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Abstract

Definitions of sequential equilibrium and perfect equilibrium
are given in games of imperfect recall. Subtleties regarding
the definition are discussed.

1 Introduction

There has been a great deal of interest in Al recently in ap-
plying ideas of game theory to model interacting agents who
have possibly different preferences as to the outcome of the
interaction. While perhaps the best-known solution concept
for games is Nash equilibrium, a Nash equilibrium may rely
on threats; there might be some concern that these are empty
threats, which will never be carried out. The notions of se-
quential equilibrium (Kreps and Wilson 1982) and perfect
equilibrium (Selten 1975) are perhaps the most common so-
lution concepts used to deal with empty threats. They are
both trying to capture the intuition that agents play opti-
mally, not just on the equilibrium path (which is all the is
enforced by Nash eqiulibrium), but also off the equilibrium
path.

Unfortunately, both perfect equilibrium and sequential
equilibrium have been defined only in games of perfect re-
call, where players remember all the moves that they have
made and what they have observed. Perfect recall seems to
be an unreasonable assumption in practice. To take just one
example, consider even a relatively short card game such as
bridge. In practice, in the middle of a game, most people do
not remember the complete bidding sequence and the com-
plete play of the cards (although this can be highly relevant
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information!). Indeed, more generally, we would not expect
most people to exhibit perfect recall in games that are even
modestly longer than the standard two- or three-move games
considered in most game theory papers. Perhaps even more
relevant for Al, it is unreasonable to expect software agents
to have perfect recall; this requires far too much memory, in
general.

Nevertheless, the intuition that underlies sequential and
perfect equilibrium, namely, players should play optimally
even off the equilibrium path, seems to make sense even
in games of imperfect recall. An agent with imperfect re-
call will still want to play optimally in all situations. And
although, in general, calculating what constitutes optimal
play may be complicated (indeed, the definition of sequen-
tial equilibrium is itself complicated), there are many games
where it is not that hard to do. However, the work of Pic-
cione and Rubinstein (1997b) (PR from now on) suggests
some subtleties. The following two examples, both due to
PR, illustrate the problems.

Example 1.1: Consider the game described in Figure 1,
which we call the “match nature” game:

Zo
1 1
2 2
zo S x1 T2 S z
2 2
B B
X
3 X

Z 4
L R L R
22 23 24 <5
3 -6 -2 4

Figure 1: Subtleties with imperfect recall, illustrated by the
match nature game.

At x¢, nature goes either left or right, each with probability
1/2. At 1, the agent knows that nature moved left; at xo,
the agent knows that nature moved right. The box around the
nodes z3 and x4 labeled X indicates that X = {x3, 24} is
an information set. Thus, at the information set X, the agent



has forgotten what nature did. Since xz3 and z4 are in the
same information set, the agent must do the same thing at
both. It is not hard to show that the strategy that maximizes
expected utility chooses action S at node x;, action B at
node x2, and action R at the information set X consisting
of x3 and x4. Call this strategy b. Let b’ be the strategy of
choosing action B at z1, action S at zo, and L at X. As PR
point out, if node x; is reached and the agent is using b, then
he will not feel that b is optimal, conditional on being at
he will want to use b’. Indeed, there is no single strategy that
the agent can use that he will feel is optimal both at 21 and
Ta. I

The problem here is that if the agent starts out using strat-
egy b and then switches to o’ if he reaches x;1 (but continues
to use b if he reaches x2), he ends up using a “strategy” that
does not respect the information structure of the game, since
he makes different moves at the two nodes in the informa-
tion set X = {w3,24}." As pointed out by Halpern (1997),
if the agent knows what strategy he is using at all times, and
he is allowed to change strategies, then the information sets
are not doing a good job here of describing what the agent
knows, since the agent can be using different strategies at
two nodes in the same information set. The agent will know
different things at x3 and x4, despite them being in the same
information set.

Example 1.2: The following game, commonly called the
absent-minded driver paradox, illustrates a different prob-
lem. It is described by PR as follows:

An individual is sitting late at night in a bar planning
his midnight trip home. In order to get home he has to
take the highway and get off at the second exit. Turn-
ing at the first exit leads into a disastrous area (payoff
0). Turning at the second exit yields the highest re-
ward (payoff 4). If he continues beyond the second exit
he will reach the end of the highway and find a hotel
where he can spend the night (payoff 1). The driver is
absentminded and is aware of this fact. When reaching
an intersection he cannot tell whether it is the first or
the second intersection and he cannot remember how
many he has passed.

The situation is described by the game tree in Figure 2.

Clearly the only decision the driver has to make is whether
to get off when he reaches an exit. A straightforward com-
putation shows that the driver’s optimal strategy ex ante is to
exit with probability 1/3; this gives him a payoff of 4/3. On
the other hand, suppose that the driver starts out using the
optimal strategy, and when he reaches the information set,
he ascribes probability « to being at e;. He then considers
whether he should switch to a new strategy, where he ex-
its with probability p. Another straightforward calculation

'As usual, we take a pure strategy b to be a function that asso-
ciates with each node in the game tree a move, such that if z and z’
are two nodes in the same information set, then b(z) = b(z’). We
occasionally abuse notation and write “strategy” even for a func-
tion b’ that does not necessarily satisfy the latter requirement; that
is, we may have &' (z) # b'(z’) even if = and x’ are in the same
information set.
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Figure 2: The absentminded driver game.

shows that his expected payoff is then

a((1=p)*> +4p(1 —p)) + (1 = a)((1 = p) + 4p)

=1+ (3—a)p— 3ap®. M

Equation 1 is maximized when p = min(1, (3 — a)/6a),
with equality holding only if « = 1. Thus, unless the
driver ascribes probability 1 to being at eq, he should want to
change strategies when he reaches the information set. This
means that as long as @ < 1, we cannot hope to find a se-
quential equilibrium in this game. The driver will want to
change strategies as soon as he reaches the information set.

