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Abstract

Generalized plans, such as plans with loops, are widely used
in AI. Among other things, they are straightforward to ex-
ecute, they allow action repetition, and they solve multiple
problem instances. However, the correctness of such plans
is non-trivial to define, making it difficult to provide a clear
specification of what we should be looking for. Proposals in
the literature, such as strong planning, are universally adopted
by the community, but were initially formulated for finite
state systems. There is yet to emerge a study on the sensitiv-
ity of such correctness notions to the structural assumptions
of the underlying plan framework.
In this paper, we are interested in the applicability and cor-
rectness of generalized plans in domains that are possibly un-
bounded, and/or stochastic, and/or continuous. To that end,
we introduce a generic controller framework to capture dif-
ferent types of planning domains. Using this framework, we
then study a number of termination and goal satisfaction cri-
teria from first principles, relate them to existing proposals,
and show plans that meet these criteria in the different types
of domains.

1 Introduction

Consider the problem of chopping a tree. If we are told that
a chop action reduces the thickness of the tree by a unit,
and that the agent can sense whether the tree is still stand-
ing, the plan structure in Figure 1 is a simple and compact
controller that achieves the objective, requiring no internal
memory. Intuitively, the controller is reasonable for a tree
of any thickness, because (a) the controller will execute as
many actions as needed to bring down the tree (correctness),
and (b) the controller will stop thereafter (termination).

Automated planning is a central concern in high-level
symbolic AI research, with applications in logistics, robotics
and service composition. In the simple case of an agent oper-
ating in a known world, the output of a planner is a sequence
of actions to be performed. In an incompletely known world,
an agent can appeal to its many sensors, and so what is ex-
pected is a conditional plan that branches on sensing out-
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Figure 1: controller for the tree chop problem

comes. The attractiveness, then, of iterative/loopy plan struc-
tures like the one in Figure 1 is threefold: (a) their mem-
oryless nature is ideal for systems with limited resources
(e.g. mobile robots (Matarić 2007)), (b) they allow action
repetition, as needed in the presence of nondeterminism, and
(c) they behave like conditional plans for a large (possibly
infinite) number of problem instances (e.g. tree thickness).
While early work in this area identified major computational
challenges (Manna and Waldinger 1980; Biundo 1994;
Stephan and Biundo 1996), significant progress has been
made on synthesizing loopy plans in recent years (Cimatti et
al. 2003; Levesque 2005; Bonet, Palacios, and Geffner 2009;
Srivastava 2010; Hu and De Giacomo 2013).

Unfortunately, the correctness of such generalized plans
is non-trivial to define: that is, what precisely are they gen-
eralizing and in which sense are they reasonable for a plan-
ning problem? In the absence of a precise specification, it is
difficult to identify what we should be looking for.

An early proposal due to Levesque (1996) argued that
such a plan should be tested for termination and correctness
for all possible initial states of a planning problem. Although
formulated in the expressive language of the situation cal-
culus (Reiter 2001), nondeterministic outcomes for actions
was not considered. In that vein, Cimatti et al. (2003) later
argued that there are conceptual difficulties in understand-
ing the correctness of plans when actions have nondeter-
ministic outcomes. They defined the notions of weak, strong
and strong cyclic solutions formulated in terms of action
histories that reach the goal state. An informal probabilis-
tic interpretation for these notions was also suggested: weak
plans, for example, reach the goal with a non-zero probabil-
ity. Nonetheless, although nondeterminism is addressed in
their work, Cimatti et al. assume a finite state system.

Despite the almost universal adoption of these notions
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in the planning community today (Hu and Levesque 2011;
Bonet and Geffner 2015; Srivastava et al. 2015; Camacho
et al. 2015), there is yet to emerge a study on the sensi-
tivity of such correctness notions to the structural assump-
tions (e.g. determinism, finiteness) of the underlying plan
framework. Consider, for example, that nondeterministic
outcomes are most prevalent in robotic applications, where
the noise of effectors is often characterized by continuous
probability distributions (Thrun, Burgard, and Fox 2005),
that is, there are uncountably many outcomes. Consider that
in many real-world applications, fluents typically take values
from infinite or uncountable sets (e.g. resources, time). In
these scenarios, how are we to define categorical notions of
termination and goal satisfaction? Under which conditions
(if any) are categorical claims unachievable, warranting a
compromise in terms of probabilistic notions?

In this paper, we attempt to answer such questions. More
broadly, we are interested in the applicability and correct-
ness of generalized plans in domains that are possibly un-
bounded, and/or stochastic, and/or continuous. To that end,
we develop and motivate a new controller framework that
handles probabilistic nondeterminism and unbounded state
spaces in a general way. Using this framework, we then
study a number of termination and goal satisfaction criteria
from first principles, relate them to existing proposals such
as (Cimatti et al. 2003), and discuss their properties in do-
mains ranging from deterministic ones to those with contin-
uous distributions. The idea then is that a plan can be argued
to be correct in terms of some of these criteria. We will dis-
cuss sample plans that meet such specifications in a manner
that is independent of plan generation.

At the outset, what we will not be doing in this paper is
proposing a new planning procedure. We believe that exist-
ing procedures like the ones presented in (Levesque 2005;
Srivastava 2010; Bonet, Palacios, and Geffner 2009; Hu and
De Giacomo 2013) will be enough. What is additionally
needed, however, are ways to automatically prove that they
are correct for a new set of specifications. We leave this for
the future. Our framework, at least, will make clear in which
sense plans like the one in Figure 1 are correct in unbounded
stochastic domains.

2 A Controller Framework
We are interested in the adequacy of program-like plans
that work in multiple, possibly infinitely many, domain in-
stances. We believe these notions of adequacy do not depend
on the details of how the planning problem is formalized.
Building on the work of (Lin and Levesque 1998), we intro-
duce an abstract framework for our purposes.

