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Abstract

Previous work has proposed consistent query answering as
a way to resolve inconsistencies in ontologies. In these ap-
proaches to consistent query answering, however, only incon-
sistencies due to errors in the underlying database are consid-
ered. In this paper, we additionally assume that ontological
axioms may be erroneous, and that some database atoms and
ontological axioms may not be removed to resolve inconsis-
tencies. This problem is especially well-suited in debugging
mappings between distributed ontologies. We define two dif-
ferent semantics, one where ontological axioms as a whole
are ignored to resolve an inconsistency, and one where only
some of their instances are ignored. We then give a precise
picture of the complexity of consistent query answering under
these two semantics when ontological axioms are encoded as
different classes of existential rules. In the course of this, we
also close two open complexity problems in standard consis-
tent query answering under existential rules.

Introduction

An ontology is an explicit specification of a conceptualiza-
tion of an area of interest. One of the main applications of
ontologies is in ontology-based data access (OBDA) (Poggi
et al. 2008), where they are used to enrich the extensional
data with intensional knowledge. In this setting, descrip-
tion logics (DLs) and rule-based formalisms such as existen-
tial rules are popular ontology languages, while conjunctive
queries (CQs) form the central querying tool. In real-life ap-
plications involving large amounts of data, it is possible that
the data are inconsistent with the ontology. This may be due
to automated procedures, such as the automatic generation
of mappings in data integration. As standard ontology lan-
guages adhere to the classical first-order semantics, incon-
sistencies are logical contradictions, which imply everything
(“ex falso quodlibet”) and make the whole ontology useless
for reasoning. This shows the urgent need for developing
inconsistency-tolerant semantics for ontological reasoning.

There has been a recent and increasing focus on the de-
velopment of such semantics for query answering purposes.
Consistent query answering, first developed for relational
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databases (Arenas, Bertossi, and Chomicki 1999) and then
generalized as the AR semantics for several DLs (Lembo et
al. 2010), is the most widely accepted semantics for query-
ing inconsistent ontologies. The AR semantics is based on
the idea that an answer is considered to be valid, if it can
be inferred from each of the repairs of the extensional data
set D, i.e., the ⊆-maximal consistent subsets of D. Obtain-
ing the set of consistent answers under the AR semantics
is known to be a hard problem, even for very simple lan-
guages (Lembo et al. 2010). For this reason, several other
semantics have been recently developed with the aim of
approximating the set of consistent answers (Lembo et al.
2010; Bienvenu 2012; Lukasiewicz, Martinez, and Simari
2012a; Bienvenu and Rosati 2013).

The complexity of query answering under the AR seman-
tics when the ontology is described using one of the central
DLs is rather well understood. The data and combined com-
plexity were studied by Rosati (2011) for a wide spectrum
of DLs, while Bienvenu (2012) identified cases for simple
ontologies (within the DL-Lite family) for which tractable
data complexity results can be obtained. In (Lukasiewicz,
Martinez, and Simari 2012a; 2013) and (Lukasiewicz et
al. 2015), the data and different types of combined com-
plexity, respectively, of the AR semantics have been stud-
ied for ontologies described via existential rules, i.e., for-
mulas ∀Xϕ(X) → ∃Y p(X,Y), and negative constraints
∀Xϕ(X) → ⊥, where ⊥ denotes the truth constant false.

This paper continues this line of research. We develop two
more sophisticated inconsistency-tolerant semantics for on-
tological query answering and analyze their complexity. The
main contributions of this paper are briefly as follows.

• We introduce two new inconsistency-tolerant semantics
for answering Boolean CQs (BCQs) under existential
rules, called the GR and the LGR semantics, which gen-
eralize standard consistent BCQ answering. In these se-
mantics, in addition to database atoms, also rules and rule
instances, respectively, may be removed to resolve in-
consistencies, and some atoms and rules are assumed to
be non-removable. These semantics are especially well-
suited in debugging mappings between distributed ontolo-
gies or ontology-based databases in OBDA (to resolve er-
rors in—often automatically generated—mapping rules).

• We give a precise picture of the complexity of consistent
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BCQ answering under the GR and the LGR semantics for
different classes of existential rules and different types
of complexities. The complexity of consistent BCQ an-
swering under the GR semantics (Table 2) coincides with
the one of standard consistent BCQ answering, while the
complexity of consistent BCQ answering under the LGR
semantics (Table 3) moves slightly higher in several cases.

• In the course of the above analysis, we also close two open
complexity problems in standard consistent query an-
swering under existential rules (Lukasiewicz et al. 2015):
We show that standard consistent BCQ answering un-
der acyclic existential rules is PNEXP-complete both in the
combined and ba-combined complexity (see Table 1).

Preliminaries

We now recall some basics on existential rules from the con-
text of Datalog± (Calı̀, Gottlob, and Lukasiewicz 2012).

General. We assume a set C of constants, a set N of la-
beled nulls, and a set V of regular variables. A term t is a
constant, null, or variable. An atom has the form p(t1, . . . ,
tn), where p is an n-ary predicate, and t1, . . . , tn are terms.
Conjunctions of atoms are often identified with the sets of
their atoms. An instance I is a (possibly infinite) set of atoms
p(t), where t is a tuple of constants and nulls. A database
D is a finite instance that contains only constants. A homo-
morphism is a substitution h : C ∪ N ∪ V → C ∪ N ∪ V
that is the identity on C. We assume the reader is familiar
with conjunctive queries (CQs). The answer to a CQ q over
an instance I is denoted q(I). A Boolean CQ (BCQ) q has a
positive answer over I , denoted I |= q, if q(I) �= ∅.

Dependencies. A tuple-generating dependency (TGD) σ
is a first-order formula ∀Xϕ(X) → ∃Y p(X,Y), where
X ∪Y ⊆ V, ϕ(X) is a conjunction of atoms, and p(X,Y)
is an atom; ϕ(X) is the body of σ, denoted body(σ), while
p(X,Y) is the head of σ, denoted head(σ). For clarity, we
consider single-atom-head TGDs; however, our results can
be extended to TGDs with a conjunction of atoms in the
head. An instance I satisfies σ, written I |= σ, if the follow-
ing holds: whenever there exists a homomorphism h such
that h(ϕ(X)) ⊆ I , then there exists h′ ⊇ h|X, where h|X is
the restriction of h on X, such that h′(p(X,Y)) ∈ I . A neg-
ative constraint (NC) ν is a first-order formula of the form
∀Xϕ(X) → ⊥, where X ⊆ V, ϕ(X) is a conjunction of
atoms and is called the body of ν, denoted body(ν), and ⊥
denotes the truth constant false. An instance I satisfies ν,
written I |= ν, if there is no homomorphism h such that
h(ϕ(X)) ⊆ I . Given a set Σ of TGDs and NCs, I satisfies
Σ, written I |= Σ, if I satisfies each TGD and NC of Σ. For
brevity, we omit the universal quantifiers in front of TGDs
and NCs, and use the comma (instead of ∧) for conjoining
body atoms. Given a class of TGDs C, we denote by C⊥
the formalism obtained by combining C with arbitrary NCs.
Finite sets of TGDs and NCs are also called programs, and
TGDs are also called existential rules.

