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Abstract

Solving a multi-objective constraint optimization problem
(MO-COP) typically consists in computing all Pareto opti-
mal solutions, which are exponentially many in the general
case. This causes two problems: time complexity and lack of
decisiveness. We present an approach which, given a number
k of desired solutions, selects k Pareto optimal solutions that
are representative of the Pareto front. We analyze the compu-
tational complexity of the underlying computational problem
and provide exact and approximation procedures.

Introduction

For many computational problems involving an exponen-
tially large number of solutions, computing a subset of
alternatives may be of interest for decision-making (He-
brard et al. 2005). We address the issue on multi-objective
constraint optimization problems (MO-COPs), which con-
sist in finding assignments of variables to values which sa-
tisfy some constraints and optimize several objectives si-
multaneously. Typically, assignments are preferred based
on the notion of Pareto optimality, thus most of standards
algorithms addressing MO-COPs (Marinescu 2009) solve a
given MO-COP by computing all Pareto optimal solutions.
The main issues are time complexity and lack of decisive-
ness. Schwind et al. (2014) have proposed an approach to
addess these issues. It consists in computing a restricted set
of Pareto optimal solutions given some preferences among
the different objectives expressed as a “weight vector.” Ho-
wever, expressing quantitative relative importance between
preferences may be hard for a user, e.g., in a context of pro-
duct configuration (Sabin and Weigel 1998). This calls for
an appropriate function which filters available alternatives.

A class of filtering functions called diversities has been
introduced for Constraint Satisfaction Problems (CSP) (He-
brard et al. 2005). They are used to extract a small subset
of solutions which are pairwise “distant.” We argue that this
notion is not desirable for MO-COPs, as the selected solu-
tions are intuitively not “representative” of the Pareto front.
To fill the gap, we take our inspiration from the problem of
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facility location (Ilhan and Pinar 2001) and introduce a new
filtering function for MO-COPs called representativity.

Preliminaries

We consider a given fixed number m of objectives. A multi-
objective constraint optimization problem (MO-COP) is a
tuple 〈X ,D, Ch, Cs〉, where: X = {x1, . . . , xn} is a set of
variables; D = {D1, . . . , Dn} is a multiset of non-empty
domains for the variables; Ch is a finite set of hard cons-
traints, i.e., for each Ch

j ∈ Ch, Ch
j ⊆ Di1 × · · · × Dij

for some {Di1 , . . . , Dij} ⊆ D; and Cs is a finite set of
soft, polyadic constraints, i.e., each Cs

j ∈ Cs is a mapping
from {Di1 , . . . , Dij} to N

m, for some {Di1 , . . . , Dij} ⊆ D.
Each constraint from Ch ∪ Cs involves a set of variables
Xj ⊆ X called its scope.

Let P be an MO-COP 〈X ,D, Ch, Cs〉. An assignment
A of P associates each xi ∈ X with a value from Di;
A is a solution of P if there is no Ch

j ∈ Ch such that
(A(xi1), . . . , A(xij )) ∈ Ch

j , where {xi1 , . . . , xij} is the
scope of Ch

j . Sols(P ) denotes the set of solutions of P .
Given an m-vector U , we denote by Uk or U(k) its kth com-
ponent, with k ∈ {1, . . . ,m}. The cost vector of A is the m-
vector denoted by V (A) defined for each k ∈ {1, . . . ,m} as
V (A)k =

∑
Cs

j∈Cs Cs
j (A(xi1), . . . , A(xij ))(k), where for

each Cs
j , {xi1 , . . . , xij} is the scope of Cs

j . When S is a set
of solutions, V (S) denotes the set {V (A) | A ∈ S}.

Let �m be the product ordering over Nm, i.e., ∀V1, V2 ∈
N

m, V1 �m V2 iff ∀k ∈ {1, . . . ,m}, V k
1 ≤ V k

2 . The pre-
ordering �Par over Sols(P ), called the Pareto dominance
relation, is defined ∀A,A′ ∈ Sols(P ) as A �Par A′ iff
V (A) �m V (A′); we say that A Pareto dominates A′. A
Pareto optimal solution of P is a solution S ∈ Sols(P )
which is not strictly Pareto dominated by an other solution
S′ ∈ Sols(P ). SPar(P ) denotes the set of Pareto optimal
solutions of P , and PF(P ) =

⋃
S∈SPar(P ) V (S) is called

the Pareto front of P .

