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Abstract

SPARQL, a query language for RDF graphs, is one of the
key technologies for the Semantic Web. The expressivity and
complexity of various fragments of SPARQL have been stud-
ied extensively. It is usually assumed that the optional match-
ing operator OPTIONAL has only two graph patterns as ar-
guments. The specification of SPARQL, however, defines it
as a ternary operator, with an additional filter condition. We
address the problem of expressibility of the full ternary OP-
TIONAL via the simplified binary version and show that it
is possible, but only with an exponential blowup in the size
of the query (under common complexity-theoretic assump-
tions). We also study expressibility of other non-monotone
SPARQL operators via optional matching and each other.

Introduction

The Resource Description Framework (RDF) (Cyganiak,
Wood, and Lanthaler 2014; Hayes and Patel-Schneider
2014) is the W3C standard for representing data and knowl-
edge on the Web. The RDF data model is based on labelled
graphs, which are sets of triples of internationalised resource
identifiers (IRIs) and literals (strings, numbers, etc.).

SPARQL is the standard query language for RDF graphs.
Since the first W3C recommendation (Prud’hommeaux
and Seaborne 2008), it has been recognised as a key
technology for the Semantic Web. The current version,
SPARQL 1.1 (Harris and Seaborne 2013), is supported by a
number of academic and commercial query engines, such as
Apache Jena (jena.apache.org), Sesame (rdf4j.org), and Open-
Link Virtuoso (virtuoso.openlinksw.com).

The seminal work of Pérez, Arenas, and Gutierrez (2009)
laid the theoretical foundations of SPARQL. Now the
complexity of query evaluation is quite well under-
stood (Schmidt, Meier, and Lausen 2010; Losemann and
Martens 2013; Arenas, Conca, and Pérez 2012; Kaminski
and Kostylev 2016; Kostylev et al. 2015); algorithms and
optimisation techniques have been developed (Letelier et al.
2013; Pichler and Skritek 2014; Zhang and Van den Bussche
2014b). SPARQL entailment regimes, a way of extending
queries with OWL reasoning capabilities, have been stud-
ied by (Kollia and Glimm 2013; Kostylev and Cuenca Grau
2014; Ahmetaj et al. 2015; Arenas, Gottlob, and Pieris 2014;
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Kontchakov et al. 2014; Bischof et al. 2014). Other recently
considered issues include federation (Buil Aranda, Polleres,
and Umbrich 2014; Buil-Aranda, Arenas, and Corcho 2011)
and provenance (Geerts et al. 2013; Halpin and Cheney
2014). These studies have had a great impact on the com-
munity and influenced the SPARQL specification.

Expressive power of SPARQL and its fragments is an-
other fundamental problem that has been studied exten-
sively: it is known, for example, that SPARQL as a whole
has the same expressive power as first-order logic and re-
lational algebra (Angles and Gutierrez 2008; Polleres and
Wallner 2013; Kostylev, Reutter, and Ugarte 2015) and most
of the SPARQL operators are primitive, that is, not express-
ible via each other (Zhang and Van den Bussche 2014a). The
present paper continues this line of research and concen-
trates on the expressive power of non-monotone operators
in SPARQL.

The core of the SPARQL algebra, which originates in
SPARQL 1.0, consists of operators JOIN, UNION, FILTERF ,
PROJV and OPTF . The first four roughly correspond to the
positive relational algebra with inequalities, a well-studied
formalism in relational databases. The last, optional match-
ing, is a distinctive feature of SPARQL in comparison to
SQL. This operator was introduced to “not reject the so-
lutions because some part of the query pattern does not
match” (Prud’hommeaux and Seaborne 2008), and accounts
naturally for the open-world assumption and fundamental
incompleteness of the information on the Web. To illustrate
optional matching, consider the SPARQL algebra expres-
sion (called a pattern)

{(?p, a, Prof)} OPT?d �=CS {(?p, dept, ?d)}, (1)

which retrieves professors and all their departments; depart-
ments, however, are optional—if the graph does not contain
information about any departments for a professor, she/he is
still retrieved but variable ?d is left unbound in the answer;
moreover, the CS department is out of interest of this query,
and so, professors affiliated with CS are either paired with
their other departments, or, if there are none, then ?d is un-
bound as well. For instance, on the graph with triples

(Ivanov, a, Prof),

(Petrov, a, Prof), (Petrov, dept, CS),

(Sidorov, a, Prof), (Sidorov, dept, Maths),
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query (1) has three answers (called solution mappings):
{ ?p �→ Ivanov }, { ?p �→ Petrov },
{ ?p �→ Sidorov, ?d �→ Maths }.

The optional matching operator OPTF is non-monotone, and
it adds considerable expressive power to the language. In
fact, it allows for translation of the first-order logic negation
and makes SPARQL expressively equivalent to the full rela-
tional algebra. This power, however, comes at a price: eval-
uation of SPARQL with OPTF is PSPACE-complete, in con-
trast to NP-completeness of the positive fragment (Pérez,
Arenas, and Gutierrez 2009).

In addition to OPTF , the SPARQL algebra includes non-
monotone operators DIFFF and MINUS, and the subquery
construction not exists in filters. Although DIFFF has no
counterpart in the syntax, it is used in the definition of
OPTF , while MINUS and not exists were introduced in
SPARQL 1.1 to extend the querying toolkit. Also, the bi-
nary operators OPT� and DIFF�, which have no filtering
conditions such as ?d �= CS in (1), have been used in theo-
retical studies of SPARQL instead of their full ternary coun-
terparts. This has been justified by the common belief that
the ternary operators are linearly expressible via the binary
ones (Angles and Gutierrez 2008).

In this paper, we compare the expressive power of the
non-monotone operators. We define two notions of express-
ibility of a SPARQL operator O via a set of operators B—
expressibility in principle and expressibility