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Abstract

Knowledge graph embedding refers to projecting entities and
relations in knowledge graph into continuous vector spaces.
Current state-of-the-art models are translation-based model,
which build embeddings by treating relation as translation
from head entity to tail entity. However, previous models is
too strict to model the complex and diverse entities and re-
lations(e.g. symmetric/transitive/one-to-many/many-to-many
relations). To address these issues, we propose a new prin-
ciple to allow flexible translation between entity and relation
vectors. We can design a novel score function to favor flexible
translation for each translation-based models without increas-
ing model complexity. To evaluate the proposed principle, we
incorporate it into previous method and conduct triple clas-
sification on benchmark datasets. Experimental results show
that the principle can remarkably improve the performance
compared with several state-of-the-art baselines.

Introduction

Knowledge graphs such as Wordnet and Freebase, which are
representations of multi-relational data, have become very
important resources to support many AI related tasks, such
as natural language understanding, question answering, web
search, etc. A knowledge graph is usually represented by a
directed graph, in which nodes refer to entities and edges
refer to relations between entities, or simply by a set of
triples head entity, relation, tail entity ((h, r, t) for short).
Although there have been substantial achievements in build-
ing large-scale knowledge graph, the general paradigm to
support computing is not clear. Indeed, traditional knowl-
edge graphs are symbolic and logical frameworks which are
not flexible enough to be fruitfully exported, especially to
statistical learning approaches which require the knowledge
to be computable in numerical forms.

Recently, knowledge graph embedding, which projects
entities or/and relations between entities into a continuous
vector space, has been a new proposal to offer the power-
ful capability of computing on knowledge graphs. In this
paradigm, the embedding representation of a single en-
tity/relation encodes the global information of the entire
knowledge graph, since the representation is obtained by
minimizing a global loss function involving all entities and
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(a) TransE (b) Flexible Translation

Figure 1: Illustration of TransE and our proposed Flexi-
ble Translation. There are three triples, which share the
same head entity (“Michael Jackson”) and the same rela-
tion (“publish song”), while having three different tail en-
tities (“Beat it”, “Billie Jean”, and “Thriller”). (a) TransE
can hardly distinguish different tail entities as they all ap-
proximated to the sum of head vector and relation vector.
(b) Instead of strictly constraining h+r=t, our principle is to
enforce that h+r has the same direction with t.

relations. Furthermore, by concerning knowledge computa-
tion, the embedding representations are beneficial to a va-
riety of applications such as question answering and web
search. Taking knowledge graph completion as an example,
we can simply judge the correctness of a triple (h, r, t) by
checking the compatibility score of the embedding vectors
of h, r and t.

A variety of approaches have been explored for knowl-
edge graph embedding, such as general linear based mod-
els (Bordes et al. 2011), bilinear based models (Jenatton et
al. 2012; Sutskever, Tenenbaum, and Salakhutdinov 2009),
neural network based models (Socher et al. 2013), and trans-
lation based models (Bordes et al. 2013). However, there
are limitations of the existing methods. For example, general
linear based models can hardly capture the correlations be-
tween entities and relations. Bilinear based models can only
model linear interactions and is not able to approach more
complex scoring functions. In addition, the complexity of
neural network based models is too high to handle large-
scaled knowledge bases.

Another line of previous models are translation
based models, including TransE (Bordes et al. 2013),
TransH (Wang et al. 2014), TransR (Lin et al. 2015) and
PTransE (Lin, Liu, and Sun 2015), which are efficient
and achieve the state-of-art performance. All these models
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adopt the same principle, h + r ≈ t, if (h, r, t) is a fact
of knowledge base. More specifically, current translation
based methods use the same form of distance measure
fr(h, t) = ‖ hr + r− tr ‖l1/2 (Manhattan/Euclidean
distance) to quantify the compatibility score of a triple,
where hr and tr are the embedding vectors of head and tail
entities which are projected into the relation-specific space.

However, the principle h + r ≈ t is too strict to
model the complex and diverse objects including enti-
ties and relations(e.g. symmetric/transitive/one-many/many-
to-one/many-many relations)in knowledge graph. Taking
a one-to-many relation publish song as the example,
we have triples such as (Michael Jackson, publish song,
Beat It), (Michael Jackson, publish song, Billie Jean) and
(Michael Jackson, publish song, Thriller). As shown in Fig-
ure 1(a), considering the ideal embedding where h+ r = t,
the entities Beat It, Billie Jean and Thriller will get the same
embedding vectors.