Example 1. Let P� = 〈X�,D�, Ch
� , Cs

�〉 be the bi-objective
MO-COP defined as X� = {x1, x2, x3}, Di = {a, b} ∀Di ∈
D�, Ch

� = {{(b, b, a)}} and Cs
� = {Cs

1 , C
s
2}, defined as:
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(a) The Pareto front of P� and the
most diverse solutions (k = 2).

(b) An optimal set of representa-
tive solutions for P� (k = 2).

(c) The solutions of P� from the
approximation approach (k = 2).

Figure 1: The Pareto front of P� and results for exact and approximation approaches (for k = 2).

(x1, x2) Cs
1 (x2, x3) Cs

2

(a, a) (1, 5) (a, a) (0, 4)
(a, b) (2, 1) (a, b) (1, 3)
(b, a) (6, 0) (b, a) (1, 5)
(b, b) (3, 0) (b, b) (7, 1)

Here, SPar(P�) = Sols(P�) = {a, b}3 \ {(b, b, a)}. For
instance V ((aaa)) = (1, 5) + (0, 4) = (1, 9). The Pareto
front of P� can be seen in Figure 1(a).

An MO-COP operator ⊕ associates with an MO-COP P a
subset of Pareto optimal solutions from Sols(P ) (Schwind
et al. 2014). Here, a solution is evaluated through its cost
vector only, thus we focus on operators ⊕ which satisfy
A,A′ ∈ ⊕(P ) ∧A �= A′ =⇒ V (A) �= V (A′).

Representative Solutions
In general, the size of the Pareto front is exponential in the
size of the MO-COP, so providing all Pareto optimal solu-
tions lacks decisiveness. So we now introduce a general
class of “filtering” MO-COP operators, which given an inte-
ger k associate with every MO-COP P a subset of its Pareto
optimal solutions such that |⊕k (P )| = k. These operators
can be characterized by a filtering function Γ associating a
set of assignments with a number to be optimized:1

Definition 1 (Filtering MO-COP operator). Let k be an in-
teger and Γ be a filtering function. The 〈Γ, k〉-filtering MO-
COP operator ⊕k

Γ, is defined as

⊕k
Γ(P ) = γ(argmin{Γ(S) | S ⊆ SPar(P ), |S| = k}),

where γ is any choice function.
Diversities (Hebrard et al. 2005) constitute a specific class

of filtering functions. A diversity is characterized by a dis-
tance δ between assignments and an aggregation function f
(i.e., a function from R × · · · × R to R, e.g., the max and
summation functions). Without loss of generality, we con-
sider the standard distance δ = δ1, i.e., the L1-norm defined
for all V1, V2 ∈ R

m as δ1(V1, V2) =
∑m

k=1 |V k
1 − V k

2 |.
Definition 2 (Diversity (Hebrard et al. 2005)). Given an ag-
gregation function f , the diversity Δf is the filtering func-
tion defined for every set S ⊆ SPar(P ) as

Δf (S) = f{δ1(V (A), V (A′)) | A,A′ ∈ S}.
1The definition is given in the case where Γ is to be minimized.

The maximization counterpart is defined similarly.

Note that a diversity is a function to be maximized.
We claim that a diversity Δf is not be appropriate for

MO-COPs. First, the choice of the aggregation function f
is arbitrary; obviously enough, different aggregation func-
tions induce different filtering functions. Second, diversity-
based MO-COP operators may output only “unbalanced” so-
lutions, i.e., they may not provide alternatives with parsimo-
nious trade-offs among the objectives. Third, such operators
are not “representative” of the Pareto front, as shown in our
running example:

Example 1 (continued). For any aggregation function f ,
we get that V (⊕2

Δf (P�)) = {(10, 1), (1, 9)}. One can see
from Figure 1(a) that these vectors are the most “unbal-
anced” ones from the Pareto front, and that whichever the
vectors lying “between” these two, the result remains un-
changed.