Conjunctive Query Answering. Given a database D and
a set Σ of TGDs and NCs, the answers we consider are
those that are true in all models of D and Σ. Formally, the
models of D and Σ, denoted mods(D,Σ), is the set of in-

stances {I | I ⊇ D and I |= Σ}. The answer to a CQ q
w.r.t. D and Σ is defined as the set of tuples ans(q,D,Σ) =⋂

I∈mods(D,Σ){t | t ∈ q(I)}. The answer to a BCQ q is pos-
itive, denoted D ∪ Σ |= q, if ans(q,D,Σ) �= ∅. The prob-
lem of CQ answering is defined as follows: given a database
D, a set Σ of TGDs and NCs, a CQ q, and a tuple of con-
stants t, decide whether t ∈ ans(q,D,Σ). It is well-known
that CQ answering can be reduced in LOGSPACE to BCQ
answering, and we thus focus on BCQs. Following Vardi’s
taxonomy (1982), the combined complexity of BCQ answer-
ing is calculated by considering all the components, i.e., the
database, the set of dependencies, and the query, as part of
the input. The bounded-arity combined complexity (or sim-
ply ba-combined complexity) is calculated by assuming that
the arity of the underlying schema is bounded by an integer
constant. In the context of description logics (DLs), the com-
bined complexity in fact refers to the ba-combined complex-
ity, since, by definition, the arity of the underlying schema
is at most two. The fixed-program combined complexity (or
simply fp-combined complexity) is calculated by considering
the set of TGDs and NCs as fixed, while the data complexity
additionally assumes that the query is also fixed.

Complexity Classes. We now briefly recall the complex-
ity classes that we encounter in our complexity results be-
low. The complexity classes PSPACE (resp., EXP, 2EXP) con-
tain all decision problems that can be solved in polynomial
space (resp., exponential, double exponential time) on a de-
terministic Turing machine, while the complexity classes
NP, NEXP, and N2EXP contain all decision problems that
can be solved in polynomial, exponential, and double expo-
nential time on a nondeterministic Turing machine, respec-
tively, and coNP, coNEXP, and coN2EXP are their comple-
mentary classes, where “Yes” and “No” instances are in-
terchanged. The class Σp

2 is the class of problems that can
be solved in nondeterministic polynomial time using an NP-
oracle, and Πp

2 is the complement of Σp
2. The above com-

plexity classes and their inclusion relationships (which are
all currently believed to be strict) are shown below:

NP, coNP ⊆Σp
2,Π

p
2 ⊆ PSPACE ⊆ EXP ⊆ NEXP, coNEXP
⊆ PNEXP ⊆ 2EXP ⊆ N2EXP, coN2EXP .

Generalized Inconsistency-Tolerance

In classical BCQ answering, given a database D and a set Σ
of TGDs and NCs, if mods(D,Σ) = ∅, then every query is
entailed, since everything is inferred from a contradiction.
Example 1. Consider the database D defined as

{Prof (p),Postdoc(p),Researcher(p),
leaderOf (p, g), leaderOf (p′, g′)},

asserting that p is a professor, postdoc, and a researcher, and
that moreover he is the leader of the research group g, and
that p′ is the leader of g′. Assume a set Σ of TGDs and NCs
consisting of

Prof (X) → Researcher(X)
Postdoc(X) → Researcher(X)

Prof (X),Postdoc(X) → ⊥
leaderOf (X,Y ) → Prof (X)
leaderOf (X,Y ) → Group(Y ),
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expressing that professors and postdocs are researchers, pro-
fessors and postdocs form disjoint sets, and leaderOf has
Prof as domain and Group as range. It is easy to see
that mods(D,Σ)=∅, since p violates the disjointness con-
straint; therefore, for every CQ q, D ∪ Σ |= q.

Clearly, the answers that we obtain in such cases are not
very meaningful. For this reason, several inconsistency-tol-
erant semantics have been proposed in the literature. One of
the central and well-accepted one is the ABox repair (AR)
semantics (Lembo et al. 2010), which is based on the key
notion of a repair, which is a ⊆-maximal consistent subset
of the given database D. Hence, it is assumed that errors
leading to inconsistencies are only contained in the data of
the database, but not the set Σ of TGDs and NCs. Answers
to CQs are then defined relative to all repairs of D and Σ.

GR Semantics. In the following, instead, we define gen-
eralized inconsistency semantics, where we also allow for
errors in Σ, and for some elements of D and Σ to be without
errors. In detail, we define the notion of generalized repair
(GR) semantics, which is based on allowing also (i) to min-
imally remove TGDs from Σ, and (ii) to partition both D
and Σ into a hard and a soft part of non-removable and re-
movable elements, respectively. The so partitioned database
(resp., program) is called flexible database (resp., program).

Definition 1. A flexible database is a pair (Dh, Ds) of two
databases Dh and Ds, denoted hard and soft database, re-
spectively, while a flexible program is a pair (Σh,Σs) con-
sisting of a finite set Σh of TGDs and NCs and a finite set
Σs of TGDs, denoted hard and soft program, respectively.

Example 2. Consider again D and Σ of Example 1. A flexi-
ble database (Dh, Ds) and program (Σh,Σs) is then defined
by Ds = {Prof (p), leaderOf (p, g)}, Σs = {leaderOf (X,
Y ) → Prof (X)}, Dh = D \Ds, and Σh = Σ \ Σs.

We define the notion of generalized repair (GR) for flexi-
ble databases under flexible programs as follows.

Definition 2. A generalized repair of a flexible database
(Dh, Ds) and a flexible program (Σh,Σs) is a pair
((Dh, D

′
s), (Σh,Σ

′
s)), where D′

s ⊆Ds and Σ′
s ⊆Σs such

that (i) mods(Dh∪D′
s∪Σh∪Σ′

s) �=∅, and (ii) there is no
e ∈ (Ds ∪ Σs) \ (D′

s ∪ Σ′
s) for which mods(Dh ∪ D′

s ∪
Σh ∪ Σ′

s ∪ {e}) �=∅. The set of all such repairs ((Dh, D
′
s),

(Σh,Σ
′
s)) is denoted drep((Dh, Ds), (Σh, Σs)).

Example 3. Consider again the flexible database (Dh, Ds)
and program (Σh,Σs) of Example 2. There are two repairs
((Dh, D

′
s), (Σh,Σ

′
s)) and ((Dh, D

′′
s ), (Σh,Σ

′′
s )):

D′
s = {leaderOf (p, g)} D′′

s = ∅

Σ′
s = ∅ Σ′′

s = Σs .

In both, the atom Prof (p) is removed; in the first one, also
the rule leaderOf (X,Y ) → Prof (X) is removed, while in
the second one, the atom leaderOf (p, g) is removed.

Generalizing standard consistent query answering, also
called the AR semantics (Lembo et al. 2010), the GR se-
mantics is based on the idea that a BCQ should hold, if it
can be inferred from every generalized repair.

Definition 3. A BCQ q is entailed by a flexible database
(Dh, Ds) and program (Σh,Σs) under the generalized re-
pair (GR) semantics, denoted (Dh, Ds)∪ (Σh, Σs) |=GR q,
if Dh∪D′

s∪Σh∪Σ′
s |= q, for every ((Dh, D

′
s), (Σh,Σ

′
s)) ∈

drep((Dh, Ds), (Σh,Σs)). We refer to (B)CQ answering
under the GR semantics as GR-(B)CQ answering.
Example 4. Consider again the flexible database (Dh, Ds)
and program (Σh,Σs) of the running example, and the CQs

q1 = ∃X Researcher(X)
q2 = ∃X∃Y Researcher(X) ∧ Prof (X) ∧ leaderOf (X,Y ).

