
A Higher-Order Semantics for Metaquerying in OWL2QL

Maurizio Lenzerini1, Lorenzo Lepore1, Antonella Poggi2

1Dipartimento di Ingegneria Informatica, Automatica e
Gestionale “Antonio Ruberti”

2Dipartimento di Scienze Documentarie,
Linguistico-Filologiche e Geografiche

Sapienza Università di Roma

Abstract1

Inspired by recent work on higher-order Description Log-
ics, we propose HOS, a new semantics for OWL2QL ontolo-
gies. We then consider SPARQL queries which are legal un-
der the direct semantics entailment regime, we extend them
with logical union, existential variables, and unrestricted use
of variables so as to express meaningful meta-level queries.
We show that both satisfiability checking and answering in-
stance queries with metavariables have the same ABox com-
plexity as under direct semantics.

Introduction

Recent papers point out the need of enriching ontology
languages with metamodeling and metaquerying, i.e., fea-
tures for specifying and reasoning about metaconcepts and
metaproperties. Roughly speaking, a metaconcept is a
concept whose instances can be themselves concepts, a
metaproperty is a relationship between metaconcepts, and
a metaquery is a query possibly using metaconcepts and
metaproperties, and whose variables may be bound to pred-
icates.

In this work, we focus on OWL2QL, one of the profiles
of OWL2 tailored to provide efficient query answering. The
issue of metamodeling in OWL has been investigated in sev-
eral papers. It is known that the semantics of metamodeling
of OWL 2 Full leads to undecidability of basic inference
problems (Motik 2007). A possible solution to this problem
is to enable metamodeling in OWL 2 DL by axiomatizing
higher-order features through first order assertions (Glimm,
Rudolph, and Völker 2010), but the process involves the use
of complex expressions that are not supported by the OWL
2 DL tractable profiles, including OWL2QL, and therefore
seems hardly applicable in practice. Another possible solu-
tion is the stratification of class constructors and axioms to
describe metalevels of classes and properties (Pan and Hor-
rocks 2006), but such stratification poses challenges for the
modeler, and rules out interesting ontology patterns. Al-
though OWL2QL provides syntactic support for metamod-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Work supported by the EU under the FP7 project “Optique”
– grant n. FP7-318338, and by MIUR under the SIR project
“MODEUS” – grant n. RBSI14TQHQ.

eling through OWL2 punning (by which the same name can
be used to denote ontology elements of different categories,
such as a class and an individual), we argue that the of-
ficial semantics of OWL2, the so-called Direct Semantics
(DS), treats punning in a way that is not adequate for meta-
modeling. The reason is simply that proper metamodeling
requires that the same element plays the role of both in-
dividual and class (or, class and relation), while DS sanc-
tions that an individual and a class with the same name are
different elements. This is confirmed by the fact that the
Direct Semantics Entailment Regime (DSER), which is the
logic-based semantics of SPARQL 1.1 (or simply SPARQL),
when applied to OWL2QL, forces queries to obey the so-
called typing constraint, which rules out the possibility of
using the same variable in incompatible positions (for ex-
ample, in individual and in class position). In this paper we
present the logic Hi(OWL2QL), whose syntax is the one of
OWL2QL, and whose semantics, inspired by the ones pro-
posed in (Motik 2007; De Giacomo, Lenzerini, and Rosati
2011), allows every object o in an interpretation to be seen as
an individual, a class and a relation. We describe the notion
of chase for our logic, that forms the basis for the decid-
ability and complexity results illustrated in the paper. Us-
ing the chase, we show that satisfiability and answering in-
stance queries (i.e., queries with ABox atoms, possibly with
metavariables) have the same complexity as in OWL2QL
and in Hi(DL-Lite) (De Giacomo, Lenzerini, and Rosati
2011).