According to the technique used by Selten (1975) to as-
cribe beliefs, also adopted by PR, if the driver is using
the optimal strategy, e; should have probability 3/5 and e
should have probability 2/5. The argument is that, accord-
ing to the optimal strategy, e; is reached with probability
1 and ey is reached with probability 2/3. Thus, 1 and 2/3
should give the relative probability of being at e; and es.
Normalizing these numbers gives us 3/5 and 2/5, and leads
to non-existence of sequential equilibrium. (This point is
also made by Kline (2005).)

As shown by PR and Aumann, Hart, and Perry (AHP)
(1997), this way of ascribing beliefs guarantees that the
driver will not want to use any single-action deviation from
the optimal strategy. That is, there is no “strategy” b’ that is
identical to the optimal strategy except at one node and has
a higher payoff than the optimal strategy. PR call this the
modified multi-self approach, whereas AHP call it action-
optimality. AHP suggest that this approach solves the para-
dox. On the other hand, Piccione and Rubinstein (1997a)
argue that it is hard to justify the assumption that an agent
cannot change her future actions. (See also (Gilboa 1997;
Lipman 1997) for further discussion of this issue.)

Our goal in this paper is to define sequential equilibrium
equilibrium for games of imperfect recall. As these exam-
ples show, such definitions require a clear interpretation of
the meaning of information sets and the restrictions they im-
pose on the knowledge and strategies of players. Moreover,
as we shall show, there are different intuitions behind the
notion of sequential equilibrium. While they all lead to the
same definition in games of perfect recall, this is no longer



the case in games of imperfect recall. Our definition can be
viewed as trying to capture a notion of ex ante sequential
equilibrium. The picture here is that players choose their
strategies before the game starts and are committed to it, but
they choose it in such a way that it remains optimal even
off the equilibrium path. This, unfortunately, does not cor-
respond to the more standard intuitions behind sequential
equilibrium, where agents are reconsidering at each infor-
mation set whether they are doing the “right” thing, and can
change their strategies if they should choose to. While we
believe that defining such a notion of interim sequential ra-
tionality would be of great interest (and discuss potential
definitions of such a notion in the full paper), it raises a
number of new subtleties in games of incomplete informa-
tion, since the obvious definition is in general incompatible
with the exogenously-given information structure. (This is
essentially the point made by the match nature game in Fig-
ure 1.) We believe that having a definition of sequential ra-
tionality that agrees with the standard definition of games
of perfect recall and is conceptually clear and well moti-
vated in games of imperfect recall will help us understand
better the interplay between rationality and imperfect recall.
Moreover, the ex ante notion is particularly well motivated
in a setting where players are choosing an algorithm, and
are charged for the complexity of the algorithm, in the spirit
of the work of Rubinstein (1986); we explore some of these
issues in definitions of sequential equilibrium in this setting,
based on the ideas of this paper, in (Halpern and Pass 2013).

2 Preliminaries

In this section, we discuss a number of issues that will be rel-
evant to our definition of sequential equilibrium: imperfect
recall and absentmindedness, what players know, behavioral
vs. mixed strategies, and belief ascription.

2.1 Imperfect Recall and Absentmindedness

As usual, we describe an extensive-form game, where deci-
sions are made over time, using a game tree and information
sets (as in Figures 1 and 2). A game is said to exhibit per-
fect recall if, for all players ¢ and all nodes x; and x5 in an
information set X for player i, if h; is the history leading to
x; for j = 1,2, player ¢ has played the same actions in h;
and hs and gone through the same sequence of information
sets. (See, for example, (Osborne and Rubinstein 1994) for
more formal definitions.) If a game does not exhibit perfect
recall, it is said to be a game of imperfect recall. A special
case of imperfect recall is absentmindedness; absentminded-
ness occurs when there are two nodes on one history that are
in the same information set. The absent-minded driver game
exhibits absentmindedness; the match nature game does not.

2.2 Knowledge of Strategies

The standard (often implicit) assumption in most game the-
ory papers is that players know their strategies.  This is
a nontrivial assumption. Consider the match nature game.
If the agent cannot recall his strategy, then certainly any dis-
cussion of reconsideration at o becomes meaningless; there
is no reason for the agent to think that he will realize at x4
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that he should play R. But if the agent cannot recall even
his initial choice of strategy (and thus cannot commit to a
strategy) then strategy b (playing B at x1, S at x5, and R at
X') may not turn out to be optimal. When the agent reaches
S, he may forget that he was supposed to play R. While
it could be argued that, as long as the agent remembers the
structure of the game, he can recompute the optimal strat-
egy. However, this argument no longer holds if we change
the payoffs at z4 and z5 to —6 and 3, respectively, so that the
left and right sides of the game tree are completely symmet-
ric. Then it is hard to see how an agent who does not recall
what strategy he is playing will know whether to play L or R
at X. A prudent agent might well decide to play .S at both x1
and zo! Because we are considering an ex ante notion of
sequential equilibrium, we assume that an agent can commit
initially to playing a strategy (and will know this strategy at
later nodes in the game tree). But we stress that we view
this assumption as problematic if we allow reconsideration
of strategies at later information sets.

2.3

There are two types of strategies that involve randomization
that have been considered in extensive-form games. A mixed
strategy in an extensive-form game is a probability measure
on pure strategies. Thus, we can think of a mixed strategy as
corresponding to a situation where a player tosses a coin and
chooses a pure strategy at the beginning of the game depend-
ing on the outcome of the coin toss, and then plays that pure
strategy throughout the game. By way of contrast, with a
behavioral strategy, a player randomizes at each information
set, randomly choosing an action to play at that information
set. Formally, a behavioral strategy is a function from in-
formation sets to distributions over acts. (We can identify a
pure strategy with the special case of a behavioral strategy
that places probability 1 on some action at every information
set.) Thus, we can view a behavioral strategy for player ¢ as
a collection of probability measures indexed by the informa-
tion sets for player ¢; there is one probability measure on the
actions that can be performed at information set X for each
information set X for player 3.