To address the above issues, we propose a new princi-
ple to allow Flexible Translation(FT) to model complex
and diverse entities and relations. The central idea of FT
is well-motivated (see Fig. 1): instead of strictly enforcing
h + r = t, we only constrain that the direction of h+ r
(or t− r) is the same as that of t (or h), but allow flexi-
ble magnitude of resulting vectors. Therefore, unlike previ-
ous method assumes h + r ≈ t if (h, r, t) holds, FT takes
h+r ≈ αt(or t−r ≈ αh), where the flexibility is reflected
in α. Thus we design a new function to score the compat-
ibility of a triple by the inner product between the sum of
head entity vector and relation vector h + r and tail vector
t instead of using the Manhattan/Euclidean distance which
are commonly used in previous models. This new principle
can better capture the complexity and diversity of knowledge
graphs. As previously presented in Figure 1(b), the ideal em-
bedding where h+ r ≈ αt is that the embedding vectors of
three entities Beat It, Billie Jean and Thriller are with the
same direction but are of different vector magnitudes.

More importantly, the proposed principle is quite general
and efficient as it can be adopted to translation-based mod-
els, such as TransE, TransH, and TransR. Experiments show
that when applying the principle to these models, remarkable
improvements can be obtained over the original models, and
notably, there is no increase in model complexity.

Related Work

There are a variety of models for knowledge graph em-
bedding. We survey translation-based models which are the
mainstream models for knowledge graph embedding, and
other related models.

Translation-based models build embeddings by treating
relation as translation from head entity to tail entity. Though
these models differ in score functions, they all share quite
similar principle h+r ≈ t. TransE (Bordes et al. 2013) rep-
resents relationships by translation vectors in an embedding
space. TransH (Wang et al. 2014) projects entity embeddings
h and t to the hyperplane and applies the same assumption
as in TransE. TransR (Lin et al. 2015) addresses the issue
that some entities are similar in the entity space but com-

(a) (b)

Figure 2: The different embedding vector range of tail
entity(t) and head entity(h). Given h and r, the range of
t is a line; given t and r, the range of h is a plane.

parably different in other specific aspects. PTransE consid-
ers the relation path while training embeddings. SSE (Guo
et al. 2015) incorporates geometrically based regularization
terms, constructed by using additional semantic categories
of entities.

There are many other models proposed for knowledge
graph embedding. We also use Structured Embedding (Bor-
des et al. 2011), Latent Factor Model (Jenatton et al. 2012;
Sutskever, Tenenbaum, and Salakhutdinov 2009), Neural
Tensor Network (Socher et al. 2013), Semantic Matching
Energy (Bordes et al. 2014) and Single Layer Model (Socher
et al. 2013) as our baselines in the experiments.

Method

To address the issues existing in previous translation based
methods as mentioned previously, we propose a general
principle named Flexible Translation(FT). We can better
model the complex and diverse entities/relations with the
idea of flexible translation.

Let’s introduce some notations. S denotes a set of golden
triples, while S′ denotes a set of corrupted triples. A triple
(h, r, t) consists of two entities h, t ∈ E (the set of enti-
ties) and relation r ∈ R (the set of relations). We use the
bold letters h, r and t to denote the corresponding embed-
ding vectors.

Flexible Translation

Let’s start with the limitations of previous translation based
models which adopt an over-strict principle: h+r ≈ t.More
specifically, if with the ideal embedding using the func-
tion h + r = t when (h, r, t) holds, we can obtain: 1)
if (h1, r, t1), (t1, r, t2) and (h1, r, t2)are both correct, r is
a transitive relation. In addition, we obtain two conflicting
equations: h1 + r = t2,h1 + 2r = t2; 2) if a set of triples
(h, r, ti), ∀i ∈ 0, · · · , n hold, r is a one-to-many relation
and t0 = · · · = tn; 3) if (h, r1, t), (h, r2, t) and (h, r3, t)
hold, we get r1 = r2 = r3.

To alleviate the problem of previous translation based
methods and maintain the high efficiency, we apply h+ r ≈
αt, α > 0 when (h, r, t) holds. That means we only need
to maintain the directions of vectors h + r and t, but ig-
nore their magnitudes. Therefore, 1) if r is a transitive re-
lation, we get h1 + r = α1t1, t1 + r = α2t2 and
h1 + r = α1t2; 2) if r is a one-to-many relation, we
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get t0 = h+r
α0

, · · · , tn = h+r
αn

; 3) if (h, r1, t), (h, r2, t)
and (h, r3, t) hold, r1 = α1t − h, r2 = α2t − h and
r3 = α3t− h.