The logic Hi(OWL2QL)
In this section we illustrate syntax and semantics of
Hi(OWL2QL) and its associated query language.
Syntax. The syntax of Hi(OWL2QL) is the same
as the one of OWL2QL. We express ontologies and
queries in the extended functional style syntax (Glimm
2011). A Hi(OWL2QL) ontology (simply ontology in
the following) is a finite set of OWL2QL declaration
axioms and logical axioms. Logical axioms are classi-
fied into (i) positive TBox axioms, i.e., SubClassOf,
SubObjectPropertyOf, SubDataPropertyOf,
ReflexiveObjectProperty, and DataPropertyRange
axioms, (ii) negative TBox axioms, i.e.,
DisjointClasses, DisjointObjectProperties,
DisjointDataProperties, and

Proceedings, Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016)

lastname@dis.uniroma1.it

577

IrreflexiveObjectPropertyaxioms, and (iii) ABox
axioms, i.e., ClassAssertion, ObjectProperty-
Assertion, and DataPropertyAssertionaxioms.
Axioms not in the above list can be expressed by appropri-
ate combinations of the ones listed, with the only exception
of axioms of the form DifferentIndividuals,
which are ruled out in Hi(OWL2QL) because their use in
conjunctive queries lead to insurmountable computational
obstacles (Gutierrez-Basulto et al. 2013).

By virtue of OWL2 punning, the same entity name can
in fact appear in positions of different types. The notion of
position will be often used in the following. An entity is said
to appear in class position if it appears in a SubClassOf or
DisjointClasses axiom, or in a Declaration(Class)
axiom, or in the first position of a ClassAssertion axiom.
Similarly, we can define the notions of object property, data
property, data type, individual, and value position.

The vocabulary VO of an Hi(OWL2QL) ontology O is
defined as (V O

N , V O
C , V O

OP , V O
DP , V O

DT , LO
QL), where (i)

V O
N is the set of IRIs occurring in O extended with the
OWL2QL reserved vocabulary, (ii) V O

C (resp., V O
OP , V O

DP),
is the subset of V O

N consisting of the IRIs that appear in
class (resp., object property, data property) positions in O,
or are reserved IRIs denoting classes (resp., object proper-
ties, data properties) (iii) V O

DT is a subset of the datatypes in
OWL2QL (for each d of them, dDT denotes the set of val-
ues of type d), and (iv) LO

QL is the set of literals occurring in
some logical axiom of O (for each lt of them, ltLS denotes
the corresponding data value).

Also, we denote with ExpO the finite set of all well-
formed expressions that can be built on the basis of VO, de-
fined as ExpO = V O

N ∪ExpOC∪ExpOOP ∪VDP ∪VDT ,where
ExpOC = VC ∪ {ObjectSomeValuesFrom(e1e2) | e1 ∈
ExpOOP , e2 ∈ VC} ∪ {DataSomeValuesFrom(e1e2) |
e1 ∈ VDP , e2 ∈ VDT } and ExpOOP = VOP ∪
{ObjectInverseOf(e1) | e1 ∈ VOP }.

In what follows, with a slight abuse of notation, an on-
tology O with TBox axioms T O and Abox AO, will be de-
noted by 〈ExpO, T O,AO〉.
Semantics. The semantics of Hi(OWL2QL), called HOS,
is based on the notion of interpretation structure, which
plays the same role as the “interpretation domain” in classi-
cal first-order logic. Specifically, an interpretation structure
is a tuple Σ = 〈Δo,Δv, ·I , ·E , ·R, ·A, ·T 〉 where:
• Δo, the object domain, and Δv , the value domain are two

disjoint nonempty sets.
• ·E : Δo → P(Δo) is a partial function;
• ·R : Δo → P(Δo ×Δo) is a partial function;
• ·A : Δo → P(Δo ×Δv) is a partial function;
• ·T : Δo → P(Δv) is a partial function;
• ·I : Δo → {T,F} is a total function s.t. for each d ∈ Δo,

if ·E , ·R, ·A, ·T are undefined for d, then dI = T.
Thus, the interpretation structure is not simply a set, but

a mathematical representation of a world made up by ele-
ments which have complex inter-relationships, where such
inter-relationships are represented by the various functions
making up Σ. In particular, each element in the world rep-