It is well known that in games of perfect recall, mixed
strategies and behavioral strategies are outcome-equivalent.
That is, given a mixed strategy b for player i, there exists
a behavioral strategy b’ such that, no matter what strategy
profile (mixed or behavioral) b_; the remaining players use,
(b,b_;) and (V',b_;) induce the same distribution on the
leaves (i.e., terminal histories) of the game tree; and con-
versely, for every mixed strategy b, there exists a behav-
ioral strategy b’ such that for all strategy profiles b_; for
the remaining player, (b,b_;) and (b',b_;) are outcome-
equivalent. (See (Osborne and Rubinstein 1994) for more
details.)

It is also well known that this equivalence breaks down
when we move to games of imperfect recall. In games with-
out absentmindedness, for every behavioral strategy, there
is an outcome-equivalent mixed strategy; but, in general, the
converse does not hold (Isbell 1957). Once we allow absent-
mindedness, as pointed out by PR, there may be behavioral
strategies that are not outcome-equivalent to any mixed strat-

Mixed Strategies vs. Behavioral Strategies



egy. This is easy to see in the absentminded driver game.
The two pure strategies reach z; and z3, respectively. Thus,
no mixed strategy can reach zo, while any behavioral strat-
egy that places positive probability on both B and E has
some positive probability of reaching z5. The same argu-
ment also shows that there exist mixed strategies that are not
outcome-equivalent to any behavioral strategy.

Thus, to deal with games of imperfect recall, in general,
we need to allow what Kaneko and Kline (1995) call behav-
ioral strategy mixtures.> A behavioral strategy mixture b;
for player ¢ is a probability distribution on behavioral strate-
gies for player ¢ that assigns positive probability to only
finitely many behavioral strategies for player . As Kaneko
and Kline note, a behavioral strategy mixture involves two
kinds of randomization: before the game and in the course
of the game. A behavioral strategy is the special case of a
behavioral strategy mixture where the randomization hap-
pens only during the course of the game; a mixed strategy
is the special case where the randomization happens only at
the beginning. For the remainder of the paper, when we say
“strategy”, we mean ‘“behavioral strategy mixture”, unless
we explicitly say otherwise.

It is worth noting that players do not have to mix over
too many behavioral strategies when employing a behav-
ioral strategy mixture. Specifically, we show that a behav-
ioral strategy mixture for player 7 in a game I' is outcome-
equivalent to a mixture of at most d; + 1 behavioral strate-
gies, where d; is a constant that depends only of the size of
the game I'. A behavioral strategy mixture for a player ¢ in a
game I" can be described by specifying for each information
set I for 4 a probability distribution over nodes =’ ¢ I that
can be reached from some node = € I. If we set d; to be
the total number of final nodes of any information set [ for ¢
(where z is a final node of I if there are no nodes 2’ in I that
come after x in the game tree), then by Carathéodory’s The-
orem (Rockafellar 1970), which says that any point in the
convex hull of a set P in R? is the convex combination of at
most d + 1 points in P, it follows that a behavioral strategy
mixture for player ¢ in a game I' is outcome-equivalent to a
mixture of at most d; + 1 behavioral strategies.’

They actually call them behavior strategy mixtures; we write
“behavioral” for consistency with our terminology elsewhere.

3In a game of perfect recall, any behavioral strategy is outcome-
equivalent to a convex combination of pure strategies, so there is
a fixed finite set P such that every behavioral strategy is a con-
vex combination of the strategies in P. But in a game of imper-
fect recall, although there is a fixed d such that every behavioral
strategy mixture is convex combination of d + 1 behavioral strate-
gies, there is no finite set P such that every behavioral strategy
mixture is a convex combination of the behavioral strategies in
P. (Proof sketch: Consider the absentminded driver game. Be-
havioral strategies lead to a distribution over leaves of the form
(z,2(1 — ), (1 —x)?), for x € [0, 1]. Thus, if we view the distri-
bution as a vector of the form (a, b, ¢), we must have b < a, with
b = aiff a = b = 0, and we can make the ratio of b/a as close to
1 as we like, by making a sufficiently small. Any finite collection
P of behavioral strategies has a maximum value for b/a. Thus, for
any finite set P of behavioral strategies in the absentminded driver
game, there must be a behavioral strategy that is not in the convex
closure of P.)
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A consequence of this fact is that we can identify a
mixed behavioral strategy for player ¢+ with an element of
([0,1] x R%)(¢i+1)_each mixed behavioral strategy can be
viewed as a tuple of the form ((a1,b1), ..., (adg,+1,bd,+1),
where aq,...,aq,41 € [0,1], > a; = 1, and b; is a mixed
behavioral strategy for player i, and thus in R%. Since it
is well known that the convex closure of a compact set in a
finite-dimensional space is closed (Rockafellar 1970), it fol-
lows that the set of behavioral strategy mixtures of a finite
game I is closed, and thus also compact. Summarizing this
discussion, we have the following proposition.

Proposition 2.1: If T is a finite game, then the set of behav-
ioral strategy mixtures in I is compact. Furthermore, there
exists some constant d (which depends on the number of ac-
tions in ') such that for every behavioral strategy mixture c,
there exists an outcome-equivalent behavioral strategy mix-
ture ¢ that mixes only over d behavioral strategies.

Solution concepts typically depend only on outcomes,
and so are insensitive to the replacement of strategies by
outcome-equivalent strategies. For example, if a strategy
profile b is a Nash (resp., sequential) equilibrium, and b; is
outcome-equivalent to b;, then b’ is also a Nash (resp., se-
quential) equilibrium. Nash showed that every finite game
has a Nash equilibrium in mixed strategies. By the outcome-
equivalence mentioned above, in a game of perfect recall,
there is also a Nash equilibrium that is a behavioral strat-
egy profile. This is no longer the case in games of imperfect
recall (Wichardt 2008).

Sequential equilibrium is usually defined in terms of be-
havioral strategies. This is because it is typically presented
as an interim notion. That is, players are viewed as making
decision regarding whether they should change strategies at
each information set. Thus, it makes sense to view them as
using behavioral strategies rather than mixed strategies. Al-
though we view our notion of sequential equilibrium as an
ex ante notion, we allow agents to use behavioral strategy
mixtures. The interpretation is that the agent randomizes at
the beginning to choose a behavioral strategy (one that is
compatible with the information structure of the game). The
agent then commits to this behavioral strategy and follows
it throughout the game. The agent has the capability to ran-
domize at each information set, but he is committed to doing
the randomization in accordance with his ex ante choice.

