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Abstract

We investigate case-based reasoning (CBR) problems where
cases are represented by abstract factors and (positive or neg-
ative) outcomes, and an outcome for a new case, represented
by abstract factors, needs to be established. To this end, we
employ abstract argumentation (AA) and propose a novel
methodology for CBR, called AA-CBR. The argumentative
formulation naturally allows to characterise the computation
of an outcome as a dialogical process between a proponent
and an opponent, and can also be used to extract explanations
for why an outcome for a new case is (not) computed.

Introduction

Over the last twenty years, formal argumentation (as
overviewed in (Rahwan and Simari 2009)) has gained im-
portance within AI, as a generic framework to support vari-
ous types of reasoning, including forms of case-based rea-
soning (CBR) (see e.g. (Bench-Capon and Modgil 2009;
Gordon, Prakken, and Walton 2007; Gordon and Walton
2009; Prakken et al. 2015; Athakravi et al. 2015)). CBR it-
self is extensively used in AI in support of several applica-
tions (see e.g. (Richter and Weber 2013) for an overview).
At a high-level, in CBR a reasoner in need to assess a new
case recollects past cases and employs the ones most similar
to the new case to give the assessment.

Here we propose a new argumentation-based approach to
CBR, using argumentation to provide: 1) a method for com-
puting outcomes for new cases, given the past cases and a de-
fault outcome; and 2) explanations for computed outcomes,
in the form of dialogical exchanges between a proponent,
in favour of the default outcome, and an opponent, against
the default outcome. Our method exploits the power of argu-
mentation for resolving conflicts amongst most similar past
cases with conflicting outcomes and for justifying outcomes.

In our approach, like elsewhere in the literature (see
e.g. (Horty and Bench-Capon 2012; Athakravi et al. 2015)),
past cases are represented as sets of factors together with
an outcome (factors are also known as features or attribute-
value pairs (Sørmo, Cassens, and Aamodt 2005)). A com-
mon measure in this literature for finding the most sim-
ilar past cases is setwise comparison of factors involved:
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past cases that have the largest subset of factors in com-
mon with the new case may be deemed most relevant for de-
termining an outcome. However, criteria for similarity and
relevance may diverge from one approach to another (see
e.g. (Sørmo, Cassens, and Aamodt 2005; Richter and We-
ber 2013)). Moreover, having the most similar cases need
not suffice to make a decision, because past cases may, and
usually will, have conflicting outcomes.

The following example, used throughout the paper, illus-
trates CBR and the challenges that it poses.

Example 1. Alice has bought a chair from an online retailer,
but wants to return it and get a refund. The retailer has a sys-
tem, where a customer can claim for a refund by providing
factual information about the situation. In Alice’s case: she
does not like the chair (factor A); she has used the chair (fac-
tor B); the chair shows no signs of wear and tear (C); Alice
had the chair for more than 30 days (D). So an outcome for
Alice’s case {A,B,C,D} needs to be established. By de-
fault, the retailer will provide no refund (−) when no factors
are present. The retailer has a case base CB containing previ-
ous cases together with outcomes, e.g. consisting of: a case
({A},+) with the outcome ‘refund’ (+) if the customer does
not like the chair; ({A,B},−) sustaining no refund if in ad-
dition the customer has used the chair; and ({A,B,C},+)
when in further addition the chair is in a good condition.
The outcome of the new (Alice’s) case depends on the past
cases most similar to the new case: since ({A,B,C},+) is
the only such case, Alice should get refunded (+).

But what if the case base contained ({A,D},−)? Then
there would be two nearest cases, ({A,B,C},+) and
({A,D},−). Would Alice be entitled to a refund?