The former asks whether a researcher exists, while the latter
asks whether a researcher exists who is also a professor and
a group leader. It is then easy to verify that q1 holds in both
repairs, while q2 holds only in the first repair. Thus, q1 is
entailed under the GR semantics, while q2 is not.

LGR Semantics. We next introduce the notion of lo-
cal generalized repairs (LGRs) as a second, more elaborate
consistency-tolerant semantics, which is obtained by mini-
mally removing database facts and only rule instances (but
not whole rules). Here, for a set of TGDs Σ, we denote by
ground(Σ) the set of all ground instances of elements of Σ
relative to C ∪ N, i.e., all rules h(ϕ(X) → p(X,Y)) for
a TGD ∀Xϕ(X) → ∃Y p(X,Y) in Σ and a homomor-
phism h to C ∪ N that maps each Y ∈Y to a distinct null
h(Y ) such that h−1(Y )= {Y }. We say that two instances of
a TGD σ are isomorphic, if they have the same body.
Definition 4. A local generalized repair of a flexible data-
base (Dh, Ds) and program (Σh,Σs) is a pair ((Dh, D

′
s),

(Σh,Σ
′
s)), where D′

s ⊆Ds and Σ′
s ⊆ ground(Σs) such that

(i) mods(Dh∪D′
s∪Σh∪Σ′

s) �= ∅, (ii) Σ′
s is admissible, i.e.,

no two rule instances r1 ∈ Σ′
s and r2 ∈ ground(Σs) \ Σ′

s
of the same rule are isomorphic, and (iii) there is no strict
superset D′′

s ∪Σ′′
s ⊆ Ds ∪ ground(Σs) of D′

s ∪Σ′
s with (i)

and (ii). We denote by ldrep((Dh, Ds), (Σh,Σs)) the set of
all such repairs ((Dh, D

′
s), (Σs,Σ

′
s)).

Example 5. Consider again the flexible database (Dh, Ds)
and program (Σh,Σs) of Example 2. Under the LGR se-
mantics, the first repair of Example 3 is refined to the repair
((Dh, D

′
s), (Σh,Σ

′
s)) defined by D′

s = {leaderOf (p, g)}
and Σ′

s = ground(Σs) \ {leaderOf (p, g) → Prof (p)}.
We finally define BCQ answering under the LGR seman-

tics, i.e., relative to all local generalized repairs.
Definition 5. A BCQ q is entailed by a flexible database
(Dh, Ds) and program (Σh,Σs) under the local gener-
alized repair (LGR) semantics, denoted (Dh, Ds) ∪ (Σh,
Σs) |=LGR q, if Dh ∪ D′

s ∪ Σh ∪ Σ′
s |= q, for every

((Dh, D
′
s), (Σs,Σ

′
s))∈ ldrep((Dh, Ds), (Σh,Σs)). We re-

fer to (B)CQ answering under the LGR semantics as LGR-
(B)CQ answering.
Example 6. It is easy to verify that the query q2 of Exam-
ple 4 holds in both repairs of Example 5, as desired, as only
the rule instance related to the inconsistency is removed.

Applications. The new GR and LGR semantics for BCQ
answering under existential rules are especially well-suited
for debugging mappings between distributed ontologies
(Meilicke, Stuckenschmidt, and Tamilin 2007).

361



Distributed ontologies (Borgida and Serafini 2003) are a
framework for formalizing multiple ontologies that are pair-
wise linked by directed semantic mappings. In this context,
a distributed ontology is a pair of ontologies T=(Ti)i∈I and
associated mappings M=(Mi,j)i,j∈I,i�=j , where I is an in-
dex set. Every Ti is an ontology, and thus contains defini-
tions of concepts and properties, and axioms relating them.
A concept C from Ti is also written as i : C. Every mapping
Mi,j is a set of bridge rules that establishes semantic rela-
tions from Ti to Tj , which allow a partial translation of Ti’s
language into the language of Tj . For example, the (into)
bridge rule i : C � j : D states that concept i : C is, from
Tj’s point of view, less general than or as general as concept
j : D. The analogous (onto) bridge rule i : C 
 j : D states
that i : C is more general than or as general as j : D.

Encoded as existential rules, each ontology is a program
over pairwise disjoint schemas Si, while every mapping
Mi,j is a finite set of existential rules connecting atoms
over Si to atoms over Sj . Importantly, every ontology for
itself is error-free, whereas the mappings between the on-
tologies may be erroneous (e.g., as they are automatically
generated). Similarly, some (e.g., manually checked) parts
of the underlying databases may be without errors, while
other (e.g., automatically generated) parts may also contain
errors. BCQ answering in this context can now exactly be
formulated via the GR (resp., LGR) semantics. So, inconsis-
tent distributed ontologies are repaired by removing a min-
imal set of database atoms and existential rules (resp., in-
stances of existential rules) from the mappings.

Another important application is debugging ontologies
that have been created in part manually (or checked man-
ually, ensuring error-freeness) and in part enriched by au-
tomatically learned additional parts. The manually created
part is modeled as the hard database and program, while the
additionally learned part is the soft database and program.

Overview of Complexity Results

In the next section, we analyze the computational com-
plexity of GR-BCQ and LGR-BCQ answering under the
main decidable classes of TGDs, enriched with arbitra-
ry NCs. We also close an open problem in standard consis-
tent BCQ answering. We first briefly recall those classes and
then give a brief overview of our complexity results. Here,
we assume some elementary background in complexity the-
ory; see (Johnson 1990; Papadimitriou 1994).

Decidability Paradigms. The main (syntactic) conditions
on TGDs that guarantee the decidability of BCQ answer-
ing are guardedness (Calı̀, Gottlob, and Kifer 2013), sticki-
ness (Calı̀, Gottlob, and Pieris 2012), and acyclicity. Interest-
ingly, each such conditions has its “weak” counterpart: weak
guardedness (Calı̀, Gottlob, and Kifer 2013), weak stick-
iness (Calı̀, Gottlob, and Pieris 2012), and weak acyclic-
ity (Fagin et al. 2005), respectively.

A TGD σ is guarded, if there exists an atom a ∈ body(σ)
that contains (or “guards”) all the body variables of σ. The
class of guarded TGDs, denoted G, is defined as the fam-
ily of all possible sets of guarded TGDs. A key subclass of
guarded TGDs are the so-called linear TGDs with just one

body atom (which is automatically a guard), and the corre-
sponding class is denoted L. Weakly guarded TGDs extend
guarded TGDs by requiring only “harmful” body variables
to appear in the guard, and the associated class is denoted
WG. It is easy to verify that L ⊂ G ⊂ WG.

Stickiness is inherently different from guardedness, and
its central property can be described as follows: variables
that appear more than once in a body (i.e., join variables) are
always propagated (or “stick”) to the inferred atoms. A set
of TGDs that enjoys the above property is called sticky, and
the corresponding class is denoted S. Weak stickiness is a
relaxation of stickiness where only “harmful” variables are
taken into account. A set of TGDs that enjoys weak sticki-
ness is weakly sticky, and the associated class is denoted WS.
Observe that S ⊂ WS.

