On Expressibility of Non-Monotone Operators in SPARQL

Roman Kontchakov
Birkbeck, University of London

Egor V. Kostylev
University of Oxford

Abstract

SPARQL, a query language for RDF graphs, is one of the key technologies for the Semantic Web. The expressivity and complexity of various fragments of SPARQL have been studied extensively. It is usually assumed that the optional matching operator OPTIONAL has only two graph patterns as arguments. The specification of SPARQL, however, defines it as a ternary operator, with an additional filter condition. We address the problem of expressibility of the full ternary OPTIONAL via the simplified binary version and show that it is possible, but only with an exponential blowup in the size of the query (under common complexity-theoretic assumptions). We also study expressibility of other non-monotone SPARQL operators via optional matching and each other.

Introduction

The Resource Description Framework (RDF) (Cyganiak, Wood, and Lanthaler 2014; Hayes and Patel-Schneider 2014) is the W3C standard for representing data and knowledge on the Web. The RDF data model is based on labelled graphs, which are sets of triples of internationalised resource identifiers (IRIs) and literals (strings, numbers, etc.).

SPARQL is the standard query language for RDF graphs. Since the first W3C recommendation (Prud’hommeaux and Seaborne 2008), it has been recognised as a key technology for the Semantic Web. The current version, SPARQL 1.1 (Harris and Seaborne 2013), is supported by a number of academic and commercial query engines, such as Apache Jena (jena.apache.org), Sesame (rdf4j.org), and OpenLink Virtuoso (virtuoso.openlinksw.com).

The seminal work of Pérez, Arenas, and Gutierrez (2009) laid the theoretical foundations of SPARQL. Now the complexity of query evaluation is quite well understood (Schmidt, Meier, and Lausen 2010; Losemann and Martens 2013; Arenas, Conca, and Pérez 2012; Kaminski and Kostylev 2016; Kostylev et al. 2015); algorithms and optimisation techniques have been developed (Letelier et al. 2013; Pichler and Skritek 2014; Zhang and Van den Bussche 2014b). SPARQL entailment regimes, a way of extending queries with OWL reasoning capabilities, have been studied by (Kollia and Glimm 2013; Kostylev and Cuenca Grau 2014; Ahmetaj et al. 2015; Arenas, Gottlob, and Pieris 2014; Kontchakov et al. 2014; Bischof et al. 2014). Other recently considered issues include federation (Buil Aranda, Polleres, and Umbrich 2014; Buil-Aranda, Arenas, and Corcho 2011) and provenance (Geerts et al. 2013; Halpin and Cheney 2014). These studies have had a great impact on the community and influenced the SPARQL specification.

Expressive power of SPARQL and its fragments is another fundamental problem that has been studied extensively: it is known, for example, that SPARQL as a whole has the same expressive power as first-order logic and relational algebra (Angles and Gutierrez 2008; Polleres and Wallner 2013; Kostylev, Reutter, and Ugarte 2015) and most of the SPARQL operators are primitive, that is, not expressible via each other (Zhang and Van den Bussche 2014a). The present paper continues this line of research and concentrates on the expressive power of non-monotone operators in SPARQL.

The core of the SPARQL algebra, which originates in SPARQL 1.0, consists of operators JOIN, UNION, FILTER$_F$, PROJ$_V$ and OPT$_F$. The four roughly correspond to the positive relational algebra with inequalities, a well-studied formalism in relational databases. The last, optional matching, is a distinctive feature of SPARQL in comparison to SQL. This operator was introduced to “not reject the solutions because some part of the query pattern does not match” (Prud’hommeaux and Seaborne 2008), and accounts naturally for the open-world assumption and fundamental incompleteness of the information on the Web. To illustrate optional matching, consider the SPARQL algebra expression (called a pattern)

\[
\{ (?p, a, Prof) \} \text{OPT}_{(d \neq CS)}\{ (?p, \text{dept}, ?d) \},
\]

which retrieves professors and all their departments; departments, however, are optional—if the graph does not contain information about any departments for a professor, she/he is still retrieved but variable \(?d\) is left unbound in the answer; moreover, the CS department is out of interest of this query, and so, professors affiliated with CS are either paired with their other departments, or, if there are none, then \(?d\) is unbound as well. For instance, on the graph with triples

\[
\begin{align*}
& \text{(Ivanov, a, Prof),} \\
& \text{(Petrov, a, Prof),} \\
& \text{(Petrov, dept, CS),} \\
& \text{(Sidorov, a, Prof),} \\
& \text{(Sidorov, dept, Maths),}
\end{align*}
\]
query (1) has three answers (called \textit{solution mappings}):
\{ ?p \mapsto \text{Ivanov}, \; \{ ?p \mapsto \text{Petrov}, \}
\{ ?p \mapsto \text{Sidorov}, \; ?d \mapsto \text{Maths} \}.

The optional matching operator \textit{OPT} is non-monotone, and it adds considerable expressive power to the language. In fact, it allows for translation of the first-order logic negation and makes SPARQL expressively equivalent to the full relational algebra. This power, however, comes at a price: evaluation of SPARQL with \textit{OPT} is \textit{PSPACE}-complete, in contrast to \textit{NP-completeness} of the positive fragment (Pérez, Arenas, and Gutierrez 2009).

In addition to \textit{OPT}, the SPARQL algebra includes non-monotone operators \textit{DIFF _F} and \textit{MINUS}, and the subquery construction does not exist in filters. Although \textit{DIFF _F} has no counterpart in the syntax, it is used in the definition of \textit{OPT _T}, while \textit{MINUS} and not exists were introduced in SPARQL 1.1 to extend the querying toolkit. Also, the binary operators \textit{OPT _T} and \textit{DIFF _T}, which have no filtering conditions such as $?d \neq CS$ in (1), have been used in theoretical studies of SPARQL instead of their full ternary counterparts. This has been justified by the common belief that the ternary operators are linearly expressible via the binary ones (Angles and Gutierrez 2008).

In this paper, we compare the expressive power of the non-monotone operators. We define two notions of expressibility of a SPARQL operator O via a set of operators B—expressibility in principle and expressibility by means of a polynomially large pattern. In our setting, B is the set of the positive operators (either with or without projection) extended by one of the other non-monotone operators. We focus on \textit{OPT _F}, \textit{DIFF _F}, their binary counterparts and \textit{MINUS}; for some results on not exists, we refer the interested reader to (Kaminski, Kostylev, and Cuenca Grau 2016). We adopt the set-based semantics, while the bag (multiset) semantics is left for future work. It can be seen, however, that our inexpressibility results are also applicable to the bag semantics.

Our results can be summarised as follows. (i) We show that \textit{DIFF _F} and \textit{OPT _F} are polynomially equi-expressible via each other in the presence of projection, but \textit{DIFF _F} is strictly stronger without it. (ii) We challenge the common belief on the expressivity of binary \textit{DIFF _T} and \textit{OPT _T} and prove that although the full versions are expressible via the simplified binary ones, the resulting pattern may be exponential in the size of the original. Moreover, such a blowup is unavoidable under the common complexity-theoretic assumptions (if $\Delta^P_2 \neq \Sigma^P_2$). If, however, $NP = \text{coNP}$ then they are polynomially expressible with projection. (iii) Finally, we prove that \textit{MINUS} is generally weaker than \textit{DIFF _T} and \textit{OPT _T}.

Preliminaries

\textbf{RDF Graphs} Let T be a set of RDF terms, which consists of IRIs and literals. An RDF graph is a (possibly empty) finite set of triples $(s, p, o) \in T \times T \times T$, where s is called the subject, p the predicate and o the object of the triple. Although graphs in the W3C specification cannot have literals as subjects and predicats but can contain blank nodes, we adopt a simplified setting to avoid the notational clutter. These assumptions do not affect any of results in the paper.