2.4 Expected Utility of Strategies

Every behavioral strategy mixture profile b induces a proba-
bility measure 7, on leaves (terminal histories). We identify
a node x in a game with the event consisting of the leaves
that can be reached from z. In the language of Grove and
Halpern (1997), we are identifying = with the event of reach-
ing x. Given this identification, we take 7 (z) to be the
probability of reaching a leaf that comes after  when using
strategy b.

For the purposes of this discussion, fix a game I, and let
Z denote the leaves (i.e., terminal histories) of I'. As usual,
we can take EU;(b) tobe D, mp(2)ui(2). If Y is a subset
of leaves such that 7, (Y") > 0, then computing the expected



utility of b for player ¢ conditional on Y is equally straight-
forward. Itis simply EU;(b|Y) =3 .y (2| Y)us(2).

3 Beliefs in Games of Imperfect Recall

Fix a game I'. Following Kreps and Wilson (1982), a belief
system p for T is a function that associates with each infor-
mation set X in I' a probability p x on the histories in X. PR
quite explicitly interpret pux (x) as the probability of being
at the node x, conditioned on reaching X. Just as Kreps and
Wilson, they thus require that ) v px (z) = 1.

Since we aim to define an ex ante notion of sequential
rationality, we instead interpret px () as the probability of
reaching x, conditioned on reaching X. We no longer re-
quire that ) px(x) = 1. While this property holds in
games of perfect recall, in games of imperfect recall, if X
contains two nodes that are both on a history that is played
with positive probability, the sum of the probabilities will be
greater than 1. For instance, in the absent minded driver’s
game, the ex ante optimal strategy reaches e; with probabil-
ity 1 and reaches ey with probability 2/3.

Given an information set X, let the upper frontier of X
(Halpern 1997), denoted X, to consist of all those nodes
x € X such that there is no node =’ € X that strictly pre-
cedes x on some path from the root. Note that for games
where there is at most one node per history in an infor-
mation set, we have X = X. Rather than requiring that
Y sex Mx(z) =1, we require that ¢ px(z) = 1, that
is, that the probability of reaching the upper-frontier of X,
conditional on reaching X, be 1. Since X =Xin games of
perfect recall, this requirement generalizes that of Kreps and
Wilson. Moreover, it holds if we define px in the obvious
way.

Claim 3.1: If X is an information set that is reached by
strategy profile b with positive probability and px(z) =

(x| X), then Y0 ¢ pux(z) = 1.

Proof: By definition, Y ¢ ux () =2 cxm(z | X) =
(X | X)=1.1

Given a belief system p and a strategy profile b, define
a probability distribution ;1% over terminal histories in the
obvious way: for each terminal history z, if there is no prefix
of z in X, then ul;( (z) = 0; otherwise, let , be the shortest
history in X that is a prefix of 2, and define p% (2) to be
the product of 11 x () and the probability that b leads to the
terminal history z when started in x .

Our definition of the probability distribution % induced
over terminal histories is essentially equivalent to that used
by Kreps and Wilson (1982) for games of perfect recall. The
only difference is that in games of perfect recall, a terminal
history has at most one prefix in X. This no longer is the
case in games of imperfect recall, so we must specify which
prefix to select. For definiteness, we have taken the shortest
prefix; however, it is easy to see that if px(z) is defined
as the probability of b reaching x conditioned on reaching
X, then any choice of =, leads to the same distribution over
terminal histories (as long as we choose consistently, that is,
we take x, = x,/ if z and 2’ have a common ancestor in X).
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Note that if a terminal history z has a prefix in X, then
the shortest prefix of z in X is in X . Moreover, defining 1%
in terms of the shortest history guarantees that it is a well-
defined probability distribution, as long as ) | _ ¢ ux(z) =
1, even if py is not defined by some strategy profile &'.

Claim 3.2: If Z is the set of terminal histories and
> wcx Hx(x) = 1, then for any strategy profile b, we have

ez ti(z) =1
Proof: By definition,

Yez Mk (2) 2zez fix (T2)m(z | x2)
%zGZ zeX /LX(Q?)?T[,(Z | 33)

zeX ﬂx(fﬂ) Zzez 7Tb('z | Cﬂ)
mEX Hx T

Following Kreps and Wilson (1982), let EU;(b | X, u)
denote the expected utility for player ¢, where the expecta-
tion is taken with respect to %

The following proposition justifies our method for ascrib-
ing beliefs. Say that a belief system p is compatible with a
strategy b if, for all information sets X such that 7, (X) > 0,
we have ux (z) = m(x | X).

Proposition 3.3: If information set X is reached by strategy
profile b with positive probability, and p is compatible with
b, then

EUL(b| X) = EU(b| X, p).

Proof: Let Z be the set of terminal histories, and let Zx
consist of those nodes in Z that have a prefix in X; similarly,
let Z, consist of those nodes in Z whose prefix is . Using

the fact that X = {z,: 2z € Zx}, we get that

3z i (2)ui(2)
i (zmz | 22 )u2)
e | X)m(z | aui(z)
cezy To(2 | X)ui(2)

EU(b)] X).

4 Perfect and Sequential Equilibrium
4.1 Perturbed Games

Weak compatibility tells us how to define beliefs for infor-
mation sets that are on the equilibrium path. But it does not
tell us how to define the beliefs for information sets that are
off the equilibrium path. We need to know how to do this in
order to define both sequential and perfect equilibrium. To
deal with this, we follow Selten’s approach of considering
perturbed games. Given an extensive-form game I and a
function 7 associating with every information set X and ac-
tion c that can be performed at X, a probability 7. > 0 such
that, for each information set X for player 4, if A(X) is the
set of actions that i can perform at X, then ) ; A(x) e < 1.