The idea is to develop a specification of a (robot) con-
troller operating in a dynamic environment, which com-
pletely abstracts from the syntactic or structural character-
ization of a plan representation. The controller encapsulates
the actions that some putative agent performs, and the en-
vironment is the world in which these actions occur. We
will not want to assume, however, that the controller has
access to one form of information or another. So from the
controller’s perspective, the only feedback from the environ-
ment are observations received after every action.

Formally, imagine a possibly infinite set of actions A =
{α1, α2, . . .} that are parameterless, and a special symbol
stop not in A to denote termination. We also imagine a pos-
sibly infinite set of observations O = {β1, β2, . . .} that are
parameterless. The controller, then, simply responds to ac-
cumulated sensor readings by advising an action:

Definition 1: A controller C is any function from O∗ to
A ∪ {stop}.

After an action, the environment changes one state to an-
other, and responds with an observation:

Definition 2: An environment E is a tuple 〈S ,A,O,Δ,Ω〉:
• S is a possibly infinite set of states;
• A is a possibly infinite set of actions (as above);
• O is a possibly infinite set of observations (as above);
• Δ ∈ [S × A × S → R

≥0] is a probabilistic transition
function: that is, on doing α at s, E changes to s′ with a
likelihood of Δ(s, α, s′);
• Ω ∈ [S → O] is a sensor model.

Put together, a system encapsulates a controller operating
in an environment:

Definition 3: A system is a pair (C, E), where C is a con-
troller, and E is an environment.

The dynamics of a system is characterized by its runs:

Definition 4: A history σ of the system (C, E) is an ele-
ment of the set S∗. The final state of σ = s0 · · · sn, writ-
ten end(σ), is sn, and the sensing outcomes for σ, writ-
ten sensed(σ), is Ω(s0) · · ·Ω(sn). For the empty history ε,
end(ε) = sensed(ε) = ε.

A non-empty history σ is a run at a state s of a system
(C, E) if, inductively, either σ is s, or σ = σ′ · s′ such
that σ′ is a run of the system at s, C(sensed(σ′)) = α and
Δ(end(σ′), α, s′) > 0. The run σ is said to be terminating
if C(sensed(σ)) = stop. The run σ is said to be extend-
able if there is a non-empty history σ′ such that σ · σ′ is
also a run at s of (C, E). A run σ is said to be undefined if
C(sensed(σ)) � stop and σ is not extendable. A proper sys-
tem is one without undefined runs.

The picture is this: starting with state s, on reading β1 =
Ω(s), the robot controller chooses to perform α1 = C(β1).
The environment probabilistically changes to some s′ pro-
vided Δ(s, α1, s′) > 0 and returns β2 = Ω(s′) to the con-
troller. The controller now advises α2 = C(β1 · β2), and so
on, until the controller says stop. In this work, we implicitly
assume that systems are proper: that is, given a system (C, E)
and any state s of E , there are no undefined runs at s.1

Finally, we turn to the notion of a basic and generalized
planning problem:

Definition 5: For any E = 〈S ,A,O,Δ,Ω〉, a basic planning
problem P is a tuple 〈s0, E ,G〉 where s0 ∈ S is the initial
state and G ⊆ S are goal states.

1Systems with undefined runs will need to abort before the end
of computation, a complication we ignore.
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Definition 6: A generalized planning problem P is a (pos-
sibly infinite) set of basic problems {P1,P2, . . .}, where Pi
agree on everything except the initial state.

Types of Environments

It will be useful to distinguish between types of environ-
ments that vary in the nature of the state space or the transi-
tion function, for example. We follow this terminology:

Definition 7: Suppose E = 〈S ,A,O,Δ,Ω〉. Then:

• E is fully observable when O = S and Ω is such that for
every s ∈ S , Ω(s) = s.
• E is finite if S is finite; otherwise E is infinite.
• E is noise-free (or deterministic) if for every s and α, there

is a unique s′ such that Δ(s, α, s′) = 1 and for s′′ � s′,
Δ(s, α, s′′) = 0; otherwise E is noisy.
• E is discrete if for every (s, α) ∈ S×A, Δ(s, α, ·) is a prob-

ability mass function. If Δ(s, α, ·) is a probability density
function, then E is continuous.2

The terminology is extended for a basic planning problem
P = 〈s0, E ,G〉 in terms of its environment E . For example,
if E is noise-free, then we say that P is a noise-free basic
planning problem, or simply noise-free problem for short.

Effective Controllers

While our controller formulation was general, we are nat-
urally interested in algorithms of one kind or another that
generate plans (that is, controllers that are computable), for
which we define:

Definition 8: A controller C is effective if the function C is
recursive.

One simple candidate for an effective controller requiring
no internal memory, seen in Figure 1, is the following:

Definition 9: Suppose acts ⊆ A is a finite set of actions, and
obs ⊆ O a finite set of observations. A finite memoryless
plan X is a tuple 〈Q, q0, γ, δ〉:
• Q is a finite set of control states;
• q0 ∈ Q is the initial control state;
• γ ∈ [Q → (acts ∪ {stop})] is a labeling function;
• δ ∈ [Q′ × obs → Q] is a transition function, where Q′ =
{q ∈ Q | γ(q) � stop} .

For any environment E , a finite memoryless plan X can
be viewed as a controller C that behaves as follows for a run
σ = s0 · · · sn of the system (C, E):

C(Ω(s0) · · ·Ω(sn)) = γ(q(Ω(s0) · · ·Ω(sn))))

where, q(Ω(s0) · · ·Ω(sn))) is defined inductively:

=

{
q0 if n = 0
δ(q(Ω(s0) · · ·Ω(sn−1)),Ω(sn)) otherwise

2For ease of presentation, we will not treat environments with
both discrete and continuous transition models.