A set Σ of TGDs is acyclic, if its predicate graph is
acyclic, and the underlying class is denoted A. In fact, an
acyclic set of TGDs can be seen as a nonrecursive set of
TGDs. Σ is weakly acyclic, if its dependency graph en-
joys a certain acyclicity condition, which actually guaran-
tees the existence of a finite canonical model; the associ-
ated class is denoted WA. Clearly, A ⊂ WA. Observe also
that WA ⊂ WS.

Another key fragment of TGDs which deserves our atten-
tion are the so-called full TGDs, i.e., TGDs without exis-
tentially quantified variables, and the corresponding class is
denoted F. If full TGDs enjoy linearity, guardedness, stick-
iness, or acyclicity, then we obtain the classes LF, GF, SF,
and AF, respectively. Observe that F ⊂ WA and F ⊂ WG.

Refined Isomorphism of Rules in LGRs. For several
classes of programs (L⊥,G⊥,WG⊥, S⊥, and WS⊥), we need
to refine the notion of isomorphism between rules in LGRs.

Given a database D and a finite set of linear, guarded, or
weakly guarded TGDs Σ, the cloud of an atom a over C∪N,
denoted cld(a), is the set of all entailed atoms over constants
in D ∪ Σ and arguments from a. Two pairs (a, cld(a)) and
(a′, cld(a′)) consisting of two atoms and their clouds rela-
tive to D and Σ are isomorphic, if there is an isomorphism
between them, which maps (1) constants identically to them-
selves, and (2) nulls to nulls. Two instances σ and σ′ of
the same TGD are isomorphic, if their weak guards along
with the clouds are isomorphic. In LGRs for L⊥, G⊥, and
WG⊥, we assume that this generalized isomorphism (rela-
tive to D=Dh ∪ D′

s and Σ=Σh ∪ Σ′
s) between rules is

used in condition (ii) of Definition 4. Note that in all classes
below L⊥, G⊥, and WG⊥, this new isomorphism naturally
simplifies to the isomorphism of Definition 4.

As for S⊥ and WS⊥, we use the following isomorphism
instead of the one in Definition 4. Two instances σ and σ′
of the same TGD are isomorphic, if there is an isomorphism
between their bodies, which maps (1) constants identically
to themselves, (2) nulls in positions with finite rank in the
underlying dependency graph identically to themselves, and
(3) all the other nulls to nulls not in positions with finite rank
in the underlying dependency graph. Note that, also here, in
all classes below S⊥ and WS⊥, the new isomorphism natu-
rally simplifies to the isomorphism of Definition 4.
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Complexity Results. As a first important complexity re-
sult of this paper, we have determined the precise complex-
ity of standard consistent BCQ answering under acyclic ex-
istential rules in the combined and the ba-combined case,
which is complete for PNEXP, closing two open problems
from (Lukasiewicz et al. 2015); see the relative entries in
Table 1. Furthermore, we provide a precise picture of the
complexity of consistent BCQ answering from existential
rules under the GR and the LGR semantics, which is com-
pactly summarized in Tables 2 and 3, respectively; it ranges
from coNP- to coN2EXP-completeness. More precisely, con-
sistent BCQ answering under the GR semantics (see Table 2)
is complete for coNP (resp., Πp

2) in the data complexity and
the fp-combined complexity for all fragments of existential
rules, except for WG⊥, where it is complete for EXP. The
combined complexity of consistent BCQ answering under
the GR semantics is among PSPACE (for L⊥, LF⊥, and AF⊥),
EXP (for F⊥, S⊥, SF⊥, and GF⊥), PNEXP (for A⊥), and 2EXP
(for G⊥, WG⊥, WA⊥, and WS⊥), while the ba-combined
complexity is among Πp

2 (for L⊥, LF⊥, AF⊥, F⊥, S⊥, SF⊥,
and GF⊥), EXP (for G⊥ and WG⊥), PNEXP (for A⊥), and
2EXP (for WA⊥ and WS⊥), Thus, the complexity of con-
sistent BCQ answering under the GR semantics coincides
with the complexity of standard consistent BCQ answering
(see Table 1). The complexity of consistent BCQ answering
under the LGR semantics (see Table 3), in contrast, moves
slightly higher in several cases, namely, from PSPACE and
EXP to coNEXP, and from PNEXP and 2EXP to coN2EXP.

Derivation of Complexity Results

We now sketch some proofs of our complexity results; de-
tailed proofs of all results will be given in an extended paper.

GR Semantics. We first describe the proofs of our com-
plexity results for consistent BCQ answering under the GR
semantics, which are derived from the complexity of stan-
dard consistent BCQ answering. Closing an open complex-
ity problem in standard consistent BCQ answering, the fol-
lowing result first shows that standard consistent BCQ an-
swering in the acyclic case is complete for PNEXP in the com-
bined and the ba-combined complexity.

Theorem 6. Standard consistent query answering from
databases D under acyclic programs Σ is complete for PNEXP

in the combined and the ba-combined complexity.

Proof (sketch). Membership of this problem has been
shown in (Lukasiewicz et al. 2015); it remains to prove the
PNEXP-hardness. To this end, we exhibit a PNEXP-complete
problem that can be conveniently reduced to consistent
query answering. In particular, the following extended tiling
problem serves this purpose (for tiling problems, cf. Theo-
rem 15):

(ETP): Given a triple (m,TP1,TP2) of an integer m in
tally and tiling problems TP1 and TP2 for the exponen-
tial square 2n×2n, does, for every initial condition w =
w0 . . . wm−1, either TP1 have no solution with w, or does
TP2 have some solution with w?

(The initial condition w puts tiles wj on positions (j, 0),
0 ≤ j < m.) To encode this problem in LGR semantics, we

Data Comb. ba-comb. fp-comb.

L⊥, LF⊥, AF⊥ coNP PSPACE Πp
2 Πp

2

G⊥ coNP 2EXP EXP Πp
2

WG⊥ EXP 2EXP EXP EXP
F⊥, S⊥, SF⊥, GF⊥ coNP EXP Πp

2 Πp
2

A⊥ coNP PNEXP� PNEXP� Πp
2

WS⊥, WA⊥ coNP 2EXP 2EXP Πp
2

Table 1: Complexity of standard consistent BCQ answering
under existential rules; all entries are completeness results;
those marked with “�” are novel results (proved in this pa-
per), while the others are known (Lukasiewicz et al. 2015).

Data Comb. ba-comb. fp-comb.

L⊥, LF⊥, AF⊥ coNP PSPACE Πp
2 Πp

2

G⊥ coNP 2EXP EXP Πp
2

WG⊥ EXP 2EXP EXP EXP
F⊥, S⊥, SF⊥, GF⊥ coNP EXP Πp

2 Πp
2

A⊥ coNP PNEXP PNEXP Πp
2

WS⊥, WA⊥ coNP 2EXP 2EXP Πp
2

Table 2: Complexity of GR-BCQ answering under existen-
tial rules; all entries are completeness results.

Data Comb. ba-comb. fp-comb.