The score function is then defined as follows:

fr(h, t) = (h+ r)�t (1)

However, with the score function, the constraints on head
entity(h) and tail entity(t) are unbalanced. More specifi-
cally, under the constraints, the range of h is a line, and the
range of t is a plane. Considering the perfect no-error em-
bedding, we discuss the constraints on tail entity and head
entity separately. As shown in Figure 2(a), when the embed-
ding vectors h and r hold, the range of the no-error embed-
ding vector t is a vector with the right arrow on the dotted
line. However, as shown in Figure 2(b), when the embedding
vectors r and t are known, the range of the perfect embed-
ding vector h is a vector with the starting point on the lower
dotted line and the ending point on the upper dotted line.

Since head entity and tail entity need to have the same
effect during training, the constraints on them should be
balanced. To this end, we design a Flexible Translation to
address the unbalanced constraint problem. We modify the
score function as follows:

fr(h, t) = (h+ r)�t+ h�(t− r) (2)

In FT, the score is expected to be higher for a golden triple
while lower for a corrupted one.

Connection to other Models

To show the generality of our principle, we show here how
other translation based models can be improved using the
idea of Flexible Translation. Unlike previous models which
apply hr + r ≈ tr if (h, r, t) is a golden triple, we adopts
hr + r ≈ αtr. Accordingly, we define the score function
fr(h, t) = (hr + r)�tr + h�

r (tr − r), where hr and tr
are the embedding vectors of head and tail entities which
projected into the relation-specific space.

In TransE, the entity and relation embedding vectors are
in the same space, say hr = h, tr = t. The improved model
of TransE is called TransE-FT. As the improved model fol-
lows the principle of Flexible Translation, it can fix the
flaws of TransE when dealing with one-to-many/many-to-
one/many-to-many relations.

In TransH, entity embedding vectors are projected into
a relation-specific hyperplane wr, say hr = h −
w�

r hwr, tr = t − w�
r twr. We call the enhanced model

as TransH-FT.
In TransR models, hr = hMr, tr = tMr, where entities

are projected from the entity space to the relation space by
Mr. The improved model is called TransR-FT.

Training Objective

All models are trained with contrastive max-margin ob-
jective functions. The objective is to ensure that a triple
(h, r, t) ∈ S in the golden set should have a higher score
than a triple (h′, r, t′) ∈ S′ in the corrupted triple set, as

Table 1: The statistics of the corpora.
Dataset #R. #Ent. #Train #Valid #Test
WN18 18 40,943 141,442 5,000 5,000
FB15K 1,345 14,951 483,142 50,000 59,071
WN11 11 38,696 112,581 2,609 10,544
FB13 13 75,043 316,232 5,908 23,733

Table 2: Comparison of accuracy on triple classification(%)
DataSets WN11 FB13 FB15K

SE (Bordes et al. 2011) 53.0 75.2 -
SME (Bordes et al. 2014) 70.0 63.7 -
SLM (Socher et al. 2013) 69.9 85.3 -

LFM (Jenatton et al. 2012) 73.8 84.3 -
NTN (Socher et al. 2013) 70.4 87.1 68.5

TransE (Bordes et al. 2013) 75.9 70.9 79.6
TransE-FT(ours) 86.4 82.1 90.5

TransH (Wang et al. 2014) 77.7 76.5 79.0
TransH-FT(ours) 78.3 80.7 82.1

TransR (Lin et al. 2015) 85.5 74.7 81.7
TransR-FT(ours) 86.6 82.9 88.9

follows:

L =
∑

(h,r,t)∈S

∑

(h′,r,t′)∈S′
max(0, γ − fr(h, t) + fr(h

′, t′))

(3)
where γ > 0 is a margin hyperparameter. S is the training
set of golden triples. S′ is the set of corrupted triples. The
corrupted triples is generated from the training triples with
either the head or tail entity replaced by a random entity
(but not both at the same time). We adopt the mini-batched
stochastic gradient descent(SGD) to optimize the objective
function.