We propose a method that uses abstract argumentation
(AA) (Dung 1995) to provide a (negative) answer to the
above question and to explain this recommendation dialec-
tically as follows: the retailer needs to defend the default
outcome (−); Alice’s claim rests on the factor A; so the re-
tailer has to counter-argue the case ({A},+) and may invoke
past cases (({A,B},−) or ({A,D},−)); while C favours Al-
ice in the presence of both A and B (via ({A,B,C},+)), it is
ineffective when D occurs; so the retailer possesses a reason-
able objection ({A,D},−) against satisfying Alice’s claim,
whence Alice should not be refunded.
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Background

We recap the AA notions we use, adapted from (Dung 1995).
An AA framework is a pair (Args,�), where Args is a

set whose elements are called arguments, and � is a bi-
nary attack relation on Args. For arguments a, b ∈ Args,
if a� b, then we say that a attacks b. For sets of arguments
E,E′ ⊆ Args and an argument b ∈ Args, we say that:
• E attacks b, denoted E � b, if ∃a ∈ E with a� b;
• E attacks E′, denoted E � E′, if ∃b ∈ E′ with E � b;
• E is conflict-free if E �� E;
• E defends a ∈ Args if for all b� a it holds that E � b;
• E is admissible if E �� E and E defends all a ∈ E.

A conflict-free extension E ⊆ Args is grounded if E is
admissible, contains every argument it defends, and is ⊆-
maximal such. The grounded extension of any (Args,�) al-
ways exists, is unique, and can be constructed inductively as
G =

⋃
i�0 Gi, where G0 is the set of unattacked arguments,

and ∀i � 0, Gi+1 is the set of arguments that Gi defends.
We will define explanations in terms of dispute trees

(Dung, Kowalski, and Toni 2006; Dung, Mancarella, and
Toni 2007), where a dispute tree for a ∈ Args (in (Args,�))
is a (possibly infinite) tree T such that:

1. every node of T is of the form [L :x], with L ∈ {P, O} and
x ∈ Args: the node is labelled by argument x and assigned
the status of either proponent (P) or opponent (O);

2. the root of T is a P node labelled by a;
3. for every P node n, labelled by some b ∈ Args, and for

every c ∈ Args such that c� b, there exists a child of n,
which is an O node labelled by c;

4. for every O node n, labelled by some b ∈ Args, there
exists at most1 one child of n which is a P node labelled
by some c ∈ Args such that c� b;

5. there are no other nodes in T except those given by 1-4.
The set of all arguments labelling P nodes in T is called

the defence set of T , denoted by D(T ). A dispute tree T
is an admissible dispute tree iff (i) every O node in T has a
child, and (ii) no argument in T labels both P an O nodes.
The defence set D(T ) of an admissible dispute tree T is
admissible; and if a ∈ E, where E is admissible, then there
exists an admissible dispute tree T for a with D(T ) ⊆ E
being admissible (Dung, Mancarella, and Toni 2007).

AA-CBR

We consider a CBR setting with cases represented as sets
of factors together with an outcome stemming from those
factors. We assume a fixed but otherwise arbitrary (possibly
infinite) set F whose elements are referred to as factors. We
also assume a binary distribution {+,−} of case outcomes.

Definition 2. A case is a pair (X, o) with a set of factors
X ⊆ F and outcome o ∈ {+,−}. A case base is a finite set
CB ⊆ ℘(F)× {+,−} of cases such that:

for (X, oX), (Y, oY ) ∈ CB, if X = Y , then oX = oY .
A new case is a set N ⊆ F.

1The original definition of dispute tree requires that there exists
exactly one child. As in (Fan and Toni 2015), we incorporate this
requirement into the definition of admissible dispute tree instead.

We insist that all case bases are finite, cf. (Athakravi et al.
2015). The restriction that no two cases have the same set of
factors but a different outcome, amounts to consistency (see
e.g. (Horty and Bench-Capon 2012)). However, two cases
may have different outcomes even though the set of factors
of one is a subset of the set of factors of the other.