L⊥, LF⊥, AF⊥ coNP coNEXP Πp
2 Πp

2

G⊥ coNP coN2EXP coNEXP Πp
2

WG⊥ coNEXP coN2EXP coNEXP coNEXP
F⊥, S⊥, SF⊥, GF⊥ coNP coNEXP Πp

2 Πp
2

A⊥, WS⊥, WA⊥ coNP coN2EXP coN2EXP Πp
2

Table 3: Complexity of LGR-BCQ answering under existen-
tial rules; all entries are completeness results.

show that any instance TP i as above is reducible to BCQ an-
swering from acyclic TGDs in polynomial time such that an
atom tilingi is entailed by a theory ΣTPi,|w|∪DTPi ∪Dw,
where ΣTPi,|w| is constructed from TP i and |w|, DTPi

from TP i, and Dw = {initj(wj) | 0≤ j≤m}, iff TP i has
a solution with w. We then combine copies of the theories
for TP1 and TP2 using auxiliary atoms into a theory Σ∪D
such that, under LGR semantics a query atom q is entailed
iff TP1 has no solution with w, but TP2 has one. Here, a
constraint tiling1, p, p′ → ⊥ will effect that p and p′ are
both true in all repairs iff TP1 has no solution for w. TGDs
p, p′ → q; tiling2 → q will then define the query atom q.

This construction works for a fixed w; in a final step, all
initial conditions w of length m are created in different re-
pairs, by (roughly) adding all possible initialization facts for
initj(t), 0≤ j <m, and all tiles t to the database D, and
setting up constraints initi(t), initi(t′) → ⊥ for every such
i and distinct t, t′; these constraints will enforce that at most
one fact initi(t) for every i will be in a repair. �

The next result shows that all hardness results for stan-
dard consistent BCQ answering under the different classes
of existential rules carry over to GR-BCQ answering.
Theorem 7. If consistent query answering from databases
under programs over some Datalog± language L is C-
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hard in the data, combined, ba-combined, and fp-combined
complexity, then consistent query answering from flexible
databases under flexible programs over L under the GR se-
mantics is also C-hard in the data, combined, ba-combined,
and fp-combined complexity, respectively.

Proof. Consistent query answering from databases D under
programs Σ over L coincides with consistent query answer-
ing from the flexible databases (∅, D) under flexible pro-
grams (Σ,∅) over L. As the former is assumed to be C-hard
(in the data, combined, and ba- and fp-combined complex-
ity), also the latter is C-hard (in the data, combined, and ba-
and fp-combined complexity, respectively). �

As for the upper complexity bounds, it is easy to ver-
ify that all upper complexity bounds for standard consis-
tent BCQ answering from databases D under Datalog± pro-
grams Σ carry over to consistent GR-BCQ answering from
databases (Dh, Ds) under Datalog± programs (Σh,∅).
Based on this, the next result shows that also all membership
results for standard consistent BCQ answering under exis-
tential rules carry over to GR-BCQ answering, as long as the
existential rules are closed under adding 0-ary body atoms.

Theorem 8. Let L be a Datalog± language that is closed
under adding 0-ary atoms to rule bodies. If consistent query
answering from databases under programs over L is in
C in the data, combined, ba-combined, and fp-combined
complexity, then consistent query answering from flexible
databases under flexible programs over L under the GR se-
mantics is also in C in the data, combined, ba-combined, and
fp-combined complexity, respectively.

Proof. Let (Dh, Ds) be a flexible database under a flexible
program (Σh,Σs). We then construct a program Σ′

h as the
set of (1.i) all TGDs in Σh, and (1.ii) all TGDs φ∧pr() → ψ
and all NCs φ∧pc() → ⊥, for every TGD r : φ → ψ and ev-
ery NC c : φ → ⊥ in Σs, respectively, where pr() and pc()
are fresh 0-ary predicate symbols, one for every TGD and
NC in Σs. Furthermore, we construct a database D′

s as the
set of (2.i) all atoms in Ds and (2.ii) all fresh 0-ary predicate
symbols from (1.ii). Then, consistent query answering from
(Dh, Ds) under (Σh,Σs) coincides with consistent query
answering from (Dh, D

′
s) under (Σ′

h,∅). If the latter is in C
in the data, combined, ba-combined, and fp-combined com-
plexity, then also the former is in C in the data, combined,
ba-combined, and fp-combined complexity, respectively. �

By the complexity of consistent query answering shown
in Table 1 (which includes the new results of Theorem 6), we
immediately obtain the following result for all cases except
for L⊥ and LF⊥. As for L⊥ (and thus also LF⊥), it is not
hard to derive the upper bounds by genuine proofs (rules in
the repair can be polynomially guessed, like data).

Corollary 9. Consistent query answering under the GR
semantics from flexible databases under flexible programs
over the Datalog± languages L in Table 2 is complete for
the complexity classes shown there in the data, combined,
ba-combined, and fp-combined complexity, respectively.

LGR Semantics. We next focus on the complexity of
consistent BCQ answering under the LGR semantics.

The following shows that the entries in Table 3 for G⊥ and
WS⊥ in the data and the fp-combined complexity are upper
complexity bounds for LGR-BCQ answering in these cases.
Theorem 10. LGR-BCQ answering for G⊥ and WS⊥ is in
coNP (resp., Πp

2) in the data (resp., fp-combined) complexity.
Proof. Let (Dh, Ds) be a flexible database, let (Σh,Σs) be
a flexible program in G⊥ or WS⊥, and let q be a BCQ.

As for G⊥, to decide the complementary problem, we
guess a subset D′

s of Ds and a subset Σ′
s of the set of all

ground instances of elements of Σs (relative to the constants
and nulls in the finite part of the guarded chase forest of
(Dh, Ds) under (Σh,Σs) necessary for evaluating q and all
NCs in Σs). As (Σh,Σs) is fixed, the guess has a polynomial
size and is thus in NP. We then check that the guess of Σ′

s is
admissible, that (Dh, D

′
s) is consistent under (Σh,Σ

′
s), that

they are maximal, and that q evaluates to false, which can all
be done in deterministic (resp., nondeterministic) polyno-
mial time in the data (resp., fp-combined) complexity. Over-
all, LGR-BCQ answering for G⊥ is in coNP (resp., Πp

2) in
the data (resp., fp-combined) complexity.