resented by Σ is in the domain Δ = Δo ∪Δv , and therefore
is either an object or a value. Also, ·E is a function that,
given a domain object o, either assigns to o its extension,
i.e., a set of objects that are its instances, or is undefined for
o, in which case o is not regarded as a class in the world
represented by Σ. Functions ·R, ·A, and ·T behave analo-
gously, reflecting whether and how objects are regarded in
Σ as relations among objects, relations among objects and
values, and sets of values, respectively. Finally, ·I is the
boolean function specifying whether an object o is seen as
an individual object (if oI is true), or not (if oI is false): ·I
is crucial for making HOS compatible with DS, based on
the idea that the the object domain of an interpretation under
DS corresponds to Δi, where Δi is a nonempty set defined
as {a ∈ Δo | aI = T}. An interpretation I for O is a pair,
〈Σ, Io〉, where Σ is an interpretation structure and Io is the
interpretation function for I, i.e., a function that maps every
expression in ExpO into an object in Δo, and every literal
in LQL into a value in Δv , according to the set of conditions
specified in the following table.

for d in the reserved vocabulary: (dIo)I = F;
for d ∈ ExpOC : (dIo)E is defined, and (dIo)T is undefined;
for d ∈ ExpOOP : (dIo)R is defined, and (dIo)A is undefined;
for d ∈ VODP

: (dIo)A is defined, and (dIo)R is undefined;
for d ∈ VODT

: (dIo)E is undefined, and (dIo)T = dDT

for lt = (l, d) ∈ LQL: ltIo = (l, d)LS;
((ObjectInverseOf(e))Io)R = ((eIo)

R
)−1;

((ObjectSomeValuesFrom(e1 e2))Io)E = {d1 | 〈d1, d2〉 ∈ (eIo
1)R, d2 ∈ (eIo

2)E};
((DataSomeValuesFrom(e1 e2))Io)E = {d1 | 〈d1, d2〉 ∈ (eIo

1)A, d2 ∈ (eIo
2)T };

(owl:ThingIo)E = Δi; (owl:NothingIo)E = ∅; (rdfs:Literal Io)T = Δv;
(owl:topObjectPropertyIo)R = Δi ×Δi;
(owl:topDataPropertyIo)A = Δi ×Δv;
(owl:bottomObjectPropertyIo)R = (owl:bottomDataPropertyIo)A = ∅;

Note that the extension of e1, when seen as a class (simi-
larly for object and data properties), is given by the function
·E applied to eIo

1 , where eIo
1 is the object in Δo that I asso-

ciates to the expression e1.
To define the semantics of logical axioms, we resort

to the usual notion of satisfaction of an axiom with re-
spect to an interpretation I. Thus, for example, I |=
SubClassOf(e1 e2) if (eIo

1)E and (eIo
2)E are defined, and

(eIo
1)E ⊆ (eIo

2)E where e1, e2 are expressions.
Two observations are in order: (i) the notions of model

and satisfiability of an ontology are the usual ones; (ii)
checking whether an axiom is logically implied by an on-
tology can be done in polynomial time using the same tech-
nique used for OWL2QL.
Query language. We concentrate on unions of boolean in-
stance conjunctive queries (simply called instance queries
in the following). Given a set of variables V disjoint from
VO, a boolean instance conjunctive query q over an ontol-
ogy O is an expression of the form ask where B, where
B, called query body, is a conjunction of ABox atoms over
VO ∪ V . In SPARQL jargon, a query body is a basic graph
pattern(BGP), i.e., a conjunction of RDF triples involving
variables. Since we use the FSS, in our case an atom has
the same form of a logical axiom, but its arguments are
terms which may contain variable symbols from V . We call
metavariable of an instance query a variable that occurs in
class position, object property position, data property posi-
tion or datatype position in the body, and we say that an atom

578

is (meta)ground if no (meta)variable occurs in it. A query is
ground (resp. metaground) if all its atoms are ground (resp.
metaground). Note that the presence of metavariables makes
our instance queries suitable for metaquerying.

