinomial opin-
ions where the opinion spaces are tetrahedrons, is given in
Fig.3. The deduction sub-space is shown as a shaded tetra-

Figure 3: Projecting an opinion in a deduction subspace

hedron inside the opinion tetrahedron of Y .

3.3 Projected Probability

The definition of Bayesian deduction for subjective opinions
should be compatible with the definition of Bayesian deduc-
tion for probability distributions described in Section 1. This
means that the projected probability of the deduced opinion
ωY ‖X should satisfy the relation given in Eq.(3), i.e.:

P(yj‖X) =
k∑

i=1

P(xi)P(yj |xi) , (23)

for j = 1, . . . , l, where Eq.(10) provides each factor on the
right-hand side of Eq.(23).4 On the other side, from Eq.(10),

4Note that we omit indices and use simplified notation for the
projected probabilities: P(yj |xi) for PY |xi

(yj) and PY ‖X(yj) for
P(yj‖X).
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we have the following:

P(yj‖X) = byj‖X + ayj
uY ‖X , (24)

where byj‖X = bY ‖X(yj), and ayj = aY (yj). (We use sim-
ilar short-hand notations for the belief masses and base rates
appearing later in the text as well.)

Eq.(23) determines a system of l linear equations with the
beliefs byj‖X , j = 1, . . . , l, and the uncertainty uY ‖X as
variables. We obtain one more equation over the same vari-
ables by applying Eq.(8) to the deduced opinion:

uY ‖X +
l∑

j=1

byj‖X = 1 . (25)

The system of equation determined by Eq.(25) and Eq.(24)
does not have a unique solution, however, since Eq.(25) is
the sum of Eq.(24), hence the system is dependent. This
means that it has infinitely many solutions, i.e. there are in-
finitely many subjective opinions on Y with a base rate aY
and projected probability determined by Eq.(23). The last
observation is in correspondence with the geometrical rep-
resentation of subjective opinions, namely: Once we have an
opinion point ωY corresponding to the given aY and PY , ev-
ery other point in ΩY lying on the projector through ωY and
aY will also correspond to a solution of the system.

We apply additional constrains on the beliefs and uncer-
tainty mass of the deduced opinion in order to completely
determine the opinion.

3.4 Constraint on the Deduced Beliefs

The belief mass assigned to each value yj of Y in any de-
duced opinion ωY ‖X should be at least as large as the mini-
mum of the corresponding belief masses in the given condi-
tionals, i.e. :

byj‖X ≥ min
i

byj |xi
, (26)

for every j = 1, . . . , l. This is intuitively clear: Our belief
in yj when we do not know the exact value of X is at least
as large as the minimum of the belief we would assign to
yj knowing that a particular value of X is the case. (The
assumption is, of course, that we are aware of the domain of
X .) This is a natural assumption, which can be found as a
principle of plausible reasoning in (Pearl 1990).

The condition in Eq.(26) has the following geometrical
interpretation: For every ωX , the opinion point ωY ‖X must
be inside the sub-space of ΩY bounded by the planes byj =
mini byj |xi

(which are parallel to the sides of ΩY ). We call
it an auxiliary deduction sub-space.

3.5 Deduction from a Vacuous Opinion

The deduction sub-space will be bounded by the k points
ωY |xi

, i = 1, . . . , k, and the point that corresponds to the
vacuous opinion ωY ‖ ̂X . While the former are given, the lat-
ter needs to be computed.

The projected probability of ωY ‖ ̂X can be determined by
Eq.(23). We will determine its uncertainty mass uY ‖ ̂X as the
maximum possible uncertainty mass value that corresponds
to the obtained projected probability and the given base rate,

satisfying at the same time the belief constraint imposed by
Eq.(26).

Applying Eq.(23) to the vacuous opinion on X , ω
̂X , we

obtain the following equation for the projected probability
distribution of ωY ‖ ̂X :

P(yj‖X̂) =
k∑

i=1

axi
P(yj |xi) . (27)

On the other hand, by definition given in Eq.(10), we have
the following equation:

P(yj‖X̂) = byj‖ ̂X + ayj
uY ‖ ̂X . (28)

Now, we want to find the point ωY ‖ ̂X =

(bY ‖ ̂X , uY ‖ ̂X , aY ) with the greatest possible uncer-
tainty satisfying the requirements in Eq.(28) and Eq.(26),
where P(yj‖X̂) are determined by Eq.(27) and ayj are
given.