As for WS⊥, we reduce (Σh,Σs) to a flexible program
(Σ′

h,Σ
′
s) in S⊥ by replacing all multiple occurrences of vari-

ables with bounded domains in rule bodies by constants and
nulls (encoded via Skolem terms). As (Σh,Σs) is fixed, the
number of all such constants and nulls is polynomial, and
also (Σ′

h,Σ
′
s) is polynomial. As (Σ′

h,Σ
′
s) is sticky, the poly-

nomial witness property holds. To decide the complemen-
tary problem, we guess a subset D′

s of Ds and a subset Σ′′
s

of the set of all ground instances of elements of Σ′
s (relative

to the constants and nulls in the finite part of the chase of
(Dh, Ds) under (Σ′

h,Σ
′
s) necessary for evaluating q and all

NCs in Σ′
s). This guess has a polynomial size and is thus in

NP. We then check that the guess of Σ′′
s is admissible, that

(Dh, D
′
s) is consistent under (Σh,Σ

′′
s ), that they are max-

imal, and that q evaluates to false, which can all be done
in deterministic (resp., nondeterministic) polynomial time
in the data (resp., fp-combined) complexity. Overall, LGR-
BCQ answering for WS⊥ is in coNP (resp., Πp

2) in the data
(resp., fp-combined) complexity. �

As standard consistent BCQ answering is a special case
of LGR-BCQ answering, the lower complexity bounds of
the former (see Table 1) are also lower complexity bounds
of the latter. As (1) LF⊥, AF⊥, F⊥, S⊥, SF⊥, GF⊥, A⊥, and
WA⊥ are special cases of WS⊥, and (2) L⊥ is a special case
of G⊥, the upper complexity bounds of the latter are also up-
per complexity bounds of the former. We thus immediately
obtain the following corollary, proving the entries in Table 3
for L⊥, LF⊥, AF⊥, G⊥, F⊥, S⊥, SF⊥, GF⊥, A⊥, WS⊥, and
WA⊥ in the data and the fp-combined complexity.
Corollary 11. LGR-BCQ answering for L⊥, LF⊥, AF⊥, G⊥,
F⊥, S⊥, SF⊥, GF⊥, A⊥, WS⊥, and WA⊥ is complete for
coNP (resp., Πp

2) in the data (resp., fp-combined) complexity.
The next result shows that the entries in Table 3 for L⊥,

F⊥, and S⊥ in the ba-combined complexity are upper com-
plexity bounds for LGR-BCQ answering in these cases.
Theorem 12. LGR-BCQ answering for L⊥, F⊥, and S⊥ is
in Πp

2 in the ba-combined complexity.
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Proof (sketch). As for L⊥, to decide the complementary
problem, we guess a subset D′

s of Ds and a subset Σ′
s of

the set of all ground instances of elements of Σs (relative to
the constants in (Dh, Ds) and w different nulls, where w is
the maximal arity of a predicate symbol). As we are in the
bounded arity case, the guess has a polynomial size and is
thus in NP. We then check that the guess of Σ′

s is admissi-
ble, that (Dh, D

′
s) is consistent under (Σh,Σ

′
s), that they are

maximal, and that q evaluates to false, which all is in NP in
the ba-combined complexity. Overall, LGR-BCQ answering
for L⊥ is in Πp

2 in the ba-combined complexity.
The proof for F⊥ is technically involved; here, we only

sketch the main ideas behind it. We first guess and verify
with an NP oracle in polynomial time a set of ground atoms
S that represents a maximal repair candidate, which is a re-
pair that includes all ground instances of TGDs satisfied in
the entailed set of ground atoms. We then check that S does
not satisfy the (w.l.o.g. atomic) query, which can be done in
polynomial time, and we check that the guessed maximal re-
pair candidate is actually maximal, which can be done with
an NP oracle in polynomial time. Overall, the complemen-
tary problem is in Σp

2, and thus the problem is in Πp
2. �

Since standard consistent BCQ answering is a special case
of LGR-BCQ answering, the lower complexity bounds of
the former (see Table 1) also apply to the latter. Since LF⊥,
AF⊥, SF⊥, and GF⊥ are special cases of F⊥, the upper com-
plexity bounds of the latter also apply to the former. We thus
immediately obtain the following result, proving the entries
in Table 3 for L⊥, LF⊥, AF⊥, F⊥, S⊥, SF⊥, and GF⊥ in
the ba-combined complexity.
Corollary 13. LGR-BCQ answering for L⊥, LF⊥, AF⊥, F⊥,
S⊥, SF⊥, and GF⊥ is complete for Πp

2 in the ba-combined
complexity.

The following theorem shows that the entries in Table 3
for L⊥, F⊥, and S⊥ in the combined complexity are upper
complexity bounds for LGR-BCQ answering in these cases.
Theorem 14. LGR-BCQ answering for L⊥, F⊥, and S⊥ is
in coNEXP in the combined complexity.
Proof (sketch). As for L⊥, to decide the complementary
problem, we guess a subset D′

s of Ds and a subset Σ′
s of

the set of all ground instances of elements of Σs (relative
to the constants in (Dh, Ds) and w different nulls, where w
is the maximal arity of a predicate symbol). The guess has
an exponential size and is thus in NEXP. We then check that
the guess of Σ′

s is admissible, that (Dh, D
′
s) is consistent

under (Σh,Σ
′
s), that maximality holds, and that q evaluates

to false, which all is in EXP in the combined complexity.
Overall, LGR-BCQ answering for L⊥ is in coNEXP in the
combined complexity.

As for F⊥, to decide the complementary problem, we
guess a subset D′

s of Ds and a subset Σ′
s of the set of all

ground instances of elements of Σs (relative to the constants
in (Dh, Ds)). Since the set of all such ground instances
is exponential, the guess is in NEXP. We then check that
(Dh, D

′
s) is consistent under (Σh,Σ

′
s), that we have max-

imality, and that q evaluates to false, which all is in EXP
in the combined complexity. Overall, LGR-BCQ answering
for F⊥ is in coNEXP in the combined complexity.

As for S⊥, we only sketch the main ideas of showing
NEXP membership of the complementary problem. We use
the EXP alternating Turing machine encoding of BCQ query
answering in the sticky case of (Calı̀, Gottlob, and Pieris
2012). In the sticky case, we have no nulls in positions
with finite rank in the underlying dependency graph. Thus,
we guess a subset of exponentially many pairwise non-
isomorphic rule instances, and check via the EXP alternat-
ing algorithm that we actually have consistency and maxi-
mality, and that the repair does not satisfy the given BCQ. �

The next theorem shows that the entries in Table 3 for
LF⊥, AF⊥, and SF⊥ in the combined complexity are lower
complexity bounds for LGR-BCQ answering in these cases.

Theorem 15. LGR-BCQ answering for LF⊥, AF⊥, and SF⊥
is coNEXP-hard in the combined complexity.

Proof (sketch). We provide a polynomial reduction from
the NEXP-hard tiling problem (Fürer 1983): Let T =
{t0, . . . , tk} be a set of square tile types, H,V ⊆ T × T be
the horizontal and vertical compatibility relations, respec-
tively, and n be an integer in unary. A 2n × 2n tiling is
a function f : {1, . . . , 2n} × {1, . . . , 2n} → T such that
(i) f(1, 1) = t0, and (ii) (f(i, j), f(i, j + 1)) ∈ H and
(f(i, j), f(i + 1, j)) ∈ V , for each i and j. An instance of
the tiling problem is a tuple (T,H, V, n), and the question is
whether a 2n × 2n tiling exists.

Given an instance of the tiling problem (T,H, V, n), we
first construct a flexible database (Dh, Ds), a flexible pro-
gram (Σh,Σs) in LF⊥ (and SF⊥), and a BCQ q such that
(Dh, Ds) and (Σh,Σs) do not entail q under the LGR se-
mantics iff (T,H, V, n) is solvable. We define Ds = ∅ and
Dh = {p(0, . . . , 0)}, where p is a 2n-ary predicate symbol.
Furthermore, Σh is the set of all the following rules:

• For every i ∈ {1, . . . , 2n}, we have the two rules:

pxi=0(x) → pxi=1(x) and pxi=1(x) → pxi=0(x),

where pxi=b(x) = p(x1, . . . , xi−1, b, xi+1, . . . , xn).