As a concrete example, consider a Pareto front represen-
ting the outcomes of second-hand cars available for sale,
where the two objectives to be minimized represent the price
and the age of a car. Without any prior knowledge of the
possible alternatives a customer may ask for two options;
then any diversity-based filtering MO-COP operator ⊗2

Δf

will recommend only the newest and the oldest available
cars despite the presence of balanced trade-off solutions.

We introduce now a parsimonious filtering function which
is directly inspired from the well-known discrete p-center
problem in discrete location theory (Ilhan and Pinar 2001).
This problem consists of locating p facilities in a network
and assigning clients to them so as to minimize the maxi-
mum distance between any client and the facility she is as-
signed to. We adapt the notion to MO-COPs:

Definition 3 (Representativity). The representativity Ω is
the filtering function defined for every S ⊆ SPar(P ) as

Ω(S) = max
A∈SPar(P )

min
A′∈S

δ1(V (A), V (A′)).

Ω(S) is called the radius of S .

The rationale behind a representativity Ω is to extract
from an MO-COP P a subset Sk of Pareto optimal solu-
tions such that |Sk| = k so as to minimize Ω(S), the radius
of Sk, that is the maximum distance between any Pareto op-
timal solution from PF(P ) and the Pareto optimal solution
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from Sk which is the closest. So a representativity is a fil-
tering function to be minimized. From now on, we focus on
the representativity-based filtering MO-COP operators ⊕k

Ω.
Note that these operators, unlike diversity-based ones, are
more “sensitive” to the shape of the Pareto front:

Example 1 (continued). We have V (⊕2
Ω(P�)) =

{(7, 3), (2, 8)} or V (⊕2
Ω(P�)) = {(9, 2), (2, 8)} (only the

former case is depicted in Figure 1(b)). In both cases, the
radius is equal to 5.

Using a representativity-based MO-COP operator pro-
vides us with the guarantee that no Pareto optimal solution
is left apart: for each one of them there is a representative
solution that is not “too far” from it.

Computational Complexity of ⊕k
Ω

We assume that the reader is familiar with the complexity
class NP. Higher complexity classes are defined using ora-
cles. In particular, ΣP

2 = NPNP corresponds to the class of
decision problems that are solved in non-deterministic poly-
nomial time by deterministic Turing machines using an ora-
cle for NP in polynomial time (Papadimitriou 1994).

We investigate the computational complexity of two de-
cision problems inherent in our representativity-based MO-
COP operator ⊕k

Ω. We assume that k is bounded by a poly-
nomial in the size of the input (Hebrard et al. 2005). The first
problem DP1 considers that the Pareto front is given in input
(for instance, when it is computed as a preprocessing). The
second problem DP2 does not require any prior processing
step on the input MO-COP:

Definition 4 (DP1). Given an MO-COP P , its Pareto front
PF(P ) and two integers α, k, does there exist S ⊆ SPar(P )
such that |S| = k and Ω(S) ≤ α?

Definition 5 (DP2). Given an MO-COP P and two integers
α, k, does there exist S ⊆ SPar(P ) such that |S| = k and
Ω(S) ≤ α?

Proposition 1. DP1 is NP-complete.

Without stating it formally, we claim that the correspon-
ding diversity problem (Hebrard et al. 2005) in the case
where the Pareto front is given in input, is also NP-hard,
even for aggregation functions f computable in polynomial
time. Thus for DP1, considering a representativity measure
instead of a diversity does not result in a complexity shift.
This does hold anymore for DP2 which lies in the second
level of the polynomial hierarchy, whereas the counterpart
diversity problem is NP-complete (Hebrard et al. 2005):

Proposition 2. DP2 is ΣP
2 -complete. ΣP

2 -hardness holds
even when k = 1.