We call n a perturbation of I'. We think of 7). as the proba-
bility of a “tremble”; since we view trembles as unlikely, we
are most interested in the case that 7). is small.

A perturbed game is a pair (I, ) consisting of a game
I" and a perturbation 7. A behavioral strategy b for player
1 in (T, n) is acceptable if, for each information set X and
each action ¢ € A(X), b(X) assigns probability at least 7.
to c. A behavioral strategy mixture b is acceptable in (', 1)
if for each information set X and each action ¢ € A(X), the
expected probability of playing c according to b is at least
Ne-

We can define best responses and Nash equilibrium in the
usual way in perturbed games (I, n)); we simply restrict the
definitions to the acceptable strategies for (I', 7). Note that if
b is an acceptable strategy profile in a perturbed game, then
7p(X) > 0 for all information sets X.

4.2 Best Responses at Information Sets

There are a number of ways to capture the intuition that a
strategy b; for player i is a best response to a strategy profile
b_; for the remaining players at an information set X. To
make these precise, we need some notation. Given a behav-
ioral strategy b, let b;[X/c| denote the behavioral strategy
that is identical to b; except that, at information set X, ac-
tion c is played.

Switching to another action at an information set is, of
course, not the same as switching to a different strategy at
an information set. If &’ is a strategy for player i, we would
like to define the strategy [b;, X, b'] to be the strategy where
i plays b up to X, and then switches to b’ at X. Intuitively,
this means that ¢ plays b’ at all information sets that come
after X. The problem is that the meaning of “after X is
not so clear in games with imperfect recall. For example,
in the match nature game, is the information set X after the
information set {x1}? While x5 comes after x1, x4 does
not. The obvious interpretation of switching from b to b’ at
x1 would have the agent playing b" at x5 but still using b at
x4. As we have observed, the resulting “strategy” is not a
strategy in the game, since the agent does not play the same
way at x3 and x4.

This problem does not arise in games of perfect recall.
Define a strict partial order < on nodes in a game tree by
taking z < ' if x precedes 2’ in the game tree. There are
two ways to extend this partial order on nodes to a partial
order on information sets. Given information sets X and X’
for a player i, define X < X' iff, for all z’ € X', there
exists some z € X such that x < 2/. It is easy to see that <
is indeed a partial order. Now define X <’ X" iff, for some
€ X'andz € X, z < 2. Ttis easy to see that < agrees
with <’ in games of perfect recall. However, they do not in
general agree in games of imperfect recall. For example, in
the match nature game, {z2} <’ X, but it is not the case
that {z2} < X. Moreover, although <’ is a partial order
in the match nature game, in general, in games of imperfect
recall, <’ is not a partial order. In particular, in the game in
Figure 3, we have X; <’ X5 and X5 <’ X;.

Define z < 2’ iff x = 2’ or z < 2’; similarly, X < X" iff
X = X’ or X < X'. We can now define [b, X, b] formally,
where b is a behavioral strategy mixture and b’ is a behav-

283

Figure 3: A game where <’ is not a partial order.

ioral strategy. We start by defining [b, X, b’] when both b
and b" are behavioral strategies. In that case, [b, X, V'] is the
strategy according to which 4 plays b’ at every information
set X’ such that X < X', and otherwise plays b. If c is a be-
havioral strategy mixture and b’ is a behavioral strategy then
[c, X, '] is the behavioral strategy mixture that puts prob-
ability ¢(b) on the behavioral strategy [b, X, b']. We do not
define [¢, X, ¢/] in case ¢’ is a behavioral strategy mixture (as
opposed to just a behavioral strategy); randomization over
behavioral strategies is allowed only at the beginning of the
game.

The strategy [b, X, b'] is well defined even in games of im-
perfect recall, but it is perhaps worth noting that the strategy
[b, {1}, V] in the match nature game is the strategy where
the player goes down at x, but still plays R at information
set X, since we do not have X < {x;}. Thus, [b, {z1}, V]
as we have defined it is not better for the player than b. Sim-
ilarly, in the game in Figure 3, if b is the strategy of playing
R; at Xy and Ry at X5, while ' is the strategy of playing
L, at X and Lo at Xo, then [b, {2}, '] is b.

If we are thinking in terms of players switching strategies,
then strategies of the form [b, X, b'] allow as many switches
as possible. To make this more precise, if b and b’ are behav-
ioral strategies, let (b, X, b") denote the “strategy” of using b
until X is reached and then switching to b’. More precisely,
(b, X,b')(z) =V (x)if ' < x for some node 2’ € X; oth-
erwise, (b, X,b")(z) = b(z). Intuitively, (b, X, b’) switches
from b to b’ as soon as a node in X is encountered. As ob-
served above, (b, X, V') is not always a strategy. But when-
everitis, (b, X, V') = [b, X, V'].

Proposition 4.1: If c is a behavioral strategy mixture and b’
is behavioral strategy, then (¢, X, V') is a strategy in game T
iff (¢, X, ') = [¢, X, b].

Proof: We first prove the proposition in case ¢ is a pure
behavioral strategy b. Suppose that (b, X, b') # [b, X, V'].



Then there must exist some information set X’ such that
(b, X,b') and [b, X, V] differ at X’. If X < X', then at
every node in x € X', the player plays b'(X’) at = accord-
ing to both (b, X, b") and [b, X, ¥’]. Thus, it must be the case
that X A X’. This means the player plays b(X') at ev-
ery node in X’ according to [b, X, b’]. Since (b, X, ') and
[b, X, V'] disagree at X', it must be the case that the player
plays b’ (X’) at some node x € X’ according to (b, X,b’).
But since X A X', there exists some node ' € X’ that
does not have a prefix in X . This means that (b, X, b') must
play b(X') at ’. Thus, (b, X,b’) is not a strategy.

Now suppose that ¢ is a nontrivial mixture over behavioral
strategies, and that (¢, X, b") # [c, X, b/]. Thus, there exists
some b in the support of ¢ such that (b, X,b") # [b, X, V']; by
the argument above, (b, X,b’) is not a strategy, so (¢, X, V')
cannot be one either.