Complexity Analysis

To analyze the efficiency of our model, we compare the
number of parameters between different models. TransE-
FT, TransH-FT and TransR-FT maintain the same number
of parameters as their original models TransE, TransH and
TransR, respectively. Therefore, the proposed principle is
able to improve the previous translation based models with-
out sacrificing the efficiency.

Experiments

To justify our proposed principle, we apply the general
principle to several models including TransE, TransH ,
and TransR, and conduct extensive experiments to compare
the enhanced variant models (TransE-FT, TransH-FT and
TransR- FT) with the original ones. First, we evaluate our
models on triple classification (Socher et al. 2013)

Three benchmark datasets are tested in the experiments:
WN18 (Bordes et al. 2013) and WN11 (Socher et al. 2013)
which is extracted from Wordnet (Miller 1995); and two
dense subgraphs of Freebase (Bollacker 2008), FB15K (Bor-
des et al. 2013) and FB13 (Socher et al. 2013). Table 1
shows the statistics of these data sets.
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Triple Classification

Similar to the experiment in (Bordes et al. 2013; Wang et al.
2014; Lin et al. 2015), we evaluate our model on triple clas-
sification. Triple classification is a binary classification task
which predict whether a given triple (h, r, t) is correct or
not. This task is applied for answering question such as Does
Michael Jackson publish the song Beat it?.We use three data
sets in this task: WN11 and FB13 released in NTN (Socher
et al. 2013); FB15K used in TransR (Lin et al. 2015).

Evaluation protocol. Following the protocol in
NTN (Socher et al. 2013), we set a relation-specific
threshold Tr for prediction and then, for a triple (h, r, t), if
the similarity score obtained by fr is above Tr, the triple
(h, r, t) is predicted as positive, otherwise negative. The
relation-specific threshold Tr is determined by maximizing
the classification accuracy on a validation set.

Implementation. We compare our models with the base-
line methods reported in (Lin et al. 2015) for WN11, FB13
and FB15K.

For training TransE-FT, the optimal configuration are:
λ = 0.01, γ = 2.25, k = 100, B = 960 on WN11; λ =
0.005, γ = 2, k = 100, B = 960 on FB13; λ = 0.002, γ =
0.5, k = 100, B = 960 on FB15K. To training TransH-
FT, the optimal configuration are: λ = 0.05, γ = 1.5, k =
100, B = 960 on WN11; λ = 0.005, γ = 1.5, k = 50, B =
960 on FB13; λ = 0.01, γ = 0.5, k = 100, B = 960 on
FB15K. For experiments with TransR-FT, the best config-
urations are: λ = 0.0001, γ = 2.5, k = 50, B = 960 on
WN11; λ = 0.001, γ = 2.5, k = 50, B = 960 on FB13;
λ = 0.001, γ = 0.1, d = 50, B = 120 on FB15K. The
number of training epochs is limited to 1, 000 for TransE-
FT and 500 for TransH-FT and TransR-FT.

Experiment Result. Evaluation results are reported in
Tabel 2. It demonstrates that our TransE-FT model outper-
forms all the baseline models significantly including TransE,
TransH, and even TransR on WN11 and FB15K. This re-
sult shows that, with the help of our Flexible Translation,
TransE can get better result than the its modified models
including TransH and TransR with the same model com-
plexity. On FB13, TransE-FT beats all baseline models ex-
cept the NTN model. As described in (Wang et al. 2014;
Lin et al. 2015), FB13 is much denser than WN11 and
FB15K where strong correlations exist between entities, and
NTN can achieve better results by learning complicated cor-
relations using tensor transformation from dense graph of
FB13. It also shows that the enhancement models including
TransE-FT, TransH-FT and TransR-FT consistently outper-
form their original models on all datasets. This observation
demonstrates the superiority and generality of our Flexible
Translation idea.

Conclusion

In this paper, we propose a new principle Flexible Transla-
tion(FT) for knowledge graph embedding. The central idea
of FT is to ensure the direction of vectors during transla-
tion and to allow flexible magnitude of targeting vectors.
The proposed principle can better capture the complex and
diverse relations and entities (e.g. symmetric/transitive/one-

many/many-to-one/many-many relations) in knowledge
graphs. In addition, the principle of flexible translation is
quite general and can be adopted to other embedding mod-
els without increasing model complexity. We conduct ex-
tensive experiment on benchmark datasets for the task triple
classification, and results show that following our principle,
TransE, TransH, and TransR can be substantially improved.
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