Example 3. In (the first part of) Example 1, we have a
case base CB = {({A},+), ({A,B},−), ({A,B,C},+)},
and the new (Alice’s) case is {A,B,C,D}.

Case bases can be used to determine the outcome of a
new case, often by using the outcome of most similar past
cases (Richter and Weber 2013), which in our setting can be
understood as the nearest cases:

Definition 4. For a case base CB and a new case N , a past
case (X, oX) ∈ CB is nearest to N if X ⊆ N , and there is
no (Y, oY ) ∈ CB such that Y ⊆ N and X � Y .

Namely, (X, oX) is nearest to N iff X ⊆ N is⊆-maximal
in the case base. In Example 3, the case ({A,B,C},+) in CB
is nearest to the new case {A,B,C,D}. Based on this single
nearest case, {A,B,C,D} can be assigned the outcome +.

In general, there can be distinct nearest past cases with
different outcomes, as illustrated next.

Example 5. At the end of Example 1, the additional case
yields a case base CB′ = CB ∪ {({A,D},−)}, where CB is
as in Example 3. We see then that both ({A,B,C},+) and
({A,D},−) are nearest to the new case {A,B,C,D}.

Thus, it is not immediate to determine an outcome based
solely on the nearest cases, and a more sophisticated method
is required. In what follows, we define one such method.

From now on, unless stated otherwise, we assume a fixed,
yet otherwise arbitrary case base CB, and a new case N . We
assume that the user of our CBR system has a default out-
come d in mind: in Example 3, it is −. We map case bases,
default outcomes, and new cases into AA frameworks thus:

Definition 6. The AA framework corresponding to CB, a
default outcome d ∈ {+,−} and N is (Args,�) satisfying
the following conditions:
• Args = CB ∪ {(N, ?)} ∪ {(∅, d)};
• for (X, oX), (Y, oY ) ∈ CB ∪ {(∅, d)}, it holds that
(X, oX)� (Y, oY ) iff
(1) oX �= oY , and (different outcomes)
(2) Y � X , and (specificity)
(3) �(Z, oX) ∈ CB with Y � Z � X; (concision)

• for (Y, oY ) ∈ CB, (N, ?)� (Y, oY ) holds iff Y � N .
We refer to (N, ?) as the new case argument and to (∅, d)
as the default case.

So, we see cases as arguments. The new case argument
cannot be attacked, and attacks the past cases whose fac-
tors are not contained in the new case, thus discarding ‘ir-
relevant’ factors from influencing the outcome. Attacks be-
tween past cases occur only if they have different outcomes
(1), and are governed by specificity, determined by factor
set inclusion: the attacking case has to be more specific than
the attacked one (2); at the same the definition of attack ac-
counts for concision, by forcing the attacker to be as close
as possible to the attackee (3). Observe that the concision
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condition mimics a widely used minimality requirement on
the attacking argument (see e.g. (Besnard and Hunter 2014;
Garcı́a and Simari 2014)). Specificity is used in some argu-
mentation formalisms (e.g. (Garcı́a and Simari 2014)) too.
Example 7. The AA framework (Args,�) corresponding
to the case base CB, the default outcome− and the new case
{A,B,C,D} in Example 3 can be represented graphically
(nodes hold arguments and wiggly arrows indicate attacks):

(∅,−) ({A},+)

({A,B},−)

({A,B,C},+)

({A,B,C,D}, ?)

The new case argument, ({A,B,C,D}, ?), does not attack
any argument as the new case contains factors of every
case in CB. ({A,B,C},+) does not attack the default case,
because ({A},+) is more concise and attacks (∅,−).

If, say, ({A,D,E},+) were in CB, then we would have
({A,B,C,D}, ?)� ({A,D,E},+), since E is ‘irrelevant’.

In the remainder of this paper, unless specified otherwise,
we assume (Args,�) to be the AA framework correspond-
ing to the given case base CB, default outcome d and new
case N . We will use d, called the complement of d, to refer
to + if d = −, and to − if d = +.