A consequence of Proposition 2 is that unless the poly-
nomial hierarchy collapses at the first level, DP2 cannot
be solved using a standard NP problem solver. However,
Proposition 1 shows that if the Pareto front is part of the in-
put (thus computed in a first step), one can take advantage
of an NP-oracle to compute ⊕k

Ω(P ). The (so-called “exact”)
procedure consists in three phases. First, we compute all
Pareto optimal solutions using a standard branch-and-bound

technique (Marinescu 2009). Second, we randomly gene-
rate a k-subset S of SPar(P ) and set αup = Ω(S). Third,
we adapt an efficient encoding of the vertex p-center pro-
blem proposed in (Ilhan and Pinar 2001) into our MO-COP
framework. Such an encoding is parameterized by an inte-
ger α (a specific radius) and serves as an NP solver for the
decision problem DP1. The result with the minimum radius
αmin, i.e., ⊕k

Ω(P ), is found by calling the oracle iteratively:
we adjust the radius α at each call using a dichotomic search
between 0 and αup, the initial upper bound.

Approximation Operator ⊕k
lex

We now introduce an MO-COP operator approximating ⊕k
Ω

(in the sense of the associated radius). Despite the ΣP
2 -

hardness of DP2, our approximating MO-COP operator, de-
noted ⊕k

lex, can be computed much more efficiently, espe-
cially for a high number of objectives where the “exact” ap-
proach does not work anymore. ⊕k

lex, intuitively “targets”
k specific areas of the Pareto front without computing it ex-
plicitly. The notion of “weight vector” (Torra 1997) is at the
core of the idea: it is an m-vector ω = (ω1, . . . , ωm) such
that ω ∈]0, 1]m and

∑m
k=1 ω

k = 1. The set Wm denotes the
set of all m-weight vectors. For instance, (0.3, 0.6, 0.1) and
(0.45, 0.45, 0.1) are both 3-weight vectors. We take advan-
tage of a direct adaptation of our representativity measure
(cf. Definition 3) to weight vectors, defined as follows:
Definition 6 (Wm-representativity). The Wm-
representativity ΩWm is the mapping from 2Wm to
R

+ defined for every set of m-weight vectors W ′ ⊆ Wm as
ΩWm(W ′) = max

ω∈Wm

min
ω′∈W′

δ1(ω, ω
′).

ΩWm(W ′) is called the radius of W ′.
The induced Wm-representativity-based filtering function

is given as follows:
Definition 7 (Weight vector filtering). Given two integers
k,m, the weight vector filtering �k

m is defined as

�k
m = γ(argmin{ΩWm(W ′) | W ′ ⊂ Wm, |W ′| = k}),

where γ is any choice function.
Example 1 (continued). In P�, we have m = 2. Let k = 2.
We have that �2

2 = {ω1, ω2}, with ω1 = (0.25, 0.75),
ω2 = (0.75, 0.25). Figure 1(c) graphically depicts two
dashed lines associated respectively with ω1 and ω2, where
for each ωi ∈ {ω1, ω2}, the line associated with ωi is the
line characterized by the set {(V1, V2) | ωi

1.V1 = ωi
2.V2}.

Note that a weight vector filtering is solely characterized
by k and m, so one can assume that �k

m is computed as a
preprocessing step: this can be done analytically, or by finely
discretizing the set Wm and take advantage of the exact pro-
cedure described in the previous section.

The MO-COP operator ⊕k
lex we are going to introduce

(in Definition 8 below) uses the set �k
m. Intuitively and

graphically speaking, the weight vectors from �k
m are used

to “target” different areas of the search space in the most
distributed fashion. Indeed, the operator ⊕k

lex will asso-
ciate with an MO-COP P and each weight vector ωi from
�k

m a Pareto optimal solution of P which is “close” to ωi,
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Table 1: CPU time and value of radius obtained from MO-
COPs with n = 16 and k = 7.

m |PF(P )| CPU time (in sec.) radius
⊕7

Ω(P ) (PF / opt) ⊕7
lex(P ) ⊕7

Ω(P ) ⊕7
lex(P )

2 15 2.34 / 0.26 2.80 156 245
3 98 2.97 / 0.62 3.01 248 498
4 467 4.70 / 7.40 3.30 417 802
5 1301 11.59 / 13.5 3.72 752 1280
6 2709 28.79 / 540 4.04 966 1488
7 4903 73.38 / time out 4.34 time out 1702
8 8210 139.2 / time out 4.65 time out 1934
9 14820 152.1 / time out 4.65 time out 2196

in attempt to return a set of k representative Pareto opti-
mal solutions. For this purpose, we take advantage of ω-
weighted egalitarian operators ⊕ω introduced in (Schwind
et al. 2014): for each weight vector ω, ⊕ω is defined
for every MO-COP P as ⊕ω(P ) = min(Sols(P ),�lex