Such controllers are prominent in the literature on general-
ized planning (Bonet, Palacios, and Geffner 2009; Hu and
Levesque 2011; Hu and De Giacomo 2013), and are essen-
tially Moore machines (Hopcroft and Ullman 1979).

Results investigated in the sequel are general, but our dis-
cussions will make use of such memoryless plans owing to
their simplicity.

3 Adequacy

To formally define the reasonableness of controllers for a
problem specification, we will identify various notions of
adequacy, all of which are characterized in terms of runs.
Roughly, if the runs of a system (C, E) satisfy a property θ
(e.g. there is a terminating run), we say that C is a θ-adequate
controller. In this section, the notions of adequacy are cate-
gorical concepts that do not mention probabilities. (Proba-
bilistic notions are discussed in subsequent sections.)

Henceforth, for any C, in the context of a basic problem
P = 〈s0, E ,G〉, we will often simply speak of runs of the
system (C, E) with the understanding that these runs are at
s0. Also, the length of a history σ is defined inductively: the
length of ε is 0, and the length of σ′ · s is 1 plus the length of
σ′. With that, let us begin by stating how generalized plan-
ning problems are solved for some notion of adequacy:

Definition 10: Suppose P = 〈s0, E ,G〉 is a basic planning
problem, and C is any controller. We say C is θ-adequate for
P if the runs (at s0) of (C, E) satisfies θ.

Definition 11: We say a controller C is θ-adequate for a gen-
eralized planning problem P iff C is θ-adequate for every
basic problem in P .

Thus, controllers for generalized problems are adequate
(in whichever sense) for all of the contained basic prob-
lems.3

We are now prepared to define our notions of adequacy:

ONE There is a terminating run σ such that end(σ) ∈ G.
PC For every terminating run σ, we have end(σ) ∈ G.
TER For every run σ, there is a history σ′ such that σ · σ′

is a terminating run.

BND Every run is bounded, that is, there is a number n ∈ N
such that there is no run of length > n.

ACYC If s · · · s′ is a run then s � s′.

Intuitively, ONE says that there is a run to the goal; PC
denotes partial correctness, that is, every terminating run
stops at a goal state; TER denotes termination, that is, it en-
sures that every run can be extended to a terminating one;
BND denotes boundedness, that is, it disallows runs of ar-
bitrary length; finally, ACYC denotes acyclicity, that is, it
disallows loops.

For the main results of this section, we study some key
properties of these notions for the various types of problems:

3In other words, our results on adequacy apply to basic planning
problems even outside the context of generalized planning.
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Figure 2: coin flip problem (double stroked circles indicate
goal states) and its controller

Theorem 12: In any (basic planning) problem, if BND
holds then TER holds.

Proof: By assumption, all runs have length ≤ n, for some
n ∈ N. In other words, there cannot be a run that is extend-
able to one of arbitrary length. Let Γ be the set of all runs
that are not extendable. (For all runs σ � Γ, there must be a
history σ′ such that σ ·σ′ ∈ Γ because σ cannot be extended
arbitrarily by assumption.) Since none of the runs σ ∈ Γ can
be undefined (recall that systems are implicitly assumed to
be proper), they must be terminating.

Proposition 13: In noise-free problems, if there is a run of
length k then it is unique.

Proof: By induction on k. Suppose P = 〈s0, E ,G〉 is a
noise-free basic planning problem, and C any controller.
Clearly there is only one run of length 1, namely s0. Sup-
pose σ is a run of length k; by hypothesis it is unique.
Suppose C(sensed(σ)) = stop, then we are done. Suppose
C(sensed(σ)) = α ∈ A. In noise-free environments, there is
a unique s′ such that Δ(end(σ), α, s′) � 0 and so, σ · s′ is a
run of length k + 1 and it is unique.

Theorem 14: In noise-free problems, if TER holds then
BND holds. This is not the case in noisy ones.

Proof: Since TER holds, for any run σ, by Proposition 13,
there is a unique (possibly empty) history σ′ such that σ ·σ′
is terminating. Clearly, BND holds, as there cannot be a run
of length greater than that of σ · σ′.

For noisy domains, we provide a counterexample in Fig-
ure 2. Imagine an environment with states s0, s1, s∗1 , . . . ,
such that from state si, a coin flip action nondeterministi-
cally changes the environment to either si+1 where heads is
observed, or to s∗i+1 where tails is observed. Suppose a ba-
sic planning problem is specified by letting s0 be the initial
state and s∗i be the goal states, that is, the goal is to obtain
a tails. For this problem, given any run σ = s0 · · · sn that is
not terminating, clearly there is a history, namely s∗n+1, such
that σ · s∗n+1 is a terminating run. So TER indeed holds, but
BND does not since the length of σ can be arbitrary.

Theorem 15: In noise-free problems, ONE is equivalent to
{PC,TER}. This is not the case in noisy problems.

Proof: For noise-free problems, suppose ONE holds: there
is a terminating run σ, say of length k, and end(σ) ∈ G. By
Proposition 13, σ is the only run of length k, i.e. every other
run σ′ � σ can be extended to σ, and by assumption, it is
terminating and so TER holds. By that account, σ is also

h flip

s0 flip

t

Figure 3: coin flip problem with bad flips

the only terminating run and so PC holds. Conversely, TER
ensures that there is a terminating run and by Proposition 13,
PC ensures that this reaches the goal, and so ONE is true.