Conversely, if (¢, X,b') =
(¢, X,b) is a strategy. 11

[e, X', b], then clearly

4.3 Defining Perfect and Sequential Equilibrium

We now define (our versions of) perfect and sequential equi-
librium for games of imperfect recall.

Perfect equlibrium: We start with perfect equilibrium.
Here we use literally the same definition as Selten (1975),
except that we use behavioral strategy mixtures rather
than behavioral strategies. The strategy profile b* is
a perfect equilibrium in I' if there exists a sequence
(T',m),(T',n2),...) and a sequence of behavioral strategy
mixture profiles b', b2, ... such that (1) 1, — 0: (2) b*
is a Nash equilibrium of (I',7;,); and (3) b* — b*.* Sel-
ten (1975) shows that a perfect equilibrium always exists in
games with perfect recall. Essentially the same proof shows
that it exists even in games with imperfect recall.

Theorem 4.2: A perfect equilibrium exists in all finite
games.

Proof: Consider any sequence (I',n1), (I', 2), . . .) of per-
turbed games such that n,, — 0. By standard fixed-point
arguments, each perturbed game (I, 77, ) has a Nash equilib-
rium b* in behavioral strategy mixtures. (Here we are using
the fact that, by Proposition 2.1, the set of behavioral strat-
egy mixtures is compact.) By a standard compactness argu-
ment, the sequence b', b2, . . . has a convergent subsequence.
Suppose that this subsequence converges to b*. Clearly b* is
a perfect equilibrium. (Although the behavioral strategy
mixtures in the profile b* may not have finite support, by
Proposition 2.1, we can assume without loss of generality
that the mixtures in fact have finite support.) il

As we have observed, as a technical matter, using mixed
strategies rather than behavioral strategies makes no differ-
ence in games of perfect recall. However, it has a major
impact in games of imperfect recall. Since it is easy to see

*We can work with mixed strategies instead of behavioral strat-
egy mixtures if we do not allow absentmindedness; with absent-
mindedness, we need behavioral strategy mixtures to get our re-
sults.
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that every perfect equilibrium is a Nash equilibrium, it fol-
lows from Wichardt’s (2008) example that perfect equilib-
rium does not exist in games of imperfect recall if we restrict
to behavioral strategies.

Recall that we view the players as choosing a behavioral
strategy mixture at the beginning of the game. They then do
the randomization, and choose a behavioral strategy appro-
priately. At this point, they commit to the behavioral strat-
egy chosen, remember it throughout the game, and cannot
change it. However, they make this initial choice in a way
that it is not only unconditionally optimal (which is all that
is required of Nash equilibrium), but continues to be optimal
conditional on reaching each information set.

It is easy to see that a perfect equilibrium b* of I is also
a Nash equilibrium of I'. Thus, each strategy b is a best
response to b* ; ex ante. However, we also want b] to be
a best response to b* ; at each information set. This intu-
ition is made precise using intuitions from the definition of
sequential equilibrium, which we now review.

A behavioral strategy b; is completely mixed if, for each
information set X and action ¢ € A(X), b; assigns positive
probability to playing c. A behavioral strategy mixture is
completely mixed if every behavioral strategy in its support
is completely mixed. A belief system p is consistent with
a strategy b if there exists a sequence of completely mixed
strategy profiles b',b?, ... converging to b such that yx ()
is lim,, oo mpn (z | X). Note that if u is consistent with b,
then it is compatible with b.

The following result makes precise the sense in which a
perfect equilibrium is a best response at each information
set.

Proposition 4.3 If b is a perfect equilibrium in game T, then
there exists a belief system . consistent with b such that, for
all players 1, all information sets X for player i, and all
behavioral strategies V' for player i, we have

EU(b | X, ) > EU;(([bi, X, 0'],b-) | X, ).

Proof: Since b is a perfect equilibrium, there exists a se-
quence of strategy profiles b, b%, ... converging to b and a
sequence of perturbed games (T',7;), (T',72), . . . such that
ne — 0 and b* is a Nash equilibrium of (T, 7). All the
strategies b', b2, ... are completely mixed (since they are
strategies in perturbed games). We can assume without loss
of generality that, for each information set X and z € X, the
limit lim,, —, o mpn (| X) exists. (By standard arguments,
since I' is a finite game, by Proposition 2.1, we can find a
subsequence of b', b2, . .. for which the limits all exist, and
we can replace the original sequence by the subsequence.)
Let i be the belief assessment determined by this sequence
of strategies.

We claim that the result holds with respect to u. For sup-
pose not. Then there exists a player ¢, information set X, be-
havioral strategy b’ for player ¢, and € > 0 such that EU; (b |
X,p) +e < EU(([bi, X,V],0—;) | X,p)). It follows
from Proposition 3.3 that EU;(b* | X) — EU;(b | X, )
and EU,(([bF, X,b'],0%,) | X) — EU;(([b;, X,V'],b_) |
X, p). Since b* — b and n, — 0, there exists some
strategy 0" and k& > 0 such that b” is acceptable for



(T,mp) for all k¥ > k, and EU;(b* | X) + ¢/2 <
EU;(([p¥, X,6")),b% ) | X). But this contradicts the as-
sumption that b*" in a Nash equilibrium of (T, ng).% I

We are implicitly identifying “b is a best response
for ¢ at information set X with “EU;(b | X,u) >
EU;(([b:, X,0'],b—;) | X, u))” for all behavioral strategies
b’. How reasonable is this? In games of perfect recall, if
an action at a node z’ can affect ’s payoff conditional on
reaching X, then 2’ must be in some information set X’ af-
ter X. This is not in general the case in games of imperfect
information. For example, in the match nature game, the
player’s action at x4 can clearly affect his payoff conditional
on reaching zs, but the information set X that contains x4
does not come after {x2}, so we do not allow changes at x4
in considering best responses at xo. While making a change
at x4 makes things better at o, it would make things worse
at x1, a node that is not after 5. Given our ex ante view-
point, this is clearly a relevant consideration. What we are
really requiring is that b is a best response for ¢ at X among
strategies that do not affect i’s utility at nodes that do not
come after X. This last phrase does not have to be added in
games of perfect recall, but it makes a difference in games
of imperfect recall. We return to this point in Section 4.4.