ω ),
where �lex

ω is the total preorder over Sols(P ) such that
∀A,A′ ∈ Sols(P ), A �lex

ω A′ if and only if V (A)<,ω ≤lex

V (A′)<,ω , where ≤lex is the lexicographic ordering induced
by the natural ordering, and V (A)<,ω is the vector of num-
bers α1, . . . , αm obtained by sorting in a non-increasing
order the vector (V (A)1/ω(1), . . . , V (A)m/ω(m)) (see
(Schwind et al. 2014) for more details). An ω-weighted ega-
litarian operator exhibits a number of interesting properties.
In particular, it returns the Pareto optimal solutions that are
the “closest” to some utopia point located on the line speci-
fied by ω w.r.t. some a specific weighted norm. Hence, one
can use this operator to efficiently compute a Pareto optimal
solution which “targets” a specific area of the Pareto front
specified by ω. Our approximation MO-COP operator ⊕k

lex

is characterized by �k
m and the ωi-weighted egalitarian ope-

rators ⊕ωi
for all ωi ∈ �k

m:

Definition 8 (⊕k
lex). Given an integer k, the MO-COP ope-

rator ⊕k
lex is defined as

⊕k
lex(P ) = {γ(⊕ωi(P )) | ωi ∈ �k

m},
where γ is any choice function.

Example 1 (continued). For ω1 = (0.25, 0.75), we have
V (⊕ω1(P�)) = {(9, 2)} (cf. Figure 1(c)). Similarly, for
ω2 = (0.75, 0.25), we have V (⊕ω2

(P�)) = {(2, 8)}. There-
fore, we get that V (⊕2

lex) = {(9, 2), (2, 8)}.

Empirical Results

We empirically evaluated the efficiency and the radius ob-
tained from computing both ⊕k

Ω and ⊕k
lex. We conducted

experiments on graph-coloring problems, a well-known
benchmark problem which has been adapted to MO-COPs
(Fave et al. 2011). We considered MO-COP instances with
16 binary variables and set k = 7. We carried out all experi-
ments on one core running at 2.67GHz with 12GB RAM. We
varied the number of objectives m from 2 to 9. For each m,
all values represent an average on 100 MO-COPs instances.

We used the latest version of CPLEX (version 12.6) to
solve each NP-hard problem involved in the computation of
⊕7

Ω. We fixed a time out of 100 seconds for each call of
the CPLEX solver. For example, MO-COP instances with

m = 6 had (in average) a Pareto front of size 2709; com-
puting the Pareto front took 28 seconds, and the exact ope-
rator ⊕7

Ω and the approximation operator ⊕7
lex respectively

took 568 seconds (in total) and 4 seconds. No instance from
m = 7 objectives could be solved by the exact procedure
⊕7

Ω. The approximation procedure ⊕7
lex is not only much

faster than just computing the Pareto front itself, but offers
an acceptable alternative for problems with a high number
of objectives. On the other hand, ⊕7

lex provides us with a
reasonable approximation of the optimal radius.

Conclusion
We introduced the notion of representative solutions in
multi-objective constraint optimization problems (MO-
COPs), which are of interest in a decision-making context
where no preference among the different objectives is availa-
ble. We investigated the computational complexity of some
associated decision problems and provided exact and appro-
ximation procedures to compute such representative sets.

In perspective, we will focus on local search algorithms to
approximate representative sub-optimal solutions w.r.t. the
Pareto dominance relation. Such techniques have been pro-
posed for multi-objective optimization problems (MOOPs)
(Paquete, Schiavinotto, and Stützle 2007) where the domain
of variables is continuous, and more efficient to solve real-
world problems. Based on these techniques, we plan to ad-
dress more realistic MO-COP instances such as time tabling
(Burke et al. 2012) which typically involve many objectives.
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