For noisy problems, we provide a counterexample in Fig-
ure 3. Consider an environment E with states {s0, h, t} and a
basic problem 〈s0, E , {t}〉. A coin flip nondeterministically
changes the environment from s0 to either h where heads is
observed, or to t where tails is observed. No actions are pos-
sible at t. Coin flips are possible at h, but the environment
changes to h itself. In other words, if tails is not observed
for the first coin flip, then it will not be observed for all coin
flips. Using the controller from Figure 2, we see that ONE
holds by getting a tails on the first flip. But TER does not
hold because there is no history that makes the run s0 · h a
terminating one.

Theorem 16: In finite problems, if ACYC holds then BND
holds. This is not the case in infinite ones.

Proof: In finite problems, S is finite. Suppose ACYC holds
but BND does not. Then there is a run of length > |S|, which
means that by the pigeon hole principle, the run must men-
tion some state twice. Contradiction.

If S is infinite, a system can be easily constructed for
which a run visits every state exactly once, and so ACYC
would hold but BND would not. The coin flip problem in
Figure 2 is one such example: runs of the form s0 · s1 · · · sn
never visit the same state twice but are unbounded.

In Section 7, we revisit these results and relate them to
existing proposals on plan correctness.

4 Discrete Probabilistic Adequacy

The categorical notions of termination and correctness dis-
cussed thus far disregarded the actual probabilities of the
transitions in the environment. It is then natural to inves-
tigate whether a characterization of adequacy can be de-
veloped that accounts for these probabilities. More impor-
tantly, does categorical adequacy imply probabilistic ade-
quacy? This section studies such a characterization for dis-
crete problems, and answers in the affirmative. (Continuous
problems are deferred to the subsequent section.)

We begin by applying transition probabilities to runs of
arbitrary length. We define the likelihood of a run σ at s in
the system (C, E), denoted l(σ), inductively:

• if σ = s, then l(s) = 1;

• if σ = σ′ · s′ and C(sensed(σ′)) = α, then l(σ) = l(σ′) ×
Δ(end(σ′), α, s′).
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The probabilistic analogue to TER for a basic planning
problem P = 〈s0, E ,G〉 is then defined as:∑

{σ|σ is a terminating run}
l(σ) (LTER)

which accounts for the likelihoods of terminating runs. Like-
wise, the counterpart to PC is defined as:

1
η

∑
{σ|σ is a terminating run and end(σ)∈G}

l(σ) (LPC)

which accounts for the likelihoods of terminating runs
that also reach goal states. Here, η � 0 is the normalization
factor, and it is naturally defined in terms of terminating runs
regardless of whether they reach the goal states. Therefore:

η = LTER.

For the main results of this section, we relate the proba-
bilistic and the categorical accounts below.
Lemma 17: Suppose P = 〈s0, E ,G〉 is any discrete problem,
and C any controller. For any k ∈ N, let

Γk = {σ | σ is a run of length k} ∪
{σ | σ is a terminating run of length ≤ k} .

(As usual, runs at s0 of (C, E).) Then
∑
σ∈Γk

l(σ) = 1.
Proof: By induction on k. For k = 1, the proof is trivial
since l(s0) = 1 by definition. Assume claim is true for Γk.
Clearly Γk ∩ Γk+1 is the set of all terminating runs of length
≤ k. Consider Γ∗ = Γk+1 − Γk. Observe that σ ∈ Γ∗ only if
there is a σ′ ∈ Γk and a history of length 1, say s, such that
σ = σ′ · s, that is, C(sensed(σ′)) = α and Δ(end(σ′), α, s) �
0. Let exts(σ′) = {σ ∈ Γ∗ | σ is an extension of σ′} . Since
Δ(end(σ′), α, ·) is a probability mass function, l(σ′) =∑
σ∈exts(σ′) l(σ). It then follows that:∑

σ∈Γ∗
l(σ) =

∑
σ∈(Γk−Γk+1)

l(σ).

Using this equivalence in the below equality:∑
σ∈Γk+1

l(σ) =
∑

σ∈(Γk∩Γk+1)

l(σ) +
∑
σ∈Γ∗

l(σ)

we obtain that
∑
σ∈Γk+1

l(σ) =
∑
σ∈Γk

l(σ) which is 1 by the
hypothesis.

Theorem 18: In discrete problems, if LTER=1, then TER
holds.
Proof: Suppose LTER is 1 but TER does not hold: there
is a run σ∗ such that for every σ′ we have that σ∗ · σ′ is
not a terminating run. By definition, l(σ∗) > 0. (Recall that
runs are admitted only by transitions with non-zero proba-
bility.) Suppose the length of σ∗ is k and consider the set
Γk as in Lemma 17. By Lemma 17,

∑
σ∈Γk

l(σ) = 1 and so∑
σ∈Γ∗ l(σ) < 1, where Γ∗ = Γk − {σ∗} . Thus, for every

n > k, by assumption, every extension of σ∗ of length n that
is a run is not terminating, and so

∑
σ∈Γ∗∗ l(σ) < 1, where

Γ∗∗ = Γn − exts(σ∗), Γn is as in Lemma 17, and exts(σ∗)
is the set of all extensions of σ∗ that are runs of length n.
Contradiction.

Theorem 19: In discrete problems, if LPC=1, then PC
holds.

Proof: Suppose LPC=1, that is, LPC=LTER, but PC does
not hold: there is a terminating run σ∗ that does not reach
a goal state. Suppose Γ is the set of terminating runs. By
definition, l(σ∗) > 0, and so clearly:∑

σ∈Γ
l(σ) >

∑
σ∈(Γ−{σ∗})

l(σ).

So LPC, which is defined over the runs ⊆ (Γ−{σ∗}) reach-
ing a goal state, cannot be equal to LTER. Contradiction.

It is easy to show that categorical adequacy implies prob-
abilistic adequacy:

Proposition 20 : In discrete problems, TER implies
LTER=1, and PC implies LPC=1.