From Eq.(28) and Eq.(26) we obtain the following in-
equality:

uY ‖ ̂X ≤ P(yj‖X̂)−mini byj |xi

ayj

, (29)

for every j = 1, . . . , l. For simplicity, let us denote the right-
hand side of Eq.(29) by uj . Hence we have:

uY ‖ ̂X ≤ uj , (30)

for every j = 1, . . . , l. Now, the greatest uY ‖ ̂X for which
Eq.(30) holds is determined as:

uY ‖ ̂X = min
j

uj . (31)

Namely, from Eq.(28) and Eq.(26), it follows that uj ≥ 0,
for every j (proof in the Appendix), hence the value deter-
mined by Eq.(31) is non-negative. Also uY ‖ ̂X ≤ 1, since, if
we assume the opposite, it will follow that uj > 1, for every
j = 1, . . . , l, which leads to P(yj‖X̂) > mini byj |xi

+ ayj
,

for every j = 1, . . . , l; summing up by j in the last inequal-
ity we obtain a contradiction, since both the projected prob-
abilities and the base rates of Y sum up to 1. Hence, uY ‖ ̂X

determined by Eq.(31) is a well-defined uncertainty mass
value. It is obviously the greatest value satisfying Eq.(30),
hence also the initial requirements.

Having determined uY ‖ ̂X , we determine the correspond-
ing belief masses byj‖ ̂X , j = 1, . . . , l, from Eq.(28) by
which the opinion ωY ‖ ̂X is fully determined.

In the geometrical representation of subjective opinions
in tetrahedrons, the described procedure for determining the
opinion ωY ‖ ̂X corresponds to determining the intersection
between the surface of the auxiliary deduction sub-space and
the projector passing through the base point that represents
the projected probability determined by Eq.(27), when the
corresponding director is determined by aY .
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3.6 Deduction from an Arbitrary Opinion

The given opinion ωX is then linearly projected in the de-
duction sub-space determined by the points ωY |xi

, i =
1, . . . , k, and ωY ‖ ̂X . This means that its uncertainty mass
uY ‖X is determined by a linear transformation of the pa-
rameters of ωX , and the belief masses are determined ac-
cordingly. This linear transformation is obtained based on
the constraints 1. and 2. in Section 3.2. The vertices of the
opinion simplex of X map into the vertices of the deduction
sub-space. The latter leads to the following linear expression
for the uncertainty uY ‖X :

uY ‖X = uXuY ‖ ̂X +
k∑

i=1

uY |xi
bxi

. (32)

We obtain the last expression as the unique transformation
on the beliefs and uncertainty of an opinion on X that maps
the beliefs and uncertainty mass of the opinions ωi

X , i =
1, . . . , k, and ω̂X , into the uncertainty masses of ωY |xi

, i =
1, . . . , k, and ωY ‖ ̂X respectively.

Having deduced the uncertainty uY ‖X , and the projected
probability distribution by Eq.(23), the beliefs of the de-
duced opinion are determined by Eq.(24). We prove in the
Appendix that the beliefs byj‖X determined in this way sat-
isfy the requirement in Eq.(26). We remark that the initial
assumption for a fixed (unconditional) base rate of Y is es-
sential in this proof.

The above described deduction procedure can also be ap-
plied if some of the input opinions are hyper opinions. In
that case, we first determine the corresponding projections
of the hyper opinions into multinomial opinions, in the way
described in Section 2, and then deduce an opinion from the
projections. The deduced opinion will be a multinomial one.
Allowing hyper input opinions while deducing only multi-
nomial ones is an advantage in some sense, since one usu-
ally has the input information in a more vague, hyper opin-
ion form, but prefers to have the derived conclusions in a
sharper, multinomial opinion form, i.e. to have a distribution
of beliefs over the values rather than set of values.

3.7 Example: Intelligence Analysis with
Subjective Logic Deduction

Two neighbouring countries A and B are in conflict, and in-
telligence analysts of country B want to find out whether
country A intends to use military aggression (random vari-
able Y ). The analysts of country B consider the following
possible alternatives regarding country A’s plans:

y1 : No military aggression from country A
y2 : Minor military operations by country A
y3 : Full invasion of country B by country A

(33)

The way the analysts of country B determine the most
likely plan of country A is by observing mobilization of
troops along the border in country A (random variable X)
using satellite photos. In that way, the following possibili-
ties for mobilization of troops are considered:

x1 : No mobilization of country A’s troops
x2 : Minor mobilization of country A’s troops
x3 : Major mobilization of country A’s troops

(34)

The available evidence from the satellite photos gives the
following distribution of beliefs over the possible options:

bX = (0.0, 0.5, 0.2) , (35)
and the uncertainty mass uX = 0.3. This means that the
experts’ beliefs are significantly in favour of a minor troops
mobilization, with some space for a major mobilization too,
but they are uncertain to some degree (in their material evi-
dence, in their expertise, etc.).