Sequential’ equilibrium: We can now define a notion of
sequential equilibrium just as Kreps and Wilson (1982) did.
However, this notion turns out not out not to imply Nash
equilibrium, so we call it sequential’ equilibrium. We later
define a strengthening that we call sequential equilibrium
that is better behaved (and arguably better motivated).

Definition 4.4: A belief assessment is pair (b, ;) consisting
of a strategy b and a belief system u. A belief assessment
(b, i) is a sequential” equilibrium in a game T if 4 is consis-
tent with b and, for all players ¢, all information sets X for
player ¢, and all behavioral strategies b’ for player 7 at X, we
have FEU;(b| X, u) > EU;(([bs, X, 0],0-;) | X, ). 1

It is immediate from Proposition 4.3 that every perfect
equilibrium is a sequential’ equilibrium. Thus, a sequential’
equilibrium exists for every game.

Theorem 4.5: A sequential’ equilibrium exists in all finite
games.

Note that in both Examples 1.1 and 1.2, the ex ante optimal
strategy is a sequential’ equilibrium according to our defini-
tion. In Example 1.1, it is because the switch to what appears
to be a better strategy at x; is disallowed. In Example 1.2,
the unique belief 11 consistent with the ex ante optimal strat-
egy assigns probability 1 to reaching e; and probability 2/3
to reaching e;. However, since es is not on the upper fron-
tier of X, for all strategies b, EU(b | X.) = EU(b | e1) =
EU(b), and thus the ex ante optimal strategy is still optimal
at X..

5Note that we here rely on the fact that b’ is a behavioral strategy
and not a behavioral strategy mixture; if it were a behavioral strat-
egy mixture, then we could no longer guarantee that the “strategy”
obtained by switching from b to b’ at X is a behavioral strategy
mixture (since mixing now happens twice during the game).
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Although our definition of sequential’ equilibrium agrees
with the traditional definition of sequential equilibrium
(Kreps and Wilson 1982) in games of perfect recall, there
are a number of properties of sequential equilibrium that
no longer hold in games of imperfect recall. First, it is no
longer the case that every sequential’ equilibrium is a Nash
equilibrium. For example, in the match nature game, it is
easy to see that the strategy O’ is a sequential’ equilibrium
but is not a Nash equilibrium. It is easy to show that ev-
ery sequential’ equilibrium is a Nash equilibrium in games
where each agent has an initial information set that precedes
all other information sets (in the < order defined above).
At such an information set, the agent can essentially do ex
ante planning. There is no such initial information set in the
match nature game, precluding such planning. If we want to
allow such planning in a game of imperfect recall, we must
model it with an initial information set for each agent.

Summarizing this discussion, we have the following re-
sult.

Theorem 4.6: In all finite games,

(a) every perfect equilibrium is a Nash equilibrium,
(b) in games where all players have an initial information set,

every sequential equilibrium is a Nash equilibrium.

However, there exist games where a sequential equilibrium
is not a Nash equilibrium.

It is also well known that in games of perfect recall, we
can replace the standard definition of sequential equilib-
rium by one where we consider only single-action devia-
tions (Hendon, Jacobsen, and Sloth 1996); this is known as
the one-step deviation principle. This no longer holds in
games of imperfect recall either. Again, consider the modifi-
cation of the match nature game with an initial node x_1. As
we observed above, in this case, starting at x_; by playing
down and then playing b is the only sequential’ equilibrium.
However, replacing b by b’ gives a strategy that satisfies the
one-step deviation property.

4.4 Sequential Equilibrium

As we argued above (see the discussion after Proposi-
tion 4.3), the sense in which our ex ante notions of perfect
equilibrium and sequential’ equilibrium capture optimality
is that there is (from the ex ante point of view) no informa-
tion set X at which an agent can do better without affecting
his utility at nodes that do not come after X . This suggests
that we might consider a stronger optimality requirement.
Instead of looking at just one information set, we can con-
sideraset X = {X,..., X, } of information sets for player
1, and require that 7 not be able to do better at all informa-
tion sets in X’ without affecting his utility at nodes that do
not come after X. In games of perfect recall, looking at
a set X of information sets rather than just a single infor-
mation set does not affect the notion of sequential’ equilib-
rium. But it does in the case of imperfect recall. Consider
the match nature game again. As we observed, the strat-
egy b’ is a sequential’ equilibrium in that game. However,
if instead of looking at the information sets {x;} and {z3}
individually, we consider both of them, and require that a



strategy do optimally conditional on reaching {z1, z2} (the
union of these information sets), then the only strategy that
does so is b; b’ does not meet this requirement.

To make this precise, we need to generalize the definition
of a belief system. Recall that a belief system y for a game I
associates with each information set X in I" a probability p x
on the histories in X. Such a belief system does not suffice
if we need to compute whether b/ does better conditional on
reaching a set X’ of information sets. A generalized belief
system p for a game I" associates with each (non-empty) set
X of information sets in I' a probability px on the histories
in the union of the information sets X; € X. As before, we
interpret 11y (2) as the probability of reaching x conditioned
on reaching X" and require that ) _ o pux(7) = 1, where

X denotes the upper frontier of histories in X, that is, all
the nodes z € UX such that there is no node 2’ € X with
2’ < x. We can now define expected utility in exactly the
same way as before.

As before, we say that a generalized belief system p is
compatible with a strategy b if, for all information sets X of
informations sets such that 7,(X) > 0, we have px(z) =
my(x | X). The analogue of Proposition 3.3 holds:

Proposition 4.7: If a set X of information sets is reached by
strategy profile b with positive probability, and p is compat-
ible with b, then

EU;(b| X)=EU;(b| X, p).
Proof: The proof is identical to the proof of Proposition 3.3.