Putting this together, we get the following equivalence:

Corollary 21: In discrete problems, LTER=1 iff TER, and
LPC=1 iff PC.

5 Continuous Probabilistic Adequacy

In this section, we want to study the consequences of a
continuous transition function on probabilistic adequacy. Of
course, in continuous problems, the uncountable nature of
the state space precludes sums. But readers may observe that
LTER and LPC are not directly amenable to a continuous
version, since it is unclear how to integrate over the set of
terminating runs that vary arbitrarily in length. So what we
attempt first is a reformulation of LTER and LPC for dis-
crete problems where the sums are defined over the set of
states rather than runs. This scheme is then generalized.

Let us define L(σ, n) as the sum of the likelihoods of all
histories σ′ of maximal length n such that σ · σ′ is a termi-
nating run. More precisely:

Definition 22: Suppose P = 〈s0, E ,G〉 is any discrete prob-
lem, C any controller, and σ any history of (C, E). Then, de-
fine L(σ, n) inductively:

• L(σ, 1) =
{

1 if σ is terminating
0 otherwise

• L(σ, n + 1) =
{

L(σ, n) if σ is terminating
succ otherwise

where,

succ �
∑

s

L(σ · s, n) × Δ(end(σ), C(sensed(σ)), s)

Let us define L•(σ, n) inductively, which is exactly like
L(σ, n) except for the base case:

L•(σ, 1) =
{

1 if σ is terminating and end(σ) ∈ G
0 otherwise.

Theorem 23: In discrete problems, LTER computes the
same number as:

lim
n→∞ L(s0, n) (†)
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Proof: Let P = 〈s0, E ,G〉 be any discrete problem and C
any controller. Let Γ be the set of terminating runs at s0 of
(C, E). Let N = max {length of σ | σ ∈ Γ} .

For n ≥ 1, let

LTERn =
∑

{σ|σ is a terminating run of length ≤n}
l(σ)

An induction argument will show that LTERn = L(s0, n).
So clearly LTER = LTERN = L(s0,N). By definition, we
have L(s0,N) = L(s0,N + k) for k > 0. Thus the sequence
L(s0, 1), . . . , L(s0,N), . . . converges and is L(s0,N). There-
fore, LTER=(†).

Theorem 24: In discrete problems, LPC computes the same
number as:

1
η

lim
n→∞ L•(s0, n) (‡)

Proof: We need a simple variation of the argument for The-
orem 23. We begin by defining Γ to be the set of all termi-
nating runs that also reach a goal state. The rest proceeds
analogously.

These are now amenable to immediate generalizations:

Definition 25: In continuous problems, LTER is given by
(†) and LPC by (‡), where L(σ, n) and L•(σ, n) are as in
Definition 22 except that

succ �
∫

s
L(σ · s, n) × Δ(end(σ), C(sensed(σ)), s).

In a continuous setting, while a density is accorded to all
points of the state space, the probability of any one point
(or a finite set of points) is zero. This leads to surprising
deviations from Corollary 21.

Theorem 26: In continuous problems, LTER=1 does not
imply TER.

Proof: Proof by counterexample. The idea is to allow one
run to never terminate but which nonetheless does not affect
the outcome of integration. Imagine a pick action that non-
deterministically changes an environment from s0 to a state
in S ′ = {s′x | x ∈ [0, 1]}, corresponding to a sample drawn
from the interval [0, 1]. All states contain a tree and respond
with an observation that the tree is up. States in S ′−

{
s′0
}

con-
tain a wooden tree that can be brought down by doing some
number of chop actions. However, the state s′0 has a steel
tree that can never be brought down; see Figure 4. Here, in-
tegrating over S ′ −

{
s′0
}

yields LTER=1, but TER does not
hold because no extension of s0 · s′0 will terminate.

Theorem 27: In continuous problems, LPC=1 does not im-
ply PC.

Proof: Proof by counterexample. The idea is to allow one
run to not reach the goal but which will not affect the
outcome of integration. Imagine a robot operating in a 1-
dimensional world, at location 0. Its goal is to be any lo-
cation but at 0 using a single move action. Assuming this
action is characterized by a continuous noise model, such as

pick chop
down

up

s0
pick

s′0
steel

wood

wood

CONTROLLERPROBLEM
...

stop

Figure 4: wood and steel trees

move
true

loc=0

loc=0

PROBLEM

move

loc=0.3

loc=0.1

...

CONTROLLER

stop

Figure 5: continuous problem with the goal loc � 0

a Gaussian, all outcomes, including the one where the robot
moves by 0 units, are given a non-zero density. Assume all
states vacuously respond with the observation true. A very
simple controller can be specified for this problem; see Fig-
ure 5. (Note that the argument to the move action will not
affect the nature of this example.) So, all runs terminate, but
the one where loc = 0 is not a goal state. Integrating over
the rest still leads to LPC=1, but PC does not hold.

Proposition 20 is easily shown to hold also in the contin-
uous case:
Proposition 28 : In continuous problems, TER implies
LTER=1, and PC implies LPC=1.

Naturally, this means that equivalences from Corollary 21
do not hold for continuous problems:
Corollary 29: In continuous problems, TER and LTER=1
are not equivalent, and PC and LPC=1 are not equivalent.

6 Barriers to Adequacy

Having investigated relations between termination and cor-
rectness criteria across environments, we are now in a po-
sition to ask: are there planning problems for which only
a particular sort of adequacy can be provided? In this sec-
tion, we answer positively to that question. We consider a set
of planning problems using the inventory of examples dealt
with so far, and discuss sample plans. Like with troublesome
domains such as Figure 4, it will be easy to argue that any
variation of these sample plans can, for example, only pro-
vide some flavour of probabilistic adequacy, but never cate-
gorical ones.

Consider the following three criteria for termination:
BND, LTER=1 and LTER < 1. (We favor BND-adequacy
over TER-adequacy; as seen with Theorem 14, BND
ensures bounded runs also in infinite problems.) Consider
the following three criteria for correctness: PC, LPC=1
and LPC < 1. Below, we enumerate problems that are dis-
tinctive for every pair of termination and correctness criteria:
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PC LPC=1 LPC < 1
BND (1) (2) (3)

LTER=1 (4) (5) (6)
LTER < 1 (7) (8) (9)

In a nutshell, columns will share the goal specification,
and rows will share a randomness component.

1. Standard tree chop (Figure 1): the agent chops down a
tree of thickness n > 0 by executing n chop actions. So
there is a unique terminating run of length n + 1 reaching
the goal. Therefore, both BND and PC.

2. Point goal (Figure 5): all runs s0 · s′x for x ∈ [0, 1] are
terminating, and so BND. As the goal is loc � 0, every
run other than s0 · s′0 reach goal states and so PC does not
hold. Owing to the continuity, LPC=1.

3. Interval goal: consider the controller and environment
from item 2 but assume that the planning problem has as
its goal loc > .5.As before, all runs s0 ·s′x for x ∈ [0, 1] are
terminating, and so BND. However, every run other than
s0 · s′y for y ∈ [0, .5] are goal states; so PC does not hold.
Moreover, although the probability of any single s′y is 0
(as in item 2), the probability of this set of points, which
comprise an interval, is non-zero. So LPC < 1. (As with
item 2, the argument to the move action will not affect the
nature of this example.)

4. Flip and chop (Figure 6): a tails on a coin flip permits the
agent to chop down a tree. All terminating runs reach the
goal, and so PC, but there is no bound because of the coin
flip. So BND does not hold, but TER and LTER=1 hold.

5. Flip and point goal (Figure 7): a tails on a coin flip per-
mits the agent to attempt loc � 0 using a single move ac-
tion. As in item 4, owing to the coin flip, there is no bound
on the runs, but TER and LTER=1 hold. Moreover, as es-
tablished for item 2, PC does not hold but LPC=1.

6. Flip and interval goal (Figure 7): a tails on a coin flip
permits the agent to attempt loc > .5 using a single move
action. As seen in item 5, LTER=1, but BND does not
hold. Moreover, as established for item 3, LPC < 1.

7. Bad flip and chop: consider the environment in Figure 8
where a coin flip at s0 nondeterministically changes to
either h, where heads is observed, or to t where tails is
observed. The state t also has a tree of unit thickness. The
goal is to bring down this tree. Only coin flips are possible
at h, but the environment changes to h itself. Only chop
actions are possible at t. Using the controller from item
4, we observe that no extension of the run s0 · h will ter-
minate, and so TER does not hold. (Moreover, coin flips
means BND does not hold.) In other words, LTER is de-
termined from the transition probability for t and so is < 1.
Nonetheless, all extensions of s0 · t that are runs are both
terminating and reach goal states, and so PC holds.

8. Bad flip and point goal: consider an environment like the
one in Figure 8, except that at t, we imagine a robot at
location 0, that is, loc = 0. A move action nondeterminis-
tically changes the environment to {t′x | x ∈ [0, 1]} in that
t′x is a state where loc = x. The goal is to be at a state

flip
tails

heads up

down
chop stop

Figure 6: controller for flip and chop

flip move

heads

tails true
stop

Figure 7: controller for flip and move

where loc � 0. Using the controller from item 5, we ob-
serve that, as in item 5, PC does not hold but LPC=1. Ow-
ing to the bad coin flip, from item 7, we obtain LTER < 1.

9. Bad flip and interval goal: consider the environment from
item 8, except that the goal is loc > .5. As in item 6, owing
to the interval goal, LPC < 1. Owing to the bad coin flip,
from item 7, we obtain LTER < 1.

Theorem 30: The 9 combinations of correctness and ter-
mination criteria identified are all distinct: that is, there are
planning problems that belong to one and none other.

7 {Reachability, Achievability} ?
= Adequacy

We build on the generality of our controller framework and
relate to two influential accounts on plan correctness. The
thrust of this section is to limit environments to the spe-
cific structural assumptions of those proposals, and show
that these accounts are equivalent to some type of adequacy.

Goal Reachability

For the class of finite state systems with nondeterminism,
Cimatti et al. (2003) defined three types of solutions: weak,
strong and strong cyclic. In what follows, we first introduce
their framework, and then discuss what these solutions mean
in the context of adequacy.

Definition 31: (Cimatti et al. 2003) A planning domain D is
a tuple 〈X ,S ,A,R〉, where X is a finite set of propositions,
S ⊆ 2X is the set of states, A is a finite set of actions, and
R ⊆ S×A×S is the transition relation. A planning problem
B over D is a tuple 〈D, I,G〉 where I,G ⊆ S are the initial
and goal states respectively.

A state-action table π for D is a set of pairs 〈s, α〉, where
s ∈ S and α ∈ A provided there is a s′ such that R(s, α, s′).

The execution structure induced by π from I is a tuple
K = 〈Q, T 〉, where Q ⊆ S and T ⊆ S × S , which is the
smallest set satisfying:
• if s ∈ I then s ∈ Q
• if s ∈ Q and there is an action α and s′ such that
R(s, α, s′) then s′ ∈ Q and (s, s′) ∈ T .

An execution path of K at s0 ∈ I is a possibly infinite se-
quence s0 · s1 · s2 · · · such that: either si is the last state of
the sequence (that is, a terminal state) or (si, si+1) ∈ T .
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Figure 8: bad flip and chop problem

A planning problem B defined as above is essentially a gen-
eralized planning problem P: a fully observable and finite
environment E is constructed from S ,A and R in an obvi-
ous way, and then we let P = {〈s0, E ,G〉 | s0 ∈ I}.

Cimatti et al. consider controller specifications by appeal-
ing to the state-action table π. In particular, suppose for ev-
ery s mentioned in π, there is a unique α such that 〈s, α〉 ∈ π.
Such a π is called deterministic, and it can be viewed as a
controller in that it specifies the action to be performed at
any given state.4 Then, π is said to be a solution of a certain
type (for B) if the execution structure K satisfies appropriate
properties, e.g. π is a weak solution if for any s0 ∈ I, some
terminal state of K is reachable that is also in G.

Putting it all together, we can establish the following:

Theorem 32: Suppose B is as above, but with a determin-
istic state-action table, and suppose P is the corresponding
generalized planning problem. Then:

• weak solutions (for B) are equivalent to ONE-adequacy
(in P);

• strong cyclic solutions are equivalent to {PC,TER}-
adequacy;

• strong solutions are equivalent to {ACYC,PC}-
adequacy.

We can now leverage results from Section 3 and expand on
these solution types. For example, in Theorem 16, we estab-
lished that BND is implied by ACYC, and so:

Corollary 33: Suppose B and P are as in Theorem 32.
Then, strong solutions imply {BND,PC}-adequacy.

Theorem 16 also allows us to investigate the appropriate-
ness of strong solutions in infinite domains:

Corollary 34: Suppose B and P are as in Theorem 32, ex-
cept that the set of states S of B is infinite. Then, strong
solutions do not imply BND-adequacy.

In sum, to capture the spirit of strong solutions in the
sense of only admitting finite execution paths (or in our
lingo: bounded runs), {PC,BND}-adequacy is better suited
across finite and infinite planning domains.

4Note that this does not rule out nondeterministic transitions. It
simply avoids ambiguities about which action is to be performed
at a state. The case of state-action tables that are not deterministic
is addressed in terms of all possible deterministic instances, which
we omit here.

Goal Achievability

Building on (Levesque 1996), Lin and Levesque (1998), LL
henceforth, considered the problem of goal achievability,
which is perhaps best explained using an example. Imag-
ine an agent facing two doors, the first of which has a tiger
that can kill the agent and the second has gold. The agent,
however, does not know which door has what. Although the
goal of getting the gold is achievable by opening the sec-
ond door, we would not say the agent knows how to get to
the gold. To that end, LL define a controller framework to
formalize achievability. Their work assumes binary sensing
outcomes, and does not address nondeterministic outcomes.
Definition 35: (Lin and Levesque 1998) A history is an el-
ement of the set R = (A × {0, 1})∗, where {0, 1} is the set
of observations, a controller C is any function mapping his-
tories to A ∪ {stop}, and an environment E is any function
mapping R × A to {0, 1} . A controller is effective if C is
recursive. A history σ is a run of the system (C, E) if induc-
tively σ = ε is the empty sequence, or σ = σ′ · (α, β) where
σ′ is a run, C(σ′) = α ∈ A, and E(σ′, α) = β ∈ {0, 1} .

Basically, LL’s notion of an environment can be seen a
simplified account for noise-free environments, which im-
plicitly changes after an action is performed by the con-
troller. While histories in LL are different from ours in also
mentioning the actions, this difference is not crucial: in any
run of a system, actions mentioned in histories are precisely
those advised by the controller.

Although controllers and environments are defined in an
abstract fashion by LL, the notion of goal achievability is
formalized in the logical language of the situation calcu-
lus (Reiter 2001). For this reason, we reformulate their in-
tuitions in an abstract setting:

Definition 36: Suppose P = {〈s0, E ,G〉 | s0 ∈ I} is a noise-
free generalized planning problem over goal states G. We
say that G is (effectively) achievable iff there is a (effective)
LL-controller C such that for every 〈s0, E ,G〉 ∈ P , there is a
terminating run σ at s0 of (C, E) and end(σ) ∈ G.

As a realization of effective controllers, LL consider robot
programs (Levesque 1996) built from atomic actions A, se-
quences, branches and loops, and they define what it means
for these programs to achieve goals (omitted). A central re-
sult in their work is that a goal is effectively achievable iff
there is a robot program that achieves the goal.

Putting it all together, we obtain the following result:

Theorem 37: Suppose O = {0, 1}, and P as above. A robot
program achieves G iff there is an effective controller that is
ONE-adequate for P .

Since the environment is noise-free, it is not surprising
that ONE-adequacy is deemed sufficient; for example, as
seen in Theorem 15, {PC,TER}-adequacy is implied, and
by Theorem 14, so is {PC,BND}-adequacy.

8 Discussion and Related Work
In the previous sections, the notion of adequacy was shown
to cover a range of planning scenarios. There is, however,
one glaring omission from this discussion.
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Perhaps the most influential planning framework in
stochastic domains is the formulation of Markov decision
processes (MDPs), a natural model for sequential decision
making under Markovian assumptions on probabilistic tran-
sitions (Boutilier, Dean, and Hanks 1999). In brief, a solu-
tion to a MDP is a mapping from states to actions that max-
imizes the expected reward over an infinite history, where
a discount factor favours current rewards over future ones.
(See (Kučera and Stražovskỳ 2008), for example, for a syn-
thesis framework, and (Chatterjee and Chmelı́k 2015) on
infinite runs over rewards.) Although a number of recent
approaches compute loopy plans for MDPs (Poupart and
Boutilier 2004; Guestrin et al. 2003; Pajarinen and Peltonen
2011; Kumar and Zilberstein 2015), the use of these plans
is quite different from our own. In particular, these plans
usually do not involve a stopping action, and so the termi-
nation of runs is overlooked, and of course, there are no
designated goal states (in the standard model (Geffner and
Bonet 2013)). All of this precludes an immediate connec-
tion to adequacy criteria based on termination and goal sat-
isfaction. An interesting possibility, then, is to appeal to for-
mulations of reward functions as goal states (Koenig 1992;
Geffner and Bonet 2013) and reason about correctness on
the revised model. In the long term, it would be worthwhile
to consider notions of adequacy that are determined by the
expected reward for the course of action advised by the con-
troller, and contrast terminating runs versus non-terminating
runs with discount factors.

In a similar vein, as hinted in Section 7, the areas of
knowledge-based planning and programming (Sardiña et al.
2006; Petrick and Bacchus 2004; Kaelbling and Lozano-
Pérez 2013; Reiter 2001) is closely related to generalized
planning (Levesque 1996). Intuitively, the initial state of
a basic problem can be seen as a world considered epis-
temically possible by the agent, and so a generalized plan-
ning problem corresponds to a set of possible world states.
A θ-adequate controller for a generalized planning prob-
lem can be seen to achieve θ in all the world states. In
that regard, a generalized planning problem as considered
here treats knowledge categorically. In robotic applications,
the agent entertains a probability distribution on the pos-
sible worlds, and it may be unrealistic (and unnecessary)
to compute controllers that are adequate for all worlds. It
is then desirable to develop an epistemic account of ade-
quacy based on degrees of belief (Belle and Levesque 2013;
2015). This would allow, for example, the robot to believe
that a controller is adequate with a high degree of certainty.
We believe that such an account would further relate goal-
based adequacy and (partially observable) MDPs.

We now cover prior work in the area. We will briefly touch
on approaches to generating loopy plans, and then discuss
related correctness concerns.5 At the outset, we remark that
the relationships between various kinds of termination and
goal-based correctness criteria in unbounded domains, and
their probabilistic and continuous versions, have not been
discussed in a formal and general way elsewhere.

5For a review of sequential and conditional planning, see
(Geffner and Bonet 2013).

Early approaches to loopy plans can be seen as deduc-
tive methodologies, often influenced by program synthesis
and correctness (Hoare 1969). Manna and Waldinger (1980)
obtained recursive plans by matching induction rules, and
Stephan and Biundo (1996) refine generic plan specifica-
tions, but required input from humans. See (Magnusson and
Doherty 2008) for a recent approach using induction.

Most recent proposals differ considerably from this early
work using deduction:

• Levesque (2005) expects two parameters with the plan-
ning problem; the approach plans for the first parameter,
winds it to form loops and tests it for the second.

• Winner and Veloso (2007) synthesize a plan sequence
with partial orderings, and exploit repeated occurrences
of subplans to obtain loops.

• Srivastava (2010) considers an abstract state representa-
tion that groups objects into equivalences classes, the idea
being that any concrete plan can be abstracted wrt these
classes and repeated occurrences of subplans can be lever-
aged to generate compact loopy plans.

• Bonet, Palacios, and Geffner (2009) integrate the dynam-
ics of a memoryless plan with a planning problem, and
convert that to a conformant planning problem; the solu-
tion to this latter problem is shown to generalize to multi-
ple instances of the original problem.

• Hu and De Giacomo (2013) propose a bounded AND/OR
search procedure that is able to synthesize loopy plans.

On the matter of correctness, Levesque (1996) argued
that generalized plans be tested for termination and correct-
ness against all problem instances; Lin and Levesque (1998)
extended this account to define goal achievability. In later
work, Cimatti et al. (2003) defined the notions of weak,
strong and strong cyclic solutions in the presence of non-
determinism.6 These notions are widely used in the plan-
ning community (Bonet and Geffner 2015); see, for exam-
ple, Bertoli et al. (2006) for an account of strong planning
with a sensor model. Recently, Srivastava et al. (2015) syn-
thesize loopy plans in domains with nondeterministic quan-
titative effects, for which strong cyclic solutions are studied.

Beyond a definition for the correctness of plans, what is
also needed are techniques that can automatically verify that
a plan is correct for a specification. In that regard:

• Hu and Levesque (2011) show how termination and cor-
rectness can be checked for certain classes of problems
purely based on the syntax of the problem specification.

• Lin (2008) considers conditions under which a finite set of
models of the planning problem, formulated as a logical
theory, is sufficient for proving goal achievability.

• Srivastava (2010) shows that certain domains can be re-
duced to register machines, which are then amenable to
effective verification.

6Variant additional stipulations in the literature include things
like fairness, where every outcome of a nondeterministic action
must occur infinitely often (Bonet and Geffner 2015).
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9 Conclusions

This paper investigated the adequacy of generalized plans,
such as plans with loops, for domains that are possibly un-
bounded, and/or stochastic, and/or continuous. A general
controller framework was used to show the relationships be-
tween adequacy notions motivated from first principles. The
idea is that a plan can be argued to be correct for a planning
problem in terms of appropriate notions. Finally, we saw ex-
amples of plans that meet specifications, and that categorical
adequacy may not be possible in certain problems.

Many of the results investigated in this paper use simple
plans, not unlike the ones synthesized in the literature. This
raises a number of questions and avenues for future work:
• How can we synthesize loopy plans for unbounded

stochastic domain using an existing system for noise-free
domains? Can qualitative specifications of stochastic ones
be devised that would allow us to leverage existing work?
• Along the lines of (Srivastava 2010; Hu and Levesque

2011), how can we automatically verify that a given loopy
plan is correct for unbounded stochastic domains?

In the long term, relating expected rewards, noisy sensing,
belief-based planning and adequacy is a promising direction
for investigating foundational questions, especially in ser-
vice of unifying loopy plan frameworks from the goal-based
and decision-theoretic camps.
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