\textbf{SPARQL Syntax} We concentrate on the core of SPARQL and build upon the formalisation by Pérez, Arenas, and Gutierrez (2009). Let V be a set of variable names. A triple pattern is an element of $(T \cup \mathcal{V}) \times (T \cup \mathcal{V}) \times (T \cup \mathcal{V})$. A basic graph pattern (BGP) is a (possibly empty) finite set of triple patterns; the empty BGP is denoted by $\{\}$. A graph pattern, P, is an expression defined by the following grammar:

$$P ::= \text{FILTER}_P \; | \; \text{P _UNION}_P \; | \; \text{P _JOIN}_P \; | \; \text{P _DIFF}_P \; | \; \text{P _OPT}_P \; | \; \text{P _MINUS}_P \; | \; \text{P _PRO}_{_P},$$

where B is a basic graph pattern, V is a set of variables and F, a \textit{filter}, is a formula constructed from atoms of the form $\text{bnd}(v)$, $(v = c)$, $(v = ?u)$, for $?v, ?u \in V$ and $c \in T$, using logical connectives \land and \lnot. We employ standard abbreviations: $?v \neq x = \lnot(\text{bnd}(v) = x)$, where $x \in \{c, ?u\}, \; T = \text{bnd}(v) \lor \lnot \text{bnd}(v)$, for some $?v \in V$, $F_1 \lor F_2 = \lnot(F_1 \land \lnot F_2)$, $F_1 \rightarrow F_2 = \lnot F_1 \lor F_2$ and $F_1 \leftrightarrow F_2 = (F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1)$. The set of variables in P is denoted by $\text{var}(P)$, and the size of P, that is, the number of symbols in its writing, by $|P|$.

\textbf{Solution Mappings and Filter Evaluation} The values are assigned to variables by means of \textit{(solution) mappings}, which are partial functions $\mu : V \to T$ with (possibly empty) domain $\text{dom}(\mu)$. Solution mappings μ_1 and μ_2 are said to be compatible $\mu_1 \sim \mu_2$, in symbols if $\mu_1(\text{bnd}(v)) = \mu_2(\text{bnd}(v))$, for any $?v \in \text{dom}(\mu_1) \cup \text{dom}(\mu_2)$, in which case $\mu_1 \oplus \mu_2$ denotes the following mapping with domain $\text{dom}(\mu_1) \cup \text{dom}(\mu_2)$:

$$\mu_1 \oplus \mu_2(\text{bnd}(v)) = \mu_1(\text{bnd}(v)) \text{ if } ?v \in \text{dom}(\mu_1), \mu_2(\text{bnd}(v)) \text{ if } ?v \in \text{dom}(\mu_2).$$

The \textit{truth-value} $F^\mu \in \{\text{true, false}\}$ of a filter F on a mapping μ is defined inductively as follows:

- $(\text{bnd}(v))^\mu$ is \text{true} \iff $?v \in \text{dom}(\mu)$;
- $(v = c)^\mu$ is \text{true} \iff $v \in \text{dom}(\mu)$ and $\mu(v) = c$;
- $(v = ?u)^\mu$ is \text{true} \iff $?v, ?u \in \text{dom}(\mu)$ and $\mu(?v) = \mu(?u)$;
- $(\lnot F)^\mu = \text{false} - F^\mu$ and $(F_1 \land F_2)^\mu = F_1^\mu \land F_2^\mu$.

According to the SPARQL specification, the filters can evaluate not only to the Boolean values of true and false, but also to a special value error. Any filter, however, can always be replaced by a linearly large one so that the error truth value never materialises, but the semantics of the pattern does not change; see (Zhang and Van den Bussche 2014a) for details. So, we adopt the simplified semantics for brevity.

\textbf{SPARQL Semantics} Following (Pérez, Arenas, and Gutierrez 2009), we adopt the set-based semantics, that is, strictly speaking, study \textit{SELECT DISTINCT} queries.

Given an RDF graph G, the \textit{answer to a graph pattern} P on G is a set $[P]^G_G$ of solution mappings defined by induction on the structure of P. For the basis of induction, if P is a BGP, let

$$[P]^G_G = \{ \mu : \text{var}(P) \to T \mid \mu(P) \subseteq G \},$$

where $\mu(P)$ is the set of triples obtained by replacing each variable $?v$ in P by $\mu(?v)$. In particular, for the empty
Let $\Delta^p_2 \neq \Sigma^p_2$ and $+^1$. For expressibility, but not known if polynomially (by Theorem 17, the results with 1 become $+$ if NP = coNP).

The SPARQL specification allows for projection (by means of the SELECT clause) only at the outermost level of patterns, rather than at an arbitrary level, as we define. However, using an appropriate variable renaming, PROJ can be pushed outside any other operator and any two projections can be merged. So, our definition is equivalent to the W3C specification, but it is more convenient for our exposition.

Expressibility Problems

In this section we formalise the problem of expressibility of one SPARQL operator over others and outline the results of this paper. We say that patterns P_1 and P_2 are equivalent and write $P_1 = P_2$ if $[P_1]_G = [P_2]_G$, for any graph G.

Definition 1

Let B be a set of SPARQL operators. We say that a SPARQL operator O is

- B-expressible if, for any pattern over $B \cup \{O\}$, there is an equivalent pattern over B;
- polynomially B-expressible if there exists a polynomial p such that, for any $P = O(P_1, \ldots, P_n)$ with the P_i over B, there is an equivalent P' over B with $|P'| = p(|P|)$.

Clearly, if O is polynomially B-expressible, then it is B-expressible. Note that expressibility and polynomial expressibility are composable: if O is (polynomially) $B \cup \{O'\}$-expressible and O' is (polynomially) B-expressible, then O is also (polynomially) B-expressible. On the other hand, it is generally possible that O is B-expressible, but not B'-expressible for some $B' \supseteq B$ (and the same for polynomial expressibility). In this paper, however, we will not see such situations, because all the presented proofs for smaller B go through for any larger B' considered here. Hence, we will not mention this any more explicitly.

Zhang and Van den Bussche (2014a) studied expressibility of SPARQL operators and showed that none of FILTER, UNION, JOIN, OPT \uparrow and OPT \downarrow is B-expressible via the others except for JOIN, which is polynomially $\{\text{FILTER, OPT} \uparrow\}$-expressible.

In this paper we focus on expressibility and polynomial expressibility of non-monotone operators $N = \{\text{DIFF} F, \text{OPT} F, \text{DIFF} \uparrow, \text{OPT} \uparrow, \text{MINUS}\}$ via each other in the presence of other SPARQL operators. In particular, we consider two sets of monotone basic algebra operators $S = \{\text{FILTER, UNION, JOIN}\}$ and $S_\circ = S \cup \{\text{PROJ}\}$ and study the problem of $S \cup \{O'\}$- and $S_\circ \cup \{O'\}$-expressibility of an operator $O \in N$ for another $O' \in N$. Our results are

1 In many research papers DIFF \uparrow is called MINUS. As far as we are aware, the MINUS of SPARQL 1.1 has not been studied yet.
summarised in Table 1. In the rest of the paper we prove these results and discuss them in detail.

OPT via DIFF and Back

We begin with the expressibility of OPT via DIFF and back, both for general ternary and restricted binary versions. By definition, OPT\(_F\) is polynomially \(S \cup \{\{DIFF_F\}\}\)-expressible:

\[
P_1 \text{OPT}_F P_2 \equiv \text{FILTER}_F (P_1 \text{JOIN} P_2) \text{UNION} (P_1 \text{DIFF}_F P_2),
\]

for any graph patterns \(P_1, P_2\). As the filter, \(F\), is the same on both sides, OPT\(_F\) is polynomially \(S \cup \{\{DIFF_F\}\}\)-expressible.

The question of expressibility of DIFF via OPT is, however, less trivial. It was shown (Angles and Gutierrez 2008) that DIFF\(_F\) is polynomially \(S \cup \{\{OPT_F\}\}\)-expressible. Alas, the justifying equivalence

\[
P_1 \text{DIFF}_F P_2 \equiv \text{FILTER}_{\lnot\text{bnd}}(\{u\})
\]

\[
(P_1 \text{OPT}_F (P_2 \text{JOIN } \{\{u,v,w\}\})),
\]

where \(\{u,v,w\} \notin \var(P_1) \cup \var(P_2)\), holds only under a simplifying assumption that BGP\(_s\) cannot be empty (or, alternatively, that the graph cannot be empty): it has been observed that if \(P_1 = P_2 = \{\} \quad \text{and} \quad G = \emptyset\), then the answer to the left-hand side is \(\emptyset\), but to the right-hand side is \(\{\emptyset\}\).