All the other notions we introduced generalize in a
straightforward way. A generalized belief system p is con-
sistent with a strategy b if there exists a sequence of com-
pletely mixed strategy profiles b, b2, ... converging to b
such that gy () is lim, oo mpn (z | X). We say that X
precedes X', written X =< X', iff for all ' € X' there
exists some x € UX such that x precedes =’ on the game
tree; that is, we are defining < exactly as before, identifying
the set X with the union of the information sets it contains.
As before, we define [b, X', V'] to be the strategy according
to which 4 plays o’ at every information set X’ such that
X =X X', and otherwise plays b. Let (b, X',b") denote the
“strategy” of using b until X’ is reached and then switching
to b’. The analogue of Proposition 4.1 holds: (b, X',¥’) is a
strategy in game I iff (b, X', ") = [b, X, V'].

We now have the following generalization of Proposi-
tion 4.3.

Proposition 4.8: If b* is a perfect equilibrium in game T,
then there exists a generalized belief system p consistent
with b* such that, for all players i, all non-empty sets X of
information sets for player i, and all behavioral strategies b/
for player i at X, we have

EUi(b | X»U) 2 EUi(([bi’Xab/]vb—i) | Xa,u)-

Proof: The proof is identical to that of Proposition 4.3, ex-
cept that we use Proposition 4.7 instead of Proposition 3.3.

We can now formally define sequential equilibrium.
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Definition 4.9: A pair (b, 1) consisting of a strategy profile
b and a generalized belief system p is called a generalized
belief assessment. A generalized belief assessment (b, i) is
a sequential equilibrium in a game I if 4 is consistent with
b and for all players 4, all non-empty sets A" of information
sets for player 4, and all behavioral strategies b’ for player 7,
we have

EUz(b ‘ X,/L) > EUZ(([bZava/]vb—Z) | X?:u)'

It is immediate from Proposition 4.8 that every perfect
equilibrium is a sequential equilibrium. Thus, every game
has a sequential equilibrium.

Theorem 4.10: A sequential equilibrium exists in all finite
games.

It is immediate from the definitions that every sequential
equilibrium is a sequential” equilibrium. Furthermore, as the
definition of sequential equilibrium considers changes at all
sets of information sets, and in particular, the set consist-
ing of all information sets, it follows that every sequential
equilibrium is a Nash equilibrium. (Recall that this was not
the case for sequential’ equilibrium.) Finally, we note that if
(b, ) is a sequential’ equilibrium of a game of perfect recall
I" (so that it is a sequential equilibrium in the sense of Kreps
and Wilson (1982)), then there exists a generalized belief
system g’ such that (b, p') is a sequential equilibrium in I in
the sense that we have just defined: Consider the sequence
of strategy profiles b, b2, ... that define y; this sequence
also determines a generalized belief system p’. We claim
that (b, ') is a sequential equilibrium in our sense. If not,
there exists some player ¢, a set X’ of information sets for ¢,
and a behavioral strategy b}, such that conditional on reach-
ing X, i prefers using b’, given belief assessment y’. This
implies that there exists an information set X € X such that
1 also prefers switching to b’ at X, given belief assessment
w'. But p and p’ assign the same beliefs to the informa-
tion set X (since they are defined by the same sequence of
strategy profiles), which means that ¢ also prefers switching
to b’ at X, given belief assessment i, so (b, ;1) cannot be a
sequential’ equilibrium. We conclude that in games of per-
fect recall, every sequential’ equilibrium is also a sequential
equilibrium.

As we noted earlier, this is no longer true in games of
imperfect recall—in the game in match nature game, o’ is a
sequential’ equilibrium, but is not a sequential equilibrium.
The argument above fails because for games of imperfect
recall, (b;, X', b) (i.e., switching from b; to b’ at information
set X”) might not be a valid strategy even if (b;, X', b’) is; this
cannot happen in games of perfect recall.

Summarizing this discussion, we have the following re-
sult.

Theorem 4.11: In all finite games,

(a) every sequential equilibrium is a Nash equilibrium;
(b) in games of perfect recall, a strategy profile b is a sequen-

tial equilibrium iff it is a sequential’ equilibrium.

However, there exist games of imperfect recall where a
sequential’ equilibrium is not a sequential equilibrium.



5 Discussion

Selten (1975) says that “game theory is concerned with the
behavior of absolutely rational decision makers whose capa-
bilities of reasoning and remembering are unlimited, a game
... must have perfect recall.” We disagree. We believe that
game theory ought to be concerned with decision makers
that may not be absolutely rational and, more importantly
for the present paper, players that do not have unlimited ca-
pabilities of reasoning and remembering. This is particularly
critical when applying game-theoretic ideas in computer sci-
ence. Although there has been relatively little work on im-
perfect recall in game theory, imperfect recall arises in ar-
guably the standard setting in computer science. Computers
have bounded recall (as do people)! Defining appropriate
solution concepts in the presence of imperfect recall is no-
toriously tricky, as the work of PR shows. What seems op-
timal to an agent ex ante may no longer seem optimal once
the agent reaches a particular information set.

In this paper, we have defined ex ante notions of se-
quential equilibrium and perfect equilibrium. We have also
pointed out the subtleties in doing so. We did so in the stan-
dard game-theoretic model of extensive-form games with in-
formation sets. A case can be made that the problems that
arise in defining sequential equilibrium stem in part from the
use of the standard framework, which models agents’ infor-
mation using information sets (and then requires that agents
act the same way at all nodes in an information set). This
does not allow us to take into account, for exampe, whether
or not an agent knows his strategy. Halpern (1997) shows
that many of the problems pointed out by PR can be dealt
with using a more “fine-grained” model, the so-called runs-
and-systems framework (Fagin et al. 1995), where agents
have local states that characterize their information. The
local state can, for example, include the agents’ strategy
(and modifications to it). It would be interesting to explore
how the ideas of this paper play out in the runs-and-systems
framework. We have taken preliminary steps to doing this in
a computational setting (Halpern and Pass 2013), but clearly
more work needs to be done to understand what the “right”
solution concepts are in a computational setting.
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