Based on statistical evidence about mobilization of troops
along the border of country A, the following probability dis-
tribution of the values of X is available and is taken as a base
rate aX in the current analysis:

aX = (0.7, 0.2, 0.1) . (36)
In that way a subjective opinion ωX = (bX , uX , aX) on the
mobilization of troops is formed.

The values in Eq.(36) and Eq.(35) give the following pro-
jected probability distribution of the troop mobilization in
country A:

P(X) = (0.21, 0.56, 0.23) . (37)
The projected probabilities are experts’ beliefs adjusted by
a portion of the corresponding base rates, according to the
uncertainty value uX .

Now, the target variable is Y and the evidence variable is
X . Based on statistical data and professional expertise, the
analysts form an opinion on how the military plans (Y ) prob-
abilistically depend on the troop movements (X). They ex-
press this opinion through the belief mass distributions and
uncertainty masses given in Table 1.

y1 y2 y3 Y
ωY |x1

by1 = 0.9 by2 = 0.0 by3 = 0.0 uY = 0.1
ωY |x2

by1
= 0.2 by2

= 0.3 by3
= 0.1 uY = 0.4

ωY |x3
by1 = 0.0 by2 = 0.3 by3 = 0.5 uY = 0.2

Table 1: Conditional opinions on Y given X

The values in Table 1 together with the base rate of Y , aY
defined by:

aY = (0.90, 0.09, 0.01) , (38)
form a set of conditional opinions ωY |X . These opinions
have projected probability distributions as given in Table 2.

y1 y2 y3
P(Y |x1) 0.990 0.009 0.001
P(Y |x2) 0.560 0.336 0.104
P(Y |x3) 0.180 0.318 0.502

Table 2: Projected probabilities of Y conditional on X

Next we apply a deduction on the given opinion ωX =
(bX , uX , aX) and the set of conditional opinions ωY |X to
deduce an opinion on Y .

The values from Eq.(36) and Table 2, applied in Eq.(27),
give the following projected probabilities of Y given the vac-
uous opinion on X:

P(Y ‖X̂) = (0.8072, 0.1084, 0.0844) . (39)
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Then according to Eq.(31), we determine the uncertainty of
the opinion on Y that corresponds to the vacuous opinion on
X:

uY ‖ ̂X = 1 . (40)
And, finally from Eq.(32), we find the actual uncertainty of
the deduced opinion on Y that corresponds to the given opin-
ion ωX on X:

uY ‖X = 0.52 . (41)
According to Eq.(23), we determine the projected proba-

bility distribution of ωY ‖X :

P(Y ‖X) = (0.5629, 0.2632, 0.1739) . (42)
Using the uncertainty value in Eq.(41) and the projected

probabilities from Eq.(42) in Eq.(24), we obtain the follow-
ing deduced beliefs:

bY ‖X = (0.09, 0.22, 0.17) . (43)
Eq.(42) and Eq.(43) show the difference between classical
and subjective logic Bayesian deduction: although y1 (no ag-
gression) seems to be country A’s most likely plan in proba-
bilistic terms, this likelihood is based mostly on prior proba-
bilities and uncertainty. Indeed, beliefs on y2 (minor aggres-
sion) or y3 (full invasion) are much more stronger than the
one on y1, with y2 having the strongest support.

A likelihood expressed as a simple probability value can
thus hide important aspects of the analysis, which will only
come to light when uncertainty is explicitly expressed, as
done in the example above.