Our first result is that this problem is insurmountable, at least without projection. In the proof of the following theorem, as well as in the rest of the paper, we use the universal triple patterns of the form \(\{\{u,v,w\}\}\) (possibly with sub- or super-scripts) assuming that their variables \(u, v, w\) do not occur elsewhere unless explicitly mentioned.

Theorem 2 DIFF\(_F\) is not \(S \cup \{\{OPT_F\}\}\)-expressible.

Proof We first claim that patterns \(P\) over \(S \cup \{\{OPT_F\}\}\) enjoy the following property: for any non-empty graph \(G\) that does not contain terms (i.e., IRIs and literals) occurring in \(P\),

\[
\text{if } \emptyset \in [\{P\}]_G \quad \text{then} \quad \emptyset \in [\{P\}]_0.
\]

We prove this claim by induction on the structure of the pattern \(P\) (for a fixed \(G\)). The basis of induction, for a BGP \(B\) in \(P\), follows from the observation that, since \(G\) contains no terms of \(P\) (and, so, of \(B\)), we can only have \(\emptyset \in [\{B\}]_G\) if \(B = \{\}\), whence, \(\emptyset \in [\{\}\]_0. For the inductive step, consider all the operators.

- If \(\emptyset \in [\{FILTER_F P_1\}]_G\) then \(\emptyset \in [\{P_1\}]_G\) and \(F^{\mu_u}\) is true, whence, by the induction hypothesis, \(\mu_u \in [\{P_1\}]_0\) and so, \(\emptyset \in [\{FILTER_F P_1\}]_0\).

- If \(\emptyset \in [\{P_1 \text{UNION} P_2\}]_G\), then \(\emptyset \in [\{P_1\}]_G\) for either \(i = 1\) or \(i = 2\), whence, by the induction hypothesis, \(\mu_u \in [\{P_i\}]_0\), and so, \(\emptyset \in [\{P_1 \text{UNION} P_2\}]_0\).

- If \(\emptyset \in [\{P_1 \text{JOIN} P_2\}]_G\), then \(\emptyset \in [\{P_1\}]_G, [\{P_2\}]_G\), whence, by the induction hypothesis, \(\mu_u \in [\{P_i\}]_0\) and \(\emptyset \in [\{P_i\}]_0\), and thus, \(\emptyset \in [\{P_1 \text{JOIN} P_2\}]_0\).

- If \(\emptyset \in [\{P_1 \text{OPT}_F P_2\}]_G\), then \(\emptyset \in [\{P_1\}]_G\), whence, by the induction hypothesis, \(\mu_u \in [\{P_1\}]_0\). By (2), there are two possible cases. If \(\emptyset \in [\{P_2\}]_0\) and \(F^{\mu_u\oplus\mu_u}\) is true then \(\emptyset = \emptyset \oplus \emptyset \in [\{P_1 \text{OPT}_F P_2\}]_0\), as required. Otherwise, \(\emptyset \in [\{P_1 \text{OPT}_F P_2\}]_0\) by construction.

This completes the proof of the claim.

To show that DIFF\(_F\) is not \(S \cup \{\{OPT_F\}\}\)-expressible, let

\[
P = \{\} \text{DIFF}_F \text{FILTER}_{\lnot\text{bnd}}(\{u\}) \{\{\emptyset\}\} \{\{\{u,v,w\}\}\}.
\]

Observe that \([\{P\}]_0 = \emptyset\) and \([\{P\}]_G = \{\emptyset\}\), for any non-empty \(G\). If \(P\) were equivalent to a pattern \(P'\) over \(S \cup \{\{OPT_F\}\}\) then, since \(\emptyset \in [\{P'\}]_G\) for any \(G \neq \emptyset\) (in particular, for a non-empty graph not containing any term occurring in \(P'\)), we would have, by (5), \(\emptyset \in [\{P'\}]_0\), contrary to \(P'\) being equivalent to \(P\).

In the light of this negative result, the immediate question is whether projection can help in expressibility of DIFF via OPT. We answer affirmatively for the full ternary versions of the operators. To show this, we make the following observation. For a pattern \(P\), let

\[
\text{ON_EMPTY}_P = \text{FILTER}_{\lnot\text{bnd}}(\{u\}) \{\{\emptyset\}\} \{\{\{u,v,w\}\}\},
\]

where \(P_0\) is \(\{\} = \{\emptyset\}\) and \(\{\{u',v',w'\}\}\) otherwise, that is, \([\{P\}]_0 = \emptyset\). It is immediate to verify that this pattern simulates \(P\) on the empty graph and gives the empty answer on all other graphs.

Proposition 3 For any graph pattern \(P\) and graph \(G\),

\[
[\text{ON_EMPTY}_P]_G = \begin{cases} [\{P\}]_0, & \text{if } G = \emptyset, \\ [\{\emptyset\}], & \text{otherwise}. \end{cases}
\]

Note that, given a pattern \(P\), ON\(_{\text{EMPTY}}\) can be computed in deterministic polynomial time in \(|P|\). With Proposition 3 at hand, we are ready to prove our first positive result.

Theorem 4 DIFF\(_F\) is polynomially \{FILTER, UNION, PROJ, OPT\(_F\)\}-expressible.

Proof Recall that JOIN is polynomially \{FILTER, OPT\(_F\)\}-expressible (Zhang and Van den Bussche 2014a), so we can use it in the closed form (although the result was shown for the language without the empty BGP, it holds in our setting as well). We now show the following equivalence:

\[
P_1 \text{DIFF}_F P_2 \equiv \text{ON_EMPTY}_{P_1 \text{DIFF}_F P_2} \text{UNION} \text{PROJ_var(P_1)} \text{FILTER}_{\lnot\text{bnd}}(\{u_2\})
\]

\[
(\{P_1 \text{JOIN } \text{utp}_1\} \text{OPT}_F (P_2 \text{JOIN } \text{utp}_2)),
\]

where \(\text{utp}_i = \{\{u_1, v_1, w_1\}\}\) are universal patterns with fresh variables. Indeed, if \(G = \emptyset\) then \([P_1 \text{JOIN } \text{utp}_1]_G = \emptyset\), for \(i = 1, 2\), and so, the second component of the union is empty. Then, by Proposition 3, the answers of both sides of the equivalence coincide. If \(G \neq \emptyset\), then, by Proposition 3, the first component of the union is empty and the equivalence follows from the observation that ?w_2 is not bound precisely in those solution mappings that come from the DIFF\(_F\) component of OPT\(_F\). Equivalence (6) implies polynomial (in fact, linear) \{FILTER, UNION, PROJ, OPT\(_F\)\}-expressibility of DIFF\(_F\).

Again, since filter \(F\) is the same on both sides of (6), the result holds for the binary versions of the operators as well.

Corollary 5 DIFF\(_F\) is polynomially \{FILTER, UNION, PROJ, OPT\(_F\)\}-expressible.
Ternary OPT and DIFF via Binary Versions

In this section we study expressibility of the general ternary OPT \(F \) via the simplified binary OPT \(\top \) as well as the ternary DIFF \(F \) via the binary DIFF \(\top \). In particular, we show that \(S \)-expressibility holds in both cases; however, polynomial \(S_{\lambda} \)-expressibility does not hold at least under the common complexity-theoretic assumptions.

We begin with a discussion of known suggestions for expressing OPT \(F \) via OPT \(\top \). Angles and Gutierrez (2008) claimed that OPT \(F \) is polynomially {FILTER, JOIN, OPT \(\top \)}-expressible. Alas, the justifying equality

\[P_1 \text{OPT}_F P_2 \equiv P_1 \text{OPT}_\top \text{FILTER}_F (P_1 \text{JOIN } P_2) \] (7)

is incorrect. Indeed, consider \(F = \text{bnd}(?v) \),

\[P_1 = \{ (?u, a, ?u), (?v, b, ?v) \} \text{UNION } \{ (?u, a, ?u) \}, \quad \text{and } P_2 = \{ (?u, a, ?u), (?w, c, ?w) \}. \]

Then, on the graph \(G = \{ (a, a, a), (b, b, b), (c, c, c) \} \), we obtain \([P_1]_G = \{ \mu_1, \mu_2 \} \) and \([P_2]_G = \{ \mu_3 \} \), where

\[\mu_1 = \{ ?u \mapsto a, ?v \mapsto b \}, \quad \mu_2 = \{ ?u \mapsto a \}, \quad \mu_3 = \{ ?u \mapsto a, ?w \mapsto c \}. \]

Hence, the answer to the left-hand side of (7) consists of \(\mu_1 \oplus \mu_3 \) and \(\mu_2 \) (because \(\mu_2 \) has no compatible solution mapping in \([P_2]_G \) that would satisfy \(F \)), while the answer to the right-hand side contains only \(\mu_1 \oplus \mu_3 \) (because the answer to the right argument of OPT \(\top \) has only \(\mu_1 \oplus \mu_3 \)).