As case bases are finite, so will be their corresponding
AA frameworks. From now on, G will denote the grounded
extension of (Args,�). This is guaranteed to always exist
and be unique (see Background). Further, observe that the
new case argument (N, ?), being by definition unattacked in
(Args,�), always belongs to G (and therefore G �= ∅).

To determine the outcome of a new case we will use G,
by inspecting whether the default case (∅, d) is successfully
defended by, and thus contained in, G:
Definition 8. The AA outcome of the new case N is
• the default outcome d, if (∅, d) ∈ G;
• d, otherwise, if (∅, d) �∈ G.

Equating the outcome of the new case with the default
case being in the grounded extension amounts to sceptically
justifying the default outcome: in Example 3, the retailer has
to successfully counter-argue every argument against (∅,−);
otherwise, Alice has a valid claim for a refund.
Example 9. (Args,�) depicted in Example 7 has
G = {({A,B,C,D}, ?), ({A,B,C},+), ({A},+)} such
that (∅,−) �∈ G, so the AA outcome of {A,B,C,D} is +:
Alice is refunded, as explained in the Introduction.

Consider now CB′ = CB ∪ {({A,D},−)} from Exam-
ple 5. In the corresponding (Args′,�′), we find an addi-
tional attack {({A,D},−)} � {({A},+)}, whence G′ =
{({A,B,C,D}, ?), ({A,B,C},+), ({A,D},−), (∅,−)}, so
that the AA outcome of {A,B,C,D} is −.

We observe some basic properties of AA-CBR. The first
result relates AA outcome to the notion of nearest case:
Lemma 1. G contains all the nearest past cases to N .

Our next result says that the unique past case nearest to
N determines the AA outcome of N , no matter what the
default outcome d is.

Proposition 2. If there is a unique nearest case (X, o) to N ,
then for any d ∈ {+,−}, the AA outcome of N is o.

Explanations of AA Outcomes

The notion of AA outcome allows to determine algorith-
mically whether a new case N should be assigned the de-
fault outcome (d) or not (d), by determining whether or not
(respectively) the default case belongs to the grounded ex-
tension of the corresponding AA framework. In this sec-
tion we show how to determine an explanation for the com-
puted AA outcome of N , exploiting the argumentative re-
interpretation afforded by the corresponding AA framework.
The notion of explanation is deemed crucial for CBR in
many settings, but is inherently hard to define formally (see
e.g. (Sørmo, Cassens, and Aamodt 2005)). In AA-CBR,
however, explanations can be obtained naturally, as we aim
to show in what follows.

A common form of explanation in CBR amounts to dis-
playing the most similar cases. In addition, transparency, in
not trying to “hide conflicting evidence” (Sørmo, Cassens,
and Aamodt 2005, p. 134), is identified as desirable. By
Lemma 1, the grounded extension provides a transparent ex-
planation for an outcome, in that it contains all past cases
nearest to the new case, be they of agreeing or diverging
outcomes. However, simply presenting the nearest case(s)
as explanation does not “help the user to understand how
the symptoms connect with the solution” (Sørmo, Cassens,
and Aamodt 2005, p. 128). The argumentative nature of AA-
CBR naturally lends itself to a method of explanation based
not only on the nearest cases, but on a dialectical exchange
of past cases too. In particular, dispute trees can serve as
(dialectical) explanations of why the AA outcome of a new
case is the default outcome:

Definition 10. An explanation for why the AA outcome
of N is d is any admissible dispute tree for (∅, d).

In Example 9, with case base CB′, the admissible dispute
tree T ′ (depicted below) is an explanation for why the AA
outcome of {A,B,C,D} is −.

T ′ [P : (∅,−)]

[O : ({A},+)]

[P : ({A,D},−)]

Alice (P) thus knows that the case ({A,D},−) has to be
attacked in order to weaken the retailer’s position.