We provide the semantics of instance queries by defining
a new SPARQL entailment regime, called HOS entailment
regime, specifying (α) which is the semantics used to inter-
pret the queried ontology, (β) which queries are legal, and
(γ) which is the notion of answer to queries (called solution
in SPARQL jargon) that we adopt. As for (α), we simply
adopt HOS, described above. As for (β), we base our pro-
posal on the class of queries which are legal for the SPARQL
DS entailment regime, but extend it by relaxing the typing
constraint. As for (γ) we rely on the usual definition of cer-
tain answers, where we assign the classical logical meaning
to both the existentially quantified variables (meaning that
we do not require that they are bound, in every model, to
a known ontology element, as in SPARQL), and the union
(meaning that the certain answers to a union of conjunctive
queries are obtained as the intersection of the answers to the
union over all models of the ontology, instead of the union of
the certain answers to each conjunctive query in the union,
as in SPARQL).

We observe that the semantics of conjunctive instance
queries is captured by a suitable extension of the notion of
query homomorphism (Chandra and Merlin 1977).

Satisfiability and instance queries
In this section, we study the complexity of the following
problems, given an ontology O = 〈ExpO, T ,A〉. Satis-
fiability: is O satisfiable? Query answering: given an in-
stance query Q, is the certain answer of Q wrt O true (i.e.,
O |= Q)? We start by defining the notion of chase in our set-
ting, and then we exploit it to devise a technique for the two
above mentioned problems. In what follows, we implicitly
refer to an ontology O.

The chase for our logic is similar to the one used in
DL-Lite (Calvanese et al. 2007): we build a (possibly infi-
nite) structure, starting from an initial structure Chase0(O),
and repeatedly computing Chasej+1(O) from Chasej(O)
by applying suitable rules.
• We make use of two infinite alphabets So and Sv of vari-

ables, both disjoint from ExpO and LO
QL, for introduc-

ing new unknown individuals and new data values, when
needed.

• Chase0(O) is the set of axioms obtained from O by
adding, for every DataPropertyAssertion axiom
stating that a pair (e, lt) belongs to a data property, an ax-
iom DatatypeAssertion(D lt), for every datatype
D containing the data value denoted by lt according to
DMQL. Formally, such an axiom is not in the syntax of
OWL2QL, but is needed to make explicit in the chase that
lt belongs to the datatype D.

• To compute Chasej+1(O) from Chasej(O) we apply
one of the chase rules, where each rule can be applied only
if suitable conditions hold, and are used to enforce the sat-
isfaction of one of the axioms in O. For the lack of space
we do not list here all such rules and conditions, but rather
present the following example: if ClassAssertion(c1

e)∈ Chasej(O), SubClassOf(c1 ObjectSome-
ValuesFrom(p c)) ∈ O, and ∀e′ such that Object-
PropertyAssertion(p e e′) ∈ Chasej(O), we have
that ClassAssertion(c e′)/∈ Chasej(O), then we
set Chasej+1(O)=Chasej(O)∪{ClassAssertion(c
s),ObjectPropertyAssertion(p e s)}, where s ∈
So does not appear in Chasej(O).

• Finally, we set Chase(O) =
⋃

i∈N
Chasei(O).

Note that Chase(O) is a (possibly infinite) set of
OWL2QL ABox axioms, except for the possible presence of
variables in individual and data value positions, and of ax-
ioms of the form DatatypeAssertion(e lt) discussed
above. Based on Chase(O) we define the so-called canoni-
cal pseudo-interpretation Can(O) = 〈ΣCan(O), IoCan(O)〉
for O as follows:
• ΣCan(O) = 〈ΔCan(O)

o ,Δ
Can(O)
v , ·ICan(O) , ·ECan(O)

, ·RCan(O) , ·ACan(O) , ·TCan(O)〉 is an interpretation struc-
ture such that (i) Δ

Can(O)
o = (ExpO ∪ So), (ii)

Δ
Can(O)
v = (rdfs:LiteralDT ∪ Sv), (iii) if e oc-

curs in individual position in Chase(O), then eICan(O) =
T otherwise eICan(O) = F, and (iv) the various func-
tions ·ICan(O) , ·ECan(O) , ·RCan(O) , ·ACan(O) , ·TCan(O) are
derived from Chase(O); e.g., if e /∈ ExpOC then ·ECan(O)

is undefined for e, otherwise if e ∈ V O
C , then eECan(O) =

{e1 | ClassAssertion(e e1) ∈ Chase(O)}, and
similarly for the other cases.