• For every i ∈ {1, . . . , n}, we have the rule:

p(x1, . . . , xi−1, 0, 1, . . . , 1,y) →
succx(x1, . . . , xi−1,0,1, . . . ,1,y, x1, . . . , xi−1,1,0, . . . ,0,y).

• For every i ∈ {n+ 1, . . . , 2n}, we have the rule:

p(x, y1, . . . , yi−1, 0, 1, . . . , 1) →
succy(x, y1, . . . , yi−1,0,1, . . . ,1,x, y1, . . . , yi−1,1,0, . . . ,0).

• For every i, j ∈ {1, . . . , k}, we have the two rules:

succx(u, v) → tsuccx(ti, u, tj , v)
succy(u, v) → tsuccy(ti, u, tj , v).

• For every j, j′ ∈ {1, . . . , k}, j �= j′, we have the NC:

tp(tj , u), tp(tj′ , u) → ⊥.

• For every i, j ∈ {1, . . . , k} such that (i, j) �∈ H , we have:

tsuccx(ti, u, tj , v) → bad.

• For every i, j ∈ {1, . . . , k} such that (i, j) �∈ V , we have:

tsuccy(ti, u, tj , v) → bad.
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For every i, j ∈ {1, . . . , k}, Σs contains the four rules:
tsuccx(ti, u, tj , v) → tp(ti, u)
tsuccx(ti, u, tj , v) → tp(tj , v)
tsuccy(ti, u, tj , v) → tp(ti, u)
tsuccy(ti, u, tj , v) → tp(tj , v).

It is then not difficult to verify that there exists a maximal
consistent set that does not satisfy bad (i.e., bad is not LGR-
entailed) iff the tiling problem is solvable. Furthermore, the
flexible program (Σh,Σs) belongs to both LF⊥ and SF⊥.

As for AF⊥, we only sketch the main ideas behind the
hardness proof: There exists a similar reduction from the
tiling problem (T,H, V, n) to a flexible database (Dh, Ds)
and program (Σh,Σs) in AF⊥, using multiple atoms in rule
bodies, but no cyclic dependencies between predicates. �

As LF⊥, AF⊥, SF⊥, and GF⊥ are special cases of F⊥,
the upper complexity bounds of the latter also apply to the
former. As (1) LF⊥ is a special case of L⊥, GF⊥, and F⊥, and
(2) SF⊥ is a special case of S⊥, the lower complexity bounds
of the former also apply to the latter. We thus immediately
obtain the following result as a corollary of Theorems 14
and 15, proving the entries in Table 3 for L⊥, LF⊥, AF⊥,
F⊥, S⊥, SF⊥, and GF⊥ in the combined complexity.

Corollary 16. LGR-BCQ answering for L⊥, LF⊥, AF⊥, F⊥,
S⊥, SF⊥, and GF⊥ is coNEXP-complete in the combined
complexity.

The following result shows that the entry in Table 3 for
WS⊥ in the combined complexity is an upper complexity
bound for LGR-BCQ answering in this case.

Theorem 17. LGR-BCQ answering for WS⊥ is in coN2EXP
in the combined complexity.

Proof (sketch). We sketch the main ideas of proving N2EXP
membership of the complementary problem. Similar to the
proof of Theorem 14, we use the alternating Turing ma-
chine encoding of BCQ query answering of (Calı̀, Gottlob,
and Pieris 2012). In the weakly sticky case, however, it is
in 2EXP, and we have nulls in positions with finite rank in
the underlying dependency graph. So, we now guess a sub-
set of double exponentially many pairwise non-isomorphic
rule instances, and check via the 2EXP alternating algorithm
that we actually have consistency and maximality, and that
the repair does not satisfy the given BCQ. �

The next result shows that the entry in Table 3 for A⊥ in
the ba-combined complexity is a lower complexity bound
for LGR-BCQ answering in this case.

Theorem 18. LGR-BCQ answering for A⊥ is coN2EXP-
hard in the ba-combined complexity.

Proof (sketch). Hardness for coN2EXP is proved by a
polynomial reduction from the following N2EXP-complete
tiling problem (to the complementary problem): Given T =
{t0, . . . , tk}, H,V ⊆T ×T , and n≥ 0, decide if a tiling of
the 2(2

n) × 2(2
n) square exists that satisfies H and V . �

As (1) A⊥ is a special case of WA⊥, and (2) WA⊥ is a spe-
cial case of WS⊥, the upper complexity bounds of the latter
also apply to the former, and the lower complexity bounds of

the former also apply to the latter. We thus immediately ob-
tain the following result as a corollary of Theorems 17 and
18, proving the entries in Table 3 for A⊥, WA⊥, and WS⊥
in the combined and the ba-combined complexity.

Corollary 19. LGR-BCQ answering for A⊥, WA⊥, and
WS⊥ is coN2EXP-complete in the combined and the ba-
combined complexity.

We next show that the entries in Table 3 for WG⊥ in the
combined and the ba-combined complexity are upper com-
plexity bounds for LGR-BCQ answering in these cases.

Theorem 20. LGR-BCQ answering for WG⊥ is in coN2EXP
(resp., coNEXP) in the combined (resp., ba-combined) com-
plexity.

Proof (sketch). We refine the 2EXP alternating algorithm
for BCQ answering in the weakly guarded case by Calı̀ et
al. (2013): we guess a subset of a double exponential number
of pairwise non-isomorphic rule instances along with their
weak guards and clouds, and then check via the 2EXP al-
ternating algorithm that we actually have consistency and
maximality, and that the repair does not satisfy the given
BCQ. In the ba-combined case, the complexity of Calı̀ et
al.’s alternating algorithm drops to EXP, and the above re-
fined alternating algorithm drops to NEXP. �

The following shows that the entries in Table 3 for G⊥
in the combined and the ba-combined complexity and for
WG⊥ in the data complexity are lower complexity bounds
for LGR-BCQ answering in these cases.

Theorem 21. (a) LGR-BCQ answering for G⊥ is hard for
coN2EXP (resp., coNEXP) in the combined (resp., ba-com-
bined) complexity. (b) LGR-BCQ answering for WG⊥ is
coNEXP-hard in the data complexity.

Proof (sketch). We show this by reductions from a novel
coN2EXP- resp. coNEXP-complete problem that exploits re-
sults for BCQ answering from guarded resp. weakly guarded
TGDs by Calı̀ et al. (2013). They showed that the problem
is 2EXP-complete in both cases, and proved 2EXP-hardness
by an encoding of alternating Turing machines (ATMs) with
exponential space; for bounded arities, they proved EXP-
hardness by similar encodings of polynomial space ATMs.
As well-known, 2EXP = AEXPSPACE and EXP = APSPACE
(Chandra, Kozen, and Stockmeyer 1981). Furthermore, the
encoding established that for weakly guarded TGDs, BCQ
answering is EXP-complete even for a fixed program.