Theorem 6 The following holds:
- OPT \(F \) is \{FILTER, OPT \(\top \)\}-expressible,
- DIFF \(F \) is \{FILTER, JOIN, DIFF \(\top \)\}-expressible,
- OPT \(F \) is \(S \cup \{ \text{DIFF} \top \} \)-expressible, and
- DIFF \(F \) is \(S_{\lambda} \cup \{ \text{OPT} \top \} \)-expressible.

Proof We claim the following modification of (7) holds (recall that JOIN is \{FILTER, OPT \(\top \)\}-expressible):

\[P_1 \text{OPT}_F P_2 \equiv \text{UNION}_{\forall U} (\text{FILTER}_F P_1 \text{OPT}_\top \text{FILTER}_F (\text{FILTER}_F P_1 \text{JOIN } P_2)), \] (8)

where \(U = \text{var}(P_1) \cap \text{var}(P_2), \text{UNION}_{\forall U} P_V \) is the \(2^{|U|} \)-ary UNION of patterns \(P_V \) for \(V \subseteq U \), and

\[F_V = \bigwedge_{\forall v \in U} \text{bnd}(?v) \land \bigwedge_{\forall v \in U \setminus V} \neg \text{bnd}(?v). \]

Although the idea of this equivalence is similar to (7), we, however, construct the OPT \(\top \) for patterns whose answers are defined on the same subset \(V \) of the variables shared by \(P_1 \) and \(P_2 \), which prevents counterexamples as above. A similar equivalence holds for DIFF (for the same \(U \) and \(F_V \)):

\[P_1 \text{DIFF}_F P_2 \equiv \text{UNION}_{\forall U} (\text{FILTER}_F P_1 \text{DIFF}_\top \text{FILTER}_F (\text{FILTER}_F P_1 \text{JOIN } P_2)). \] (9)

Finally, \(\forall S \cup \{ \text{DIFF} \top \} \)-expressibility of OPT \(F \) follows from (3) and (9), while \(S_{\lambda} \cup \{ \text{OPT} \top \} \)-expressibility of DIFF \(F \) follows from (8) by Theorem 4.

The drawback of the expressions in the proof of Theorem 6 is that they iterate over all subsets \(V \) of \(U \), that is, they are not polynomial. Next, we address the problem of polynomial expressibility, and show that it is not possible even in the presence of projection for both DIFF and OPT. We establish the result using a complexity-theoretic argument, so our results are relative to commonly believed assumptions.

One way of proving such a result would be to show that the evaluation problems, that is, the problems of checking whether a mapping is in the answer to a given pattern on a given graph, are complete for different complexity classes for patterns over \(S \cup \{ \text{OPT} \top \} \) and patterns of the form \(P_1 \text{OPT}_F P_2 \) with \(P_1, P_2 \) over \(S \cup \{ \text{OPT} \top \} \). Then, a polynomial \(S \cup \{ \text{OPT} \top \} \)-expressibility of OPT \(F \) would imply that the complexity classes coincide. Alas, evaluation for the former is PSPACE-complete (Pérez, Arenas, and Gutierrez 2009), and it is not difficult to show that the latter is also PSPACE-complete; same applies to \(S_{\lambda} \) instead of \(S \). This is why we have to consider a more involved problem instead of evaluation.

In particular, we look at the problem of emptiness of the answer to a pattern on singular graphs \(G_a \), that is, graphs of the form \(\{ (a, a, a) \} \), and show that its complexity is different for patterns over \(S_{\lambda} \cup \{ \text{OPT} \top \} \) and patterns of the form \(P_1 \text{OPT}_F P_2 \) with \(P_1, P_2 \) over \(S \cup \{ \text{OPT} \top \} \).

Lemma 7 The problem of whether \([P]_{G_a} \neq \emptyset \), for patterns \(P \) over \(S_{\lambda} \cup \{ \text{OPT} \top \} \) and singular graphs \(G_a \), is in \(\Delta^p_2 \).

Proof We first observe that the emptiness problem for a pattern over \(S_{\lambda} \) on \(G_a \) is in NP. Indeed, we can first guess a solution mapping and an argument of each UNION, and then check that the solution mapping is indeed in the answer to the resulting UNION-free pattern.

Next, we show that, for any pattern \(P \) over \(S_{\lambda} \cup \{ \text{OPT} \top \} \), the problem of whether \(\mu \in [P]_{G_a} \) is decidable by a polynomial deterministic algorithm with \(|P| + 1 \) calls to an NP-oracle. The key observation is that, for any \(P_1 \text{OPT}_\top P_2 \),

\[[P_1 \text{OPT}_\top P_2]_{G_a} = \begin{cases} [P_1 \text{JOIN } P_2]_{G_a} & \text{if } [P_2]_{G_a} \neq \emptyset, \\ [P_1]_{G_a} & \text{if } [P_2]_{G_a} = \emptyset. \end{cases} \]

The algorithm then proceeds by repeatedly taking, while possible, the innermost occurrence \(P_1 \text{OPT}_\top P_2 \) of OPT \(\top \) in \(P \), calling the NP-oracle to decide whether \(P_2 \), which is a pattern over \(S_{\lambda} \), returns at least one solution mapping on \(G_a \), and depending on the outcome, replacing \(P_1 \text{OPT}_\top P_2 \) in \(P \) with either \(P_1 \text{JOIN } P_2 \) or \(P_1 \). After at most \(|P| \) interations, we obtain a pattern \(P' \) over \(S_{\lambda} \) that has the same answer on \(G_a \) as \(P \). It remains to call the NP-oracle one more time to check whether there is a \(\mu \) with \(\mu \in [P']_{G_a} \).

For the separation result, we define the \(o\text{-rank} \) of a pattern \(P \) over \(S \cup \{ \text{OPT}_F \} \) as the depth of nesting of OPT \(F \) in \(P \) (Schmidt, Meier, and Lausen 2010): e.g., the \(o\text{-rank} \) of (OPT \(F \) OPT \(F \) OPT \(F \)) for OPT \(F \)-free patterns \(P \) is 2.

Lemma 8 The problem of whether \([P]_{G_a} \neq \emptyset \), for patterns \(P \) over \(S \cup \{ \text{OPT}_F \} \) of rank at most \(n \), \(n \geq 0 \), and singular graphs \(G_a \), is \(\Sigma^P_{n+1} \)-hard.

Proof The proof is by reduction of the validity problem for quantified Boolean formulas (QBFs) with \(n \) quantifier alternations. Let \(\phi = \exists x_1 \forall x_2 \exists x_3 \ldots \exists x_{n+1} \psi \) be a closed QBF,
where the \bar{x}_i are tuples of variables and ψ is a quantifier-free propositional formula over all the \bar{x}_i. For each tuple $\bar{x}_i = x_{i1}, \ldots, x_{im}$ and $k \leq n + 1$, consider the pattern

$$X^k_i = U^k_{i_1} \text{ JOIN} \ldots \text{ JOIN} U^k_{i_{m_i}},$$

where $U^k_{ij} = \{(?u^k_{ij}, ?u^k_{ij}, ?v^k_{ij})\}$ union $\{\}$, for $j \leq m_i$.

It is easy to see that $\llbracket X^k_i \rrbracket_{G_a}$ represents all possible assignments to variables \bar{x}_i. More precisely, we say that x_{ij} is assigned true in $\mu \in \llbracket X^k_i \rrbracket_{G_a}$ if $(\text{bnd}(?u^k_{ij}))^\mu$ is true and is assigned false otherwise.