4 Deduction in Subjective Networks
A subjective network (SN) of n random variables is a di-
rected acyclic graph and subjective opinions associated with
it. We focus on applying the deduction operation in the type
of subjective networks that we call Bayesian. A subjective
Bayesian network is a generalization of a classical BN where
the probability distributions associated with the nodes are
substituted with subjective opinions on the corresponding
random variables (Fig.4).5

We define the inference goal in subjective networks as fol-
lows: Given the input conditional subjective opinions in the
network and a subjective opinion on a variable X (evidence
variable), derive a subjective opinion on a target variable Y
different than X . Note that the evidence subjective opinion
can be the one already given in the subjective BN (if X is a
root node) or provided as a new information in addition to
the network’s input. We limit ourselves to the case when X
is an ancestor of Y , i.e. to the inference problems of predic-
tive reasoning, reasoning that follows the directions of the
network arrows propagating new information about causes
to new beliefs about the effects.

We discuss how the introduced deduction operation, in
combination with the multiplication operation for opin-
ions on independent variables described in (Jøsang and
McAnally 2004), can be used for predictive reasoning in
subjective Bayesian networks.

5In (Ivanovska et al. 2015), we also introduce another type of
subjective networks, that we call fused, where the sets of subjective
opinions are associated with the arrows rather than the nodes of the
graph.

X

Y Z

ωX

ωY |X ωZ|X

X Y

Z

ωX ωY

ωZ|XY

X

Y

Z

ωX

ωY |X

ωZ|Y

a) b) c)

Figure 4: Three-node subjective networks

4.1 Deduction in Three-Node Structures

In the Naı̈ve Bayes SN given in Fig.4(a), deduction opera-
tion is used in deriving the opinions ωY ‖X and ωZ‖X from
the opinion ωX and the corresponding sets of conditionals.

In the V-network in Fig.4(b), we apply deduction to ob-
tain the opinion ωZ‖XY from the opinion ωXY . Since the
variables X and Y in this network are probabilistically in-
dependent, the opinion ωXY can be obtained by applying
the multiplication operation on the subjective opinions ωX

and ωY .
In the chain network in Fig.4(c), deduction is used to de-

rive ωY ‖X , and then another deduction operation is applied
on ωY ‖X and ωZ|Y to derive ωZ‖X . If evidence in the form
of a subjective opinion ωY is available at Y , then applying
deduction on ωY and ωZ|Y we can derive ωZ‖Y . In the lat-
ter inference we ignore the input opinion ωX that is “above”
the evidence variable Y , and the opinion ωY ‖X that can be
deduced from it, since we have a new opinion (a new infor-
mation) on the variable Y .

In Fig.4(a), we could also use deduction operation to de-
rive the opinion ωY Z‖X by first obtaining the set ωY Z|X by
mutiplication: ωY Z|x = ωY |x×ωZ|x, x ∈ X. Multiplication
operation can be applied here because the independence re-
lation I(Y, Z|X) holds.

4.2 Predictive Reasoning in Subjective Networks

In this section we propose a solution to the inference prob-
lem of predictive reasoning in subjective Bayesian networks
with a singly-connected DAG (a graph with only one path
between every two nodes).

Let X be the evidence variable and Y be the target vari-
able in the inference. This means that we are given a sub-
jective opinion ωX and want to derive a subjective opinion
ωY ‖X . We distinguish between the following two cases:

1. The DAG is in the form of a tree. This means that every
node has only one parent, so there is an ancestor chain
between the evidence and the target: X1 → · · · → Xn

where X1 = X and Xn = Y . Then the reasoning from
the evidence to the target is a generalization of the reason-
ing in the chain network in Fig.4(c), i.e. ωY ‖X is obtained
by n − 1 consecutive deduction operations. (If X is not
a root node, then its ancestors in the graph are ignored in
the inference.)

2. The DAG contains V-structures, i.e. there are nodes that
have multiple parents. Suppose Z is a node on the path

491



between X and Y that has multiple parents. Then the par-
ents of Z are probabilistically independent variables ac-
cording to the d-separation criterion (Neapolitan 2003)
since the only path between each two of them passes
through Z. This means that we can first derive subjective
opinion on each of the parents of Z separately, and then
use the multiplication operation to find ωPa(Z)‖X which
we further propagate to Z. Because the graph is singly-
connected, the parents of Z have sets of ancestors that are
non-intersecting, hence the deduced opinions on them are
derived independently and can be multiplied.

The inference problem becomes more complicated in a
multiple-connected graph where the multiplication opera-
tion can not always be applied due to absence of the nec-
essary independencies. For example, if we add an arrow be-
tween X and Y in the V-network in Fig.4(b), the network
becomes multiply-connected and the required independence
is lost.