We introduce a generalization of ATMs that can be en-
coded into LGR-CQ answering, by suitably extending the
encodings of Calı̀ et al. with minor changes. These are ATMs
M with two (possibly identical) transitions for each step,
where each configuration c of M has a branching instruction
bi(c) ∈ {1, 2} associated. Besides existential and universal
states also branching states exist, which intuitively tell M
which nondeterministic move to make (branch 1 or 2) de-
pending on the current configuration; note that existential
states depend only on the current state and symbol under the
r/w- head. A branching configuration c (i.e., with a branch-
ing state) accepts, if the successor configuration ci such that
i = bi(c) accepts; M accepts an input I , if it accepts I for
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some bi assignment. As we show, the acceptance problem
for such branching ATMs with polynomial (resp. exponen-
tial) workspace is complete for NEXP (resp., N2EXP). �

As (1) G⊥ is a special case of WG⊥, and (2) the data
complexity is a special case of the fp-combined complex-
ity, the upper complexity bounds of the latter also apply to
the former, and the lower complexity bounds of the former
also apply to the latter. Furthermore, LGR-BCQ answering
in the fp-combined complexity can be reduced to an ex-
ponential number of LGR-BCQ answering problems in the
ba-combined complexity (via all exponentially many possi-
ble instantiations of predicates with unbounded arity). We
thus immediately obtain the following result as a corollary
of Theorems 20 and 21, proving the entries in Table 3 for G⊥
and WG⊥ in the combined and the ba-combined complexity,
and for WG⊥ in the data and the fp-combined complexity.
Corollary 22. (a) LGR-BCQ answering for G⊥ is complete
for coN2EXP (resp., coNEXP) in the combined (resp., ba-
combined) complexity. (b) LGR-BCQ answering for WG⊥ is
complete for coN2EXP in the combined complexity and for
coNEXP in the data and the ba- and fp-combined complexity.

Related Work

Inconsistency handling has been widely studied in databases
and in knowledge representation in the last three decades.
Consistent query answering, first developed for relational
databases (Arenas, Bertossi, and Chomicki 1999), and then
generalized as the AR semantics for several description log-
ics (DLs) (Lembo et al. 2010; 2015a), is the most widely ac-
cepted semantics for querying inconsistent ontologies. How-
ever, to our knowledge, no previous works in the literature
introduced a generalized approach to consistent query an-
swering under existential rules, where up to rule instances
(rather than only database atoms) are removed to gain con-
sistency, and analyzed the complexity of such an approach.

Chomicki (2007) addresses the basic concepts and re-
sults of consistent query answering for relational databases.
More recent work in databases considers the data com-
plexity of consistent query answering under local-as-view
(LAV), global-as-view (GAV), and weakly acyclic existen-
tial rules (ten Cate, Fontaine, and Kolaitis 2012). In (ten
Cate, Halpert, and Kolaitis 2014), very restricted forms of
such rules are considered for inconsistency-tolerant query
answering over a target database enriched by data trans-
ferred from a source database via mappings. Furthermore,
target queries are rewritten as source queries over the source
schema. That is, the repair rather happens in the source
database than in the target database. For general existential
rules, the authors show that an inconsistency-tolerant rewrit-
ing of unions of CQs is possible relative to the stable models
of a disjunctive logic program over a suitable expansion of
the source schema. Both recent works consider only incon-
sistencies caused by equality-generating dependencies.

Different approaches for inconsistency handling in var-
ious classes of DL ontologies are described in (Qi and
Du 2009; Huang, van Harmelen, and ten Teije 2005; Ma
and Hitzler 2009), ranging from revision for DL terminolo-
gies to different kinds of reasoning with inconsistent on-

tologies. In (Lembo et al. 2010; 2011; 2015a), adapting
consistent query answering for inconsistent ontologies in
the DL-Lite family is studied. Besides the AR semantics,
three other inconsistency-tolerant query answering seman-
tics are proposed: closed ABox repair (CAR) semantics,
the approximations by the intersection AR (IAR) and the
intersection CAR (ICAR) semantics. Moreover, first-order
(FO) rewritability is investigated in (Lembo et al. 2011;
2015a), and query answering under IAR shown to be FO-
rewritable for unions of CQs in the most expressive DL-
Lite logic considered. FO-rewritability is also investigated
by Bienvenu (2011). In (Bienvenu 2012), she analyzed
the complexity of the AR and IAR semantics for a frag-
ment of DL-Litecore and proposed an alternative approximate
inconsistency-tolerant query answering semantics, viz. in-
tersection of closed repairs (ICR). Rosati (2011) presented
a computational analysis of instance checking and CQ an-
swering under inconsistency-tolerant semantics for a range
of DLs. Bienvenu and Rosati (2013) proposed two parame-
terized inconsistency-tolerant semantics for DLs, which ap-
proximate the AR and the IAR semantics, respectively.

Lukasiewicz, Martinez, and Simari (2012b) have shown
the FO-rewritability under the AR semantics and FO-re-
writable existential rules. In (Lukasiewicz, Martinez, and
Simari 2013), the data complexity of inconsistency-tolerant
query answering under the AR, IAR, and ICR semantics
is studied, and in (Lukasiewicz et al. 2015), the combined,
ba-combined, and fp-combined complexity is investigated,
both for several languages of existential rules. Lukasiewicz,
Martinez, and Simari (2012a) explored a general framework
for inconsistency management under existential rules based
on incision functions, while Bienvenu et al. (2014) studied
the data and combined complexity of inconsistency-tolerant
query answering under the AR and IAR semantics for dif-
ferent types of preferred repairs.

Closest in spirit to the idea of repairing rules (as a whole,
but not rule instances) are current mapping repair applica-
tions for mappings between ontologies (Meilicke, Stuck-
enschmidt, and Tamilin 2007; Jiménez-Ruiz et al. 2013).
However, only very simple mappings are considered in this
context, namely concept to concept mappings, which cor-
respond to full linear rules with unary predicates. The on-
tologies are assumed to be correct, and conflicting map-
pings are deleted as a whole, which is a special case of the
GR semantics. Note that in applications for ontology debug-
ging (Parsia, Sirin, and Kalyanpur 2005), only inconsistent
concepts are repaired. Mappings in inconsistency-tolerant
OBDA have been considered by Lembo et al. (2014; 2015b),
where inconsistency caused by mappings and redundancy
recognition of mappings are studied, but query answering is
not considered, and also no repair is provided.

Less closely related approaches to repairing ontological
axioms are error-tolerant reasoning (Ludwig and Peñaloza
2014), which repairs inferences identified as modeling er-
rors, and preferential ALC (Deane, Broda, and Russo 2015).

Summary and Outlook
In this paper, we have introduced the GR and the LGR
semantics as two new inconsistency-tolerant semantics for
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BCQ answering from databases under existential rules. In
these semantics, in addition to database atoms, also rules and
rule instances, respectively, may be erroneous and thus re-
moved to resolve inconsistencies, and some atoms and rules
are assumed to be without errors and thus non-removable.
These semantics are especially well-suited in debugging
mappings between distributed ontologies. We have given
a precise picture of the complexity of consistent BCQ an-
swering under the GR and the LGR semantics for different
classes of existential rules and different types of complexi-
ties. We have also closed two open complexity problems in
standard consistent query answering under existential rules.

Topics for future research are to consider other classes
of existential rules and to generalize other semantics for
inconsistency-tolerant ontological query answering. In par-
ticular, it would be interesting to explore whether there are
data tractable and/or even first-order rewritable cases.
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