Next, for $k \leq n + 1$, consider the following pattern:

$$B^k_i = \{(?v_{ki}, ?v_k, ?v_{ki})\} \text{ JOIN } X^k_i \text{ JOIN} \ldots \text{ JOIN } X^k_k.$$

Clearly, each $\mu \in \llbracket B^k_i \rrbracket_{G_a}$ defines a possible assignment to $\bar{x}_1, \ldots, \bar{x}_k$ and the other way round; also, μ has $?v_k$ bound.

We define the required pattern using induction on k along a sequence of QBFs. If n is even and so $Q = \emptyset$, then we take

$$\phi_{n+1} = \psi \text{ and } \phi_k = \forall \bar{x}_k \neg \phi_{k+1}, \text{ for all } k \leq n.$$

We clearly have $\phi = \exists \bar{x}_1 \phi_1$. Consider first

$$P_{n+1} = \text{FILTER}_F \text{ } B_{n+1},$$

where F_ψ is obtained from ψ by replacing each occurrence of x_{ij} by $\text{bnd}(?u^i_{ij})+1$. Then $\llbracket P_{n+1} \rrbracket_{G_a}$ consists of all satisfying assignments for ϕ_{n+1} labelled by $?v_{n+1}$. For the inductive step, given P_{k+1}, for $k \leq n$, we define P_k by taking

$$P_k = \text{FILTER}_{-\text{bnd}(?u^k_{ki})} (B_k \text{ OPT}_F P_k (k+1)),$$

where F_k is a conjunction of the following formulas:

$$\text{bnd}(?u^k_{ij}) \leftrightarrow \text{bnd}(?u^k_{ij}+1), \text{ for all } i \leq k \text{ and } j \leq m_i.$$

Since each $\mu \in \llbracket P_{k+1} \rrbracket_{G_a}$ has $?v_{k+1}$ bound by it, the filter effectively leaves only $\llbracket B_k \text{ DIFF}_F P_{k+1} \rrbracket_{G_a}$ from $\llbracket P_k \rrbracket_{G_a}$. Observe also that all solution mappings in $\llbracket B_k \rrbracket_{G_a}$ and $\llbracket P_{k+1} \rrbracket_{G_a}$ are compatible (their domains are in fact disjoint). So, $\llbracket B_k \text{ DIFF}_F P_{k+1} \rrbracket_{G_a}$ consists of mappings $\mu \in \llbracket P_{k+1} \rrbracket_{G_a}$ such that there is no $\mu_1 \in \llbracket P_{k+1} \rrbracket_{G_a}$ with $F^k_{\text{bnd}(\mu_1)} = \text{true}$. By the definition of F_k, the assignment of $\bar{x}_1, \ldots, \bar{x}_k$ in μ cannot be extended to an assignment of \bar{x}_{k+1} in a solution mapping in $\llbracket B_k \rrbracket_{G_a}$, which, by induction hypothesis, means that $\llbracket P_{k+1} \rrbracket_{G_a}$ consists of all satisfying assignments for ϕ_k labelled by $?v_k$.

If n is odd and $Q = \emptyset$, we build F_ψ from $\neg \psi$ instead of ψ.

Finally, observe that ϕ is true just in case $\llbracket P_1 \rrbracket_{G_a} \neq \emptyset$ and that P_1 for ϕ with $n + 1$ quantifier groups has o-rank n.

These two lemmas give us the following result.

Theorem 9 Provided that $\Sigma^2_2 \neq \Sigma^2_2$ operators OPT_F and DIFF_F are not polynomially $S_\varphi \cup \{O'\}$-expressible for any $O' \in \{\text{OPT}_\varphi, \text{DIFF}_\varphi\}$.

Proof The claim for OPT_F and $O' = \text{OPT}_\varphi$ is immediate from Lemmas 7 and 8. Indeed, if OPT_F were polynomially $S_\varphi \cup \{\text{OPT}_\varphi\}$-expressible, then we would be able to polynomially rewrite any pattern of the form $P_1 \text{ OPT}_F P_2$ with P_1 and P_2 over S (i.e., with o-rank 1) to an equivalent pattern over $S_\varphi \cup \{\text{OPT}_\varphi\}$ and then solve the emptiness problem on G_a in Δ^P_2, contrary to Σ^2_2-hardness of the problem.

The proofs for other three cases are similar; we give one for DIFF_F and $O' = \text{DIFF}_\varphi$. If DIFF_F were polynomially $S_\varphi \cup \{\text{DIFF}_\varphi\}$-expressible, then we would be able to polynomially rewrite any $P_1 \text{ OPT}_F P_2$, as above, to a pattern over $S_\varphi \cup \{\text{OPT}_\varphi\}$ in three steps: first, we would apply (3) to replace each OPT_F by DIFF_F, then apply the expressibility hypothesis to go to DIFF_φ, and finally apply (4) to arrive at OPT_φ. Even though the resulting pattern may not be equivalent to $P_3 \text{ OPT}_F P_2$ (due to possibly different semantics on the empty graph), it would still have the correct answer on G_a, and we would be able to decide its emptiness in Δ^P_2.

Polynomial Expressibility on Non-Singular Graphs

The results in Theorem 9 are negative—the ternary versions of DIFF and OPT are not polynomially expressible via the binary ones under the commonly believed complexity-theoretic assumptions (i.e., unless $\Sigma^2_2 = \Delta^P_2$ and the polynomial hierarchy collapses). The proof, however, relies on a very specific case of singular graphs G_a, which use only one term (e.g., IR). In this section we show that, in the presence of projection, this is the only difficult case, and, if we have an operator O that gives the same answers as DIFF_F (or OPT_F) on singular graphs, then both OPT_F and DIFF_F are polynomially $S_\varphi \cup \{\text{DIFF}_\varphi, \varnothing\}$-expressible.

By (3) and Theorem 4, DIFF_F and OPT_F are polynomially expressible via each other in the presence of projection; the same applies to DIFF_φ and OPT_φ. Since in this section we focus on S_φ, which includes projection, we use DIFF_F and OPT_F (as well as DIFF_φ and OPT_φ) interchangeably. In fact, it will be more convenient to use yet another operator that is polynomially equi-expressible with $\text{DIFF}_F/\text{OPT}_F$.

Definition 10 For patterns P_1, P_2, let $P_1 \text{ SETMINUS} P_2$ be a pattern with the following semantics for a graph G (where \text{\textbf{\textbackslash}} is the usual set difference):

$$\llbracket P_1 \text{ SETMINUS} P_2 \rrbracket_G = \llbracket P_1 \rrbracket_G \text{ \textbackslash} \llbracket P_2 \rrbracket_G.$$

To prove that SETMINUS is polynomially $S_\varphi \cup \{\text{DIFF}_F\}$-expressible (and vice versa), we need some extra notation. Given a pattern P, an injective mapping θ is called a variable renaming for P if its domain, $\text{dom}(\theta)$, coincides with $\text{var}(P)$ and its image is disjoint from $\text{var}(P)$. In other words, θ renames all variables of P into fresh ones. Given such a θ, we denote by P^θ the result of replacing each occurrence of a variable $?v$ in P by its image, $?v^\theta$. Similar notation, F^θ, will also be used with filters F. A special filter EQ^θ for θ is defined as a conjunction of formulas, for all $?v \in \text{dom}(\theta)$,

$$(\text{bnd}(?v) \leftrightarrow \text{bnd}(?v^\theta)) \land (\text{bnd}(?v) \rightarrow ?v = ?v^\theta).$$

Intuitively, EQ^θ filters out solution mappings that disagree on $\text{var}(P)$ and $\theta(\text{var}(P))$.

We are now ready to prove equi-expressibility of DIFF_F and SETMINUS, and begin with the forward direction.

Lemma 11 DIFF_F (and hence, OPT_F) is polynomially $S_\varphi \cup \{\text{SETMINUS}\}$-expressible.
Proof For any \(P_1 \) and \(P_2 \) over \(S_\pi \cup \{ \text{SetMinus} \} \) and variable renaming \(\theta \) for \(P_1 \text{ Diff}_F P_2 \), we claim that

\[
P_1 \setminus \text{Diff}_F P_2 \equiv P_1 \setminus \text{SetMinus} (\text{Proj}_{\text{var}}(P_1) \text{ Filter}_{F \theta}(\text{Filter}_{EQG}(P_1 \text{ Join } P_2 \theta) \text{ Join } P_3 \theta))\]

To see this equivalence, observe that, for any graph \(G \), the answer to the pattern on the right consists of all mappings \(\mu_1 \in [P_1]_G \), whose copies \(\mu_1 \theta \) are not compatible with any \(\mu_2 \theta \in [P_2]_G \) such that \(F_\theta \mu_1 \theta \cup \mu_2 \theta = \emptyset \); equivalently, not compatible with any \(\mu_2 \in [P_2]_G \) with \(F_\theta \mu_1 \theta \cup \mu_2 \theta = \emptyset \). The latter is just the definition of \([P_1 \text{ Diff}_F P_2]_G \).

The following lemma establishes the converse direction.

Lemma 12 SetMinus is polynomially \(S_\pi \cup \{ \text{Diff}_F \} \)-expressible.

Proof For any \(P_1 \) and \(P_2 \) over \(S_\pi \cup \{ \text{Diff}_F \} \) and variable renaming \(\theta \) for \(P_1 \text{ SetMinus} P_2 \), we claim that

\[
P_1 \text{ SetMinus} P_2 \equiv P_1 \text{ Diff}_{EQG} P_2 \theta.
\]

To see this, observe that, for any \(G \), all solution mappings in \([P_1]_G \) are compatible with all mappings in \([P_2]_G \). Thus, \([P_1 \text{ Diff}_{EQG} P_2 \theta]_G \) consists of mappings \(\mu_1 \in [P_1]_G \) that have no mapping \(\mu_2 \in [P_2]_G \) such that \(\mu_1 \theta \cup \mu_2 \theta \) satisfies EQG; in other words, all mappings in \([P_1]_G \setminus [P_2]_G \).

Having established the fact that, in the presence of projection, SetMinus is polynomially equi-expressible with DiffF and OptF, we are ready to prove the main result of this section (note that instead of MonoMinus below we may equivalently require existence of MonoDiffF or MonoOptF with similar semantics).

Theorem 13 Let MonoMinus be an operator that gives the same answers as SetMinus on singular graphs. Then SetMinus is polynomially \(S_\pi \cup \{ \text{MonoMinus}, \text{Opt}_\top \} \)-expressible.

Proof We begin by defining auxiliary patterns. First, for any variable \(?v \), consider a pattern whose answers are all possible bindings of \(?v \) to terms in the graph:

\[
\text{ADOM}_{?v} = \text{Proj}_{?v}(\{ (?v, \theta', ?v') \} \cup \{ (?v', ?v, ?v') \} \cup \{ (?v', ?v, ?v') \}).
\]

Then, for each pair of variables, \(?u \) and \(?v \), consider a pattern that gives all pairs of distinct terms in the graph:

\[
\text{NEQ}_{?u, ?v} = \text{Filter}_{?u \neq ?v}(\text{ADOM}_{?u} \text{ Join } \text{ADOM}_{?v}).
\]

We can now separate graphs by the number of terms in them:

\[
\begin{align*}
\text{two} &= \text{Proj}_{?v} \text{NEQ}_{?u, ?v}, \\
\text{one} &= \text{Proj}_{?v} \text{Filter}_{?u \neq \text{bdn}(?u)}(\{ (?w, ?u', ?v', ?u'') \} \cup \text{Opt}_\top \text{NEQ}_{?u, ?v}).
\end{align*}
\]

It is easy to verify that \([\text{two}]_G \neq \emptyset \) if and only if \(G \) has at least two terms and \([\text{one}]_G \neq \emptyset \) if and only if \(G \) is singular.

Consider now a pattern \(P_1 \text{ SetMinus} P_2 \) with variables \(V = \{ ?v_1, \ldots, ?v_n \} \). Let \(\theta \) and \(\theta' \) be variable renamings for \(P_1 \text{ SetMinus} P_2 \) with disjoint ranges. For \(i = 1, 2 \), let

\[
P_i = (\ldots (\text{Filter}_{EQG} \theta \text{Proj}_{?v, P \theta \text{ Join } P \theta'})) \text{ Opt}_\top \text{NEQ}_{?u, \theta, ?v_n, \theta'} \ldots;
\]

note that \(\theta' \) is a variable renaming with the range of \(\theta \) as its domain such that it maps new variables of \(\theta \) to corresponding new variables of \(\theta' \). It is readily seen that, for any graph \(G \) with at least two terms, \([P_1 \text{ Diff}_F P_2]_G \) consists of solution mappings with domain \(\theta \cup \theta' \) and of the form

\[
\mu \theta \cup \mu' \theta' \cup \delta,
\]

where \(\mu \in [P_1]_G \) and \(\delta \) is such that \(\delta(?v \theta) \neq \delta(?v' \theta) \), for all \(?v \in V \setminus \text{dom}(\theta) \). We say that \(\mu \) is the origin of \(\delta \) in \([P_1]_G \); note that the origin is uniquely defined. In other words, we transform each solution mapping \(\mu \) \([P_1]_G \) in the following way: if \(?v_j \) is bound in \(\mu \) then both \(?v_j \theta \) and \(?v_j \theta' \) are bound by the same value; otherwise, both \(?v_j \theta \) and \(?v_j \theta' \) are bound by all possible combinations of different values.

Let \(P* = P \text{ Diff}_F P \). Observe that, on graphs with at least two terms, \(P* \) gives the transformed versions of the mappings in the answer to \(P_1 \text{ SetMinus} P_2 \). Indeed, the domains of all solution mappings in \([P_1]_G \) and \([P_2]_G \) coincide with \(\theta \cup \theta' \). So, each \(\mu \in [P_1]_G \) is compatible with at most one \(\mu_2 \in [P_2]_G \); moreover, \(\mu_2 \) can only be compatible with \(\mu_2 \) if the domain of the origin of \(\mu_1 \in [P_1]_G \) coincides with the domain of the origin of \(\mu_2 \in [P_2]_G \).

We are now in a position to express SetMinus. We consider three cases for \(G \), which either (a) is empty, or (b) contains exactly one term, or (c) contains at least two terms:

\[
P_1 \text{ SetMinus} P_2 \equiv \text{ON,EMPTY}_P \text{SetMinus}_P \text{ UNI} \text{ON}_P \text{MonoMinus}_P \text{ Join } \text{one} \text{ UNI} \text{ON}_P \text{MonoDiffF} \text{ Join } \text{two} \text{ UNI} \text{ON}_P \text{MonoOptF}
\]

where \(F \) is the following conjunction, for all \(?v \in \text{dom}(\theta)\):

\[
(\text{bdn}(?v) \leftrightarrow (?v \theta = ?v \theta')) \land (\text{bdn}(?v) \rightarrow (?v = ?v \theta')).
\]

Note that \(?v \theta \) and \(?v \theta' \) are bound in all solution mappings in \([P_1 \text{ Join } P*]_G \) for \(G \) with at least two terms. It should be now clear that the patterns are as required.

We leave open the question of whether DiffF and OptF are polynomially expressible via their binary counterparts and patterns that give the same answers on singular graphs without projection.

Polynomial Expressibility of MonoMinus

In the previous section we have shown that the question of polynomial \(S_\pi \cup \{ \text{Opt}_\top \} \)-expressibility of OptF boils down to the existence of an operator MonoMinus that gives the same answers as SetMinus on singular graphs. By Theorem 9, there is no such polynomially \(S_\pi \cup \{ \text{Opt}_\top \} \)-expressible MonoMinus under usual complexity-theoretic assumptions. In this section, however, we show that if NP = \text{CONP} then MonoMinus does exist.

Let \(\Sigma = \{ 0, 1 \} \). A (partial) multivalued function is a relation on \(\Sigma^* \). For a multivalued function \(f \), we write \(\text{Set}_f(x) \) for the set \(\{ y \mid (x, y) \in f \} \). A transducer is a nondeterministic Turing machine over \(\Sigma \) with read-only input tape, write-only output tape, read-write work tapes, and accepting states as usual. A transducer computes a value \(y \) on input \(x \) if there is an accepting computation that starts with \(x \) on
the input tape and ends with y on the output tape. Hence, in
general, transducers compute partial multivalued functions.

Let NPMV be the class of multivalued functions com-
puted by nondeterministic polynomial-time bounded trans-
ducers (Book, Long, and Selman 1985) and NPMVNP the
class of multivalued functions computed by polynomial-
time bounded transducers that have access to an NP oracle.

A multivalued function f is strongly metric many-one polynomi-

able reducible (psm-reducible) to a function g if there exist polynomi-
al computable functions t1 and t2 such that

\[
\text{set}\left(f(x) = \{t2(x, y) \mid (t1(x, y) \in g)\} \text{ for any } x\right)
\]

(Krentel 1988; Fenner et al. 1999). Intuitively, given a value of g on

\[t1(x),\]

we can compute in polynomial time a value of f on x and,
by varying over all values of g on t1(x), obtain all values
of f on x. In the sequel, when talking about hardness of
functional problems, we silently assume psm-reductions.

The class NPMV is closed under psm-reducibility. The
multivalued function FSAT, defined so that \(\bar{s}\) is a value
of FSAT(\(\psi\)) if and only if \(\bar{s}\) is a satisfying assign-
ment for propositional Boolean formula \(\psi(\bar{x})\), is complete
for NPMV (Fenner et al. 1999).

Consider now the following multivalued function, parame-

trised by a sublanguage B of SPARQL (e.g., a

set of operators). The function \(\text{FMONOEVAL}_B\) is de-

\[
\text{defined on (binary representations of) all patterns in } B
\text{ that do not contain terms: for each such pattern } P, \text{ the set}
\]

\[\text{set-}\text{FMONOEVAL}_B(P)\text{ consists of all binary strings represen-
}
\[\text{ting } |P|_{G_2}\text{ in the sense that 1 in position } i \text{ of the string
}
\text{means that the } i\text{th variable is bounded by the solution map-
}
\text{ping and 0 that it is not (we assume that an order on } \text{var}(P)\text{ is
}
\text{fixed). This function is well-defined because } P \text{ does not
}
\text{contain terms, and so, answers on different singular graphs
}
\text{are the same modulo renaming of the term in the graph.}
\]

We can establish NPMV-hardness of computing answers to
patterns over \(S_x\).

Lemma 14 \(\text{FMONOEVAL}_{S_x}\) is NPMV-hard.

Proof We prove the claim by reduction of FSAT. Given a
propositional Boolean formula \(\psi\) over variables \(x_1, \ldots, x_n\),
consider a pattern

\[t1(\psi) = \text{FILTER}_{F_\psi}(U_1 \text{ JOIN ... JOIN } U_n),\]

where \(U_i = \{\langle u_1, u_2, u_3 \rangle \mid \text{UNION } \langle \rangle\}\) for \(i \leq n\), and \(F_\psi\) is
obtained from \(\psi\) by replacing each occurrence of \(x_i\) by
\(\text{bnd}(u_i)\); see Lemma 8. Note that \(t1(\psi)\) is a pattern over \(S_x\)
without terms. Consider a function \(t_2\) sending each mapping \(m\)
over \(\{u_1, \ldots, u_n\}\) to assignments of \(x_1, \ldots, x_n\) in such
a way that \(x_i\) is true if and only if \(u_i = a_i\) by \(m\). The
polynomial functions \(t_1\) and \(t_2\) define a psm-reduction.

On the other hand, we have the following for the class \(S_x^{SM}\)
of patterns of the form \(P_1 \text{ SETMINUS } P_2\), for \(P_1, P_2 \in S_x\).

Lemma 15 \(\text{FMONOEVAL}_{S_x}^{SM}\) is in NPMVNP.

Proof Given \(P_1 \text{ SETMINUS } P_2\), the algorithm works as
follows: it builds all mappings over \(\text{var}(P_1) \cup \text{var}(P_2)\) and
then, for each of them, checks, by means of two oracle calls,
whether the mapping is in the answer to \(P_1\) but not to \(P_2\).

We are ready to prove the key lemma in this section.

Lemma 16 If \(\text{NP} = \text{CO NP}\) then, for any pattern over \(S_x^{SM}\),
there is a polynomial-size pattern over \(S_x\) that gives the
same answers on singular graphs.

Proof Consider any \(P\) over \(S_x^{SM}\). Let \(a_1, \ldots, a_m\) be all
the terms that occur in \(P\). It should then be clear that, on
singular graphs, \(P\) gives the same answers as the following pattern:

\[
\text{projvar}(P) \left(\text{FILTER}_{A_{1 \leq k \leq m, ?v \neq a_k}}(P_0 \text{ JOIN } B) \text{ UNION } \right.
\]

\[
\text{UND}_{1 \leq k \leq m} \text{FILTER}_{?v = a_k}(P_k \text{ JOIN } B)\right)\]

(11)

where \(B = \{\langle ?v, ?v, ?v \rangle\}\), for a fresh variable \(?v\), and every
\(P_k, 0 \leq k \leq m\), is obtained from \(P\) by replacing

- each BGP that contains a term \(\text{different from } a_i\) with
\(\text{FILTER}_{\{\}}\) (for \(k = 0\), all BGPs with terms are replaced);
- each \(?u = a_k\) in a filter by \(\exists\) and each \(?u = a_\ell\) for \(\ell \neq k\),
by \(\exists\) (for \(k = 0\), only the second option is applicable).

We now show that, if \(\text{NP} = \text{CO NP}\) then, for each \(P_k, 0 \leq k \leq m\),
we can construct a polynomial-size pattern \(P'_k\) over \(S_x\) such that \(P_k\) and \(P'_k\) have the same answers on the singular
graph \(\{\langle a_k, a_k, a_k \rangle\}\) (for \(k = 0\), we take \(a_k = a\), for some fresh \(a\)). We then will replace patterns \(P_k\) in (11) by \(P'_k\) to obtain the required polynomial-size pattern over \(S_x\) that has the same answers as \(P\) on arbitrary singular graphs.

Fix some index \(k\) in \(0, \ldots, m\). Observe that \(P_k\) is a pattern
over \(S_x^{SM}\) that contains no terms. If \(\text{NP} = \text{CO NP}\) then
\(\text{NPMV} = \text{NPMVNP}\) (Fenner et al. 1999). Hence, there is a
psm-reduction of \(\text{FMONOEVAL}_{S_x}^{SM}\) to \(\text{FMONOEVAL}_{S_x}\),
that is, there are polynomial functions \(t_1\) and \(t_2\) specifying the
reduction: \(t1(P_k)\) is a pattern over \(S_x\) and \(t_2\) maps \(P_k\) and
each mapping in the answer of \(t1(P_k)\) on \(\langle a_k, a_k, a_k \rangle\) to
a mapping in the answer of \(P_k\) on \(\langle a_k, a_k, a_k \rangle\). Note
that each mapping in the answer to \(P_k\) and \(t1(P_k)\) is completely
caracterised by its domain. Now, \(t_2\) is implement-
able by a deterministic polynomial-time Turing machine
(transducer) \(M\) over alphabet \(\Sigma = \{0, 1\}\). It is routine
(see e.g., the proof of the Cook-Levin theorem in (Kozen
2006)) to construct a CNF \(\chi\) such that \(\chi \land \chi^m \land \chi^{\text{out}}\)
is satisfiable if and only if \(\exists\), having started with \(\bar{y}\) written
on the input tape, terminates with \(\bar{z}\) written on the output tape
(here, \(\chi^m\) and \(\chi^{\text{out}}\) are conjunctions of propositional
literals that encode the contents of the input tape in the
initial state and the contents of the output tape in the final state,
respectively). Let \(x_1, \ldots, x_n\) be the variables in \(\chi\) and let \(\text{proj}\)
be the result of replacing each occurrence of \(x_i\) in \(\chi\) with
\(\text{bnd}(u_i)\). The variables encoding the contents of the
input tape consists of two parts: variables \(x_1', \ldots, x_\ell'\) representing
pattern \(P_k\) as the first argument of \(t_2\) and the variables cor-
responding to the free (not projected out) variables of the
pattern \(t1(P_k)\) as the second argument. Without loss of gen-
erality, we assume that the variables encoding the contents
of the output tape correspond to the free variables of \(P_k\).

We now define \(P'_k\) by taking

\[
\text{projvar}(P_k) \left(\text{FILTER}_{(U_1 \text{ JOIN ... JOIN } U_n)} t1(P_k)\right),
\]

where all the \(U_i\) are as in the proof of Lemma 14, and \(F\) is
a conjunction of \(\mathcal{F}_{\text{proj}}\) and filters for each \(1 \leq j \leq \ell\),
which are \(\text{bnd}(u_i')\) if \(j\)th bit in the representation of \(P_k\) is 1, and
--bnd(?u′), otherwise. It should be clear that the size of P_k' is polynomial in the size of P_k, and they give the same answers on $\{(a_k, a_k, a_k)\}$.

Combining this lemma with Theorem 13 we obtain the last result of this section.

Theorem 17 Provided that NP = conP, operators $\{\text{OPT}_F\}$ and DIFF_F are polynomially $S_\pi \cup \{O′\}$-expressible for any $O′ \in \{\text{OPT}_T, \text{DIFF}_T\}$.

Expressivity of MINUS

Operators DIFF and OPT, studied in the previous sections, comprise non-monotonic tools in SPARQL 1.0. Version 1.1, however, also includes operator $P_1 \text{ MINUS } P_2$, which checks whether a mapping from P_1 is extendable to a mapping from P_2 with an overlapping domain. In this section we compare the expressive power of MINUS and the 1.0 operators. In particular, we show that MINUS is polynomially expressible via DIFF_F and OPT_F, but does not give the full power of DIFF_T and OPT_T, even in the presence of projection.

Theorem 18 MINUS is polynomially $\{\text{DIFF}_F\}$- and $\{\text{OPT}_F, \text{FILTER}\}$-expressible.

Proof We can express MINUS using the following equivalences (recall that JOIN is $\{\text{FILTER, OPT}_T\}$-expressible):

\[
P_1 \text{ MINUS } P_2 \equiv P_1 \text{ DIFF}_F P_2 \land \text{bnd}(?u)
\]

\[
(P_1 \text{ OPT}_F (P_2 \text{ JOIN } \{(?u, ?v, ?w)\}))
\]

where θ is a variable renaming for $P_1 \text{ MINUS } P_2$ and

\[
F = \bigwedge_{v \in \text{dom}(\theta)} (\text{bnd}(?v) \land \text{bnd}(?v\theta) \rightarrow ?v = ?v\theta)
\]

\[
\land \bigvee_{v \in \text{dom}(\theta)} (\text{bnd}(?v) \land \text{bnd}(?v\theta))
\]

(in particular, $F = \bot$ if $\text{var}(P_1) \cap \text{var}(P_2) = \emptyset$). For the first equivalence, observe that P_1 and $P_2\theta$ do not share variables and so, for any graph G, every solution mapping in $[P_1]_G$ is compatible with any solution mapping in $[P_2\theta]_G$. Thus, $[P_1 \text{ DIFF}_F P_2\theta]_G$ contains only those solution mappings μ in $[P_1]_G$ that have no compatible solution mapping in $[P_2\theta]_G$, whose domain overlaps $\text{dom}(\mu)$, as defined by F.

For the second equivalence, note again that P_1 and $P_2\theta$ JOIN $\{(?u, ?v, ?w)\}$ contain no shared variables and that $\text{FILTER}_{\text{bnd}(?v)}$ leaves only the solution mappings in $[P_1 \text{ DIFF}_F (P_2\theta \text{ JOIN } \{(?u, ?v, ?w)\})]_G$, for any G. The rest of the argument is similar to the case of DIFF_T.

Theorem 18 shows polynomial $S_\pi \cup \{\text{DIFF}_F\}$- and $S_\pi \cup \{\text{OPT}_F\}$-expressibility of MINUS. The former follows, of course, from (3) and the latter, but the theorem states that it is enough to have only DIFF. Then, by Theorem 6, MINUS is also $S_\pi \cup \{\text{DIFF}_T\}$- and $S_\pi \cup \{\text{OPT}_T\}$-expressible. We leave open the question of whether it can be done polynomially (possibly, with projection), but show non-expressibility of DIFF and OPT via MINUS.

Theorem 19 DIFF$_T$ and OPT$_T$ are not $S_\pi \cup \{\text{MINUS}\}$-expressible.

Proof We claim that patterns P over $\{\text{MINUS}\} \cup S$ enjoy the following property:

\[
\text{if } \mu_0 \in [P]_G \text{ then } \mu_0 \in [P]_G, \text{ for any } G.
\]

The proof of the claim is by induction on the structure of the pattern P. The basis of induction, for a BGP B in P, follows from the observation that $\mu_0 \in [B]_G$ is only possible if $B = \emptyset$, whence, $\mu_0 \in [\emptyset]_G$, for any G. For the inductive step, consider all the operators.

- If $\mu_0 \in [\text{FILTER}_F P_1]_G$ then $\mu_0 \in [P_1]_G$ and F^{μ_0} is true, whence, by the induction hypothesis, $\mu_0 \in [\text{FILTER}_F P_1]_G$, for any G.

- If $\mu_0 \in [P_1 \text{ UNION } P_2]_G$, then $\mu_0 \in [P_i]_G$ for either $i = 1$ or 2, whence, by the induction hypothesis, $\mu_0 \in [P_i]_G$, for any G, and so, $\mu_0 \in [P_1 \text{ UNION } P_2]_G$, for any G.

- If $\mu_0 \in [P_1 \text{ JOIN } P_2]_G$, then $\mu_0 \in [P_1]_G$ and $\mu_0 \in [P_2]_G$, whence, by the induction hypothesis, $\mu_0 \in [P_1]_G$ and $\mu_0 \in [P_2]_G$, for any G, and so, $\mu_0 \in [P_1 \text{ JOIN } P_2]_G$.

- If $\mu_0 \in [P_1 \text{ MINUS } P_2]_G$, then $\mu_0 \in [P_1]_G$, whence, by the induction hypothesis, $\mu_0 \in [P_1]_G$, for any G, and so, as $\text{dom}(\mu_0)$ does not overlap the domain of any other solution mapping, $\mu_0 \in [P_1 \text{ MINUS } P_2]_G$, for any G.

- If $\mu_0 \in [\text{PROJ}_V P_1]_G$, then $\mu_0 \in [P_1]_G$, for μ with $\text{dom}(\mu) \cap V = \emptyset$. By (2), $\mu = \mu_0$. By the induction hypothesis, $\mu_0 \in [P_1]_G$ and $\mu_0 \in [\text{PROJ}_V P_1]_G$, for any G.

This completes the proof of the claim.

To show that DIFF$_T$ is not $S_\pi \cup \{\text{MINUS}\}$-expressible, consider pattern $P = \{\text{DIFF}_T \{(?u, ?v, ?w)\}\}$. We have $[P]_G = \{\mu_0\}$ and $[P]_G = \emptyset$, for any $G \neq \emptyset$. If P were equivalent to a pattern P' over $S_\pi \cup \{\text{MINUS}\}$, then since $\mu_0 \in [P']_G$, by (12), we would have $\mu_0 \in [P']_G$, for any G, contrary to P' being equivalent to P.

The proof for OPT$_T$ is similar: it is enough to consider pattern $P = \{\text{OPT}_T \{(?u, ?v, ?w)\}\}$.

Conclusions and Future Work

We studied the problem of expressing non-monotone SPARQL operators. Our results show that projection has a dramatic effect, and polynomial expressibility of OPT$_F$ and DIFF$_F$ is connected to open problems in complexity theory: in fact, contrary to popular belief, the ternary OPT$_F$ is not polynomially expressible via the binary OPT$_T$ if $\Delta^P_0 \neq \Sigma^P_2$.

Besides several open questions mentioned in the text, a different and interesting problem is whether any pattern over some B is expressible as a pattern of polynomial size over another B'. Although our strong negative results carry over, the notion of polynomial expressibility in this paper assumes that operators in $B \setminus B'$ are applied only at the outermost level, without any nesting. In this stricter sense, however, even polynomial expressibility of $P_1 \text{ OPT}_T P_2$ via DIFF$_T$ is not clear because both P_i occur twice in expression (3).

References

Kaminski, M., and Kostylev, E. V. 2016. Beyond well-designed SPARQL. In Proc. of the 19th Int. Conf. on Database Theory (ICDT 2016). ACM.

Kostylev, E. V.; Reuter, J. L.; and Ugarte, M. 2015. CONSTRUCT queries in SPARQL. In Proc. of the 18th Int. Conf. on Database Theory (ICDT 2015). ACM.