• IoCan(O) is such that (i) it maps every expression into
itself, i.e., for every e ∈ ExpO, eIo

Can(O)

= e, and (ii)
it maps every literal according to DMQL, i.e. for every
lt ∈ LO

QL, ltIo
Can(O)

= ltLS .
Note that Can(O) is called a pseudo-interpretation be-
cause it may not conform to the definition of interpreta-
tion for O. In particular, dTCan(O) may include variables
in Sv (thus not in dDT), and both owl:NothingECan(O)

and owl:bottomObjectProperty may be nonempty.
Also, we exploit the property of Hi(OWL2QL) of allow-
ing the functions ·ECan(O) , ·RCan(O) , ·ACan(O) , ·TCan(O) to be
undefined; in particular, we let these functions be undefined
for each newly introduced element from So, which therefore
represent individuals in Can(O). This reflects the intuition
that there is no need to regard the elements introduced in the
chase as classes or properties in order to make Can(O) rep-
resenting the minimal knowledge satisfying O. We observe
that this fact is crucial for extending our query answering
technique to the case of queries with TBox atoms.

Let us now show that Can(O) plays a crucial role in rep-
resenting the set of all models of O. If M is an interpretation
for O, we say that a function Ψ from Δ

Can(O)
o to ΔM

o and
from Δ

Can(O)
v to ΔM

v is an instance-based homomorphism
from Can(O) to M if for every e ∈ ExpO, Ψ(e) = eIo

M

,
for every v ∈ rdfs:LiteralDT , Ψ(v) = v, and all
the instance-based properties satisfied by Can(O) are pre-
served in M under Ψ, e.g., for every e1, e2 ∈ Δ

Can(O)
o such

that e2 ∈ e
ECan(O)

1 , Ψ(e2) ∈ Ψ(e1)
EM .

Proposition 1 For every model M of O, there exists an

579

instance-based homomorphism from Can(O) to M .

Since all extension functions are undefined for the ele-
ments of So in Can(O), any query homomorphism from Q
to Can(O) will associate to every metavariable of Q an ob-
ject o such that o = eIo

Can(O)

for an e ∈ ExpO. To capture
this fact, let us introduce the notion of metagrounding of an
instance query Q: given an n-tuple �x = (x1, x2, . . . , xn)
of metavariables of Q, and an n-tuple �t = (x1, x2, . . . , xn)
of expressions in ExpO, a metagrounding of Q is obtained
from Q by substituting each xi in �x with ti in �t, where, for
i ∈ {1, . . . , n}, if xi occurs in class (object property, data
property, datatype) position in Q, then ti belongs to ExpOC
(resp. ExpOOP , V O

DP , V O
DT). We denote by MG(Q,ExpO)

the metaground instance query that is the union of all meta-
groundings of Q w.r.t. O.

Proposition 2 If Q is an instance query over O, then
Can(O) |= Q if and only if Can(O) |= MG(Q,ExpO).

We are now ready to exploit all the above properties to
design suitable algorithms for satisfiability and answering
instance queries. If On is the set of negative axioms of O,
then the unsatisfiability query for O is the metaground in-
stance query of the form

Qu
O = (

⋃

α∈On

qα) ∪ (
⋃

d1,d2∈V O
DT , dDT

1 ∩dDT
2 =∅

qd1,d2
)

where qα has the form:
• ask {ClassAssertion(e1 $x). ClassAssertion(e2
$x)}, if α = DisjointClasses(e1 e2),
and has an anologous form if α =
DisjointObjectProperties(e1 e2), or α =
DisjointDataProperties(e1 e2),

• ask {ObjectPropertyAssertion(e1 $x $x)}, if α =
IrreflexiveObjectProperty(e1)

and qd1,d2 has the form ask {DatatypeAssertion(d1
$x). DatatypeAssertion(d2 $x)}.