5 Conclusions and Future Work

In many practical situations of modelling probabilistic
knowledge, one can only estimate the probabilities with a
degree of uncertainty and would like to account for this
uncertainty during the inference. Subjective logic offers an
explicit treatment of uncertainty about probability distribu-
tions, representing it as particular numerical values that can
be propagated through the probabilistic network in the pro-
cess of inference.

We defined a procedure for Bayesian deduction in subjec-
tive logic and showed the advantage of its use for modelling.
We proposed a way to use this operation in the reasoning in
subjective Bayesian networks where both the network’s in-
put and the evidence is given in the form of subjective opin-
ions on the variables. In particular, we focused on predictive
reasoning in subjective Bayesian networks with a single ev-
idence and target node.

Bayesian deduction with subjective opinions is the first
step in dealing with conditional reasoning with subjective
opinions. Conditional reasoning has been a great part of
other theories of uncertain probabilistic information men-
tioned in the introduction. It has also been analysed in the
context of belief theory (Shafer 1976), (Smets and Kennes
1994), (Xu and Smets 1994). Compared to these approaches,
and also to the traditional Bayesian deduction, the advantage
of the subjective logic deduction is that it incorporates rea-
soning over beliefs, uncertainty about the beliefs, and sta-
tistical information at the same time. In that way it enables
control over more complex information while doing proba-
bilistic inference, returning a more accurate portrait of the
modelled situation.

In future work, we want to provide a procedure for predic-
tive reasoning in subjective networks of any kind and graph
structure. A further goal is to provide methods for inference
in subjective networks in general, which would include diag-
nostic and combined reasoning and reasoning with multiple
evidence and target nodes.

Appendix

1. We prove that uj ≥ 0, j = 1, . . . , n, for uj defined as:

uj =
P(yj‖X̂)−mini byj |xi

ayj

.

By definition of projected probability in Eq.(23), we have:

P(yj |xi) = byj |xi
+ ayi

uY |xi
,

from which we obtain P(yj |xi) ≥ byj |xi
. If we multiply by

axi and sum by i in the last inequality, we obtain:
∑
i

axi
P(yj |xi) ≥

∑
i

axi
byj |xi

.

Now, applying the last inequality in Eq.(27), we obtain:

P(yj‖X̂) ≥
∑
i

axi
byj |xi

≥
∑
i

axi
min
i

byj |xi

= min
i

byj |xi

∑
i

axi
= min

i
byj |xi

.

Hence, P(yj‖X̂)−mini byj |xi
≥ 0, and uj ≥ 0 as well.

2. We prove that byj‖X ≥ mini byj |xi
.

Applying appropriate equations from Sections 3.3 - 3.6,
we obtain:

byj‖X = P(yj‖X)− ayj
uY ‖X

=
∑
i

P(yj |xi)P(xi)− ayj
(uXuY ‖ ̂X +

∑
i

bxi
uY |xi

)

=
∑
i

P(yj |xi)bxi +
∑
i

P(yj |xi)axiuX − ayjuXuY ‖ ̂X

−
∑
i

ayj
bxi

uY |xi

=
∑
i

P(yj |xi)bxi
+ uX(

∑
i

P(yj |xi)axi
− ayj

uY ‖ ̂X)

−
∑
i

ayj bxiuY |xi

= uXbyj‖ ̂X +
∑
i

(P(yj |xi)bxi
− ayj

bxi
uY |xi

)

= uXbyj‖ ̂X +
∑
i

bxi
(P(yj |xi)− ayj

uY |xi
)

= uXbyj‖ ̂X +
∑
i

bxibyj |xi

≥ uXbyj‖ ̂X +
∑
i

bxi min
i

byj |xi

≥ uX min
i

byj |xi
+min

i
byj |xi

∑
i

bxi

= min
i

byj |xi
(uX +

∑
i

bxi
) = min

i
byj |xi

.
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Note that the proof in part 2. above contains the proof of the
following equation:

byj‖X = uXbyj‖ ̂X +
∑
i

bxibyj |xi
, (44)

which shows that the obtained belief mass byj‖X can be rep-
resented as linear combinations of the corresponding belief
masses of the opinions ωY ‖ ̂X and ωY |xi

, xi ∈ X and the
coefficients of the transformation are the same as in the cor-
responding transformation for the uncertainty masses given
in Eq.(32). This shows that the deduced opinion ωY ‖X is in
the convex closure of the points ωY ‖ ̂X and ωY |xi

, xi ∈ X.
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