Proposition 3. If the AA outcome of the new case N is the
default outcome d, then there is an explanation T for why
the AA outcome of N is d (i.e. T is an admissible dispute
tree for (∅, d)), which is moreover such that the defence set
D(T ) is admissible and D(T ) ⊆ G.

Note that there need not be a unique explanation, as shown
in the following modification of Example 9.

Example 11. CB = {({A},+), ({A,B},−), ({A,D},−)},
d = −, and N = {A,B,C,D} yield (Args,�) below.
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(∅,−) ({A},+)

({A,D},−)

({A,B},−)

({A,B,C,D}, ?)

G = {({A,B,C,D}, ?), ({A,D},−), ({A,B},−), (∅,−)},
so the AA outcome of N is −. There are two admissible
dispute trees for (∅,−), namely
• T : [P : (∅,−)] — [O : ({A},+)] — [P : ({A,B},−)] and
• T ′ : [P : (∅,−)] — [O : ({A},+)] — [P : ({A,D},−)],
with defence sets D(T ) = {({A,B},−), (∅,−)} ⊆ G and
D(T ′) = {({A,D},−), (∅,−)} ⊆ G, both admissible. Each
tree is an explanation for why the proponent is justified in
obtaining the default outcome −. Also, each indicates to the
opponent where to focus to counter the proponent’s claim.

Admissible dispute trees cannot themselves serve as ex-
planations when the outcome is d, as no such tree exists in
this case. Instead, we can use maximal dispute trees:
Definition 12. A dispute tree T for some a ∈ Args is a
maximal dispute tree iff for all opponent nodes [O :x] which
are leaves in T there is no y ∈ Args such that y� x.

Thus, in a maximal dispute tree, no opponent leaf node is
‘attackable’. In (Args′,�′) from Example 9 there are two
maximal dispute trees, T O : [P : (∅,−)] — [O : ({A},+)] —
[P : ({A,B},−)] — [O : ({A,B,C},+)] and T P : [P : (∅,−)]
— [O : ({A},+)] — [P : ({A,D},−)], for (∅,−).
Lemma 4. An admissible dispute tree T for some a ∈ Args
is a maximal dispute tree for a ∈ Args.

The converse does not hold: in Example 9, T P (as above)
is admissible, T O (as above) is not.
Definition 13. An explanation for why the AA outcome
for N is d is any maximal dispute tree for (∅, d).

In (the first part of) Example 7, the AA outcome of
{A,B,C,D} is d = +, and there is a unique maximal dis-
pute tree T O for (∅,−), as above.

A maximal dispute tree is an explanation of why the de-
fault outcome d was obtained in that it gives a dialectical
justification of d, including those opponent’s arguments that
are sufficient to establish d. Then, an explanation indicates
to the proponent which arguments s/he should counter.

Proposition 5. If the AA outcome of the new case N is d,
then there is an explanation T for why the AA outcome of N
is d, and moreover T is such that D(T ) � G.

To sum up, the argumentative reading in AA-CBR natu-
rally yields an explanation mechanism for CBR, via off-the-
shelf methods involving dispute trees.

To account for issues with explanations in settings similar
to ours, (McSherry 2004) proposed criteria based on count-
ing the ratio (or probability) of how often a factor appears in
a case with the outcome d/d. Instead, we use dispute trees to
provide explanations without quantifying the appearance of
factors, but will investigate such a possibility in the future.

Several works define methods for determining expla-
nations for the (non-)acceptability of arguments in argu-
mentation, e.g. (Garcı́a et al. 2013; Fan and Toni 2015;

Schulz and Toni 2016). These works use trees as the un-
derlying mechanism for computing explanations, but not in
a CBR setting. Other work in argumentation, e.g. (Cerutti,
Tintarev, and Oren 2014), investigate the usefulness of ex-
planation in argumentation with users. Similar explorations
for our approach are also left for the future.
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