Theorem 3 (i) O is unsatisfiable if and only if Can(O) |=
Qu

O, (ii) If Q is an instance query over O, then O |= Q if
and only if Can(O) |= Qu

O or Can(O) |= MG(Q,ExpO).

Proof(sketch). For item (i), the crucial aspect is to show
that, if Can(O) � Qu

O, then it is possible to build a model
M c for O. In a nutshell, M c is obtained by replacing ev-
ery v in Sv with a distinct value μ(v) such that: (i) μv(v)
belongs to the value space of every datatype d such that
v ∈ dCan(O), and does not belong to the value space of any
other datatype different from rdfs:Literal, (ii) μv(v)
is distinct from all values represented by some literal in O,
and (iii) ∀v′ ∈ Sv, v

′
= v, μv(v
′)
= μv(v). This is possi-

ble thanks to the following properties of OWL2QL datatypes
(see also (Savkovic and Calvanese 2012)): (i) for every pair
of different datatypes D1 and D2, DDT

1 \DDT
2 is an infinite

set, and (ii) Δv \U is an infinite set, where U =
⋃

d∈D′ dDT .
For item (ii), one direction exploits M c as a counterexam-
ple, and the other direction easily follows from Proposition
2. �

It remains to describe how we check whether Can(O) |=
Q, where Q is ground. Inspired by the technique described
in (De Giacomo, Lenzerini, and Rosati 2011), we use the
well-known rewriting approach, typical of the DL-Lite fam-
ily (Calvanese et al. 2007), thus opening up the possibil-
ity to use off-the-shelf OWL2QL reasoners, such as Mas-
tro (Calvanese et al. 2011) or Ontop (Rodriguez-Muro and
Calvanese 2012). As a consequence, satisfiability and an-
swering instance queries are in AC0 w.r.t. ABox complex-
ity and in PTIME w.r.t. ontology complexity, and answering
instance queries is also NP-complete w.r.t. combined com-
plexity.

Conclusion

We plan to continue our work along several directions. The
most important aspect is studying query answering under
HOS for queries that possibly contain TBox atoms too.
Also, we aim at devising extensions of both the ontology
and the query languages, that increase metamodeling and
metaquerying capabilities.

References

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. of
Automated Reasoning 39(3):385–429.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodriguez-Muro, M.; Rosati, R.; Ruzzi, M.; and
Savo, D. F. 2011. The Mastro system for ontology-based
data access. Semantic Web J. 2(1).
Chandra, A. K., and Merlin, P. M. 1977. Optimal imple-
mentation of conjunctive queries in relational data bases. In
Proc. of STOC 1977, 77–90.
De Giacomo, G.; Lenzerini, M.; and Rosati, R. 2011.
Higher-order description logics for domain metamodeling.
In Proc. of AAAI 2011.
Glimm, B.; Rudolph, S.; and Völker, J. 2010. Inte-
grated metamodeling and diagnosis in OWL 2. In Proc. of
ISWC 2010, volume 6496 of LNCS.
Glimm, B. 2011. Using SPARQL with RDFS and OWL
entailment. In RW-11. 137–201.
Motik, B. 2007. On the properties of metamodeling in OWL.
J. of Logic and Computation 17(4):617–637.
Pan, J. Z., and Horrocks, I. 2006. OWL FA: a metamodeling
extension of OWL DL. In Proc. of WWW 2006.
Rodriguez-Muro, M., and Calvanese, D. 2012. Quest, an
OWL 2 QL reasoner for ontology-based data access. In
Proc. of OWLED 2012, volume 849 of CEUR.
Savkovic, O., and Calvanese, D. 2012. Introducing
datatypes in DL-Lite. In Proc. of ECAI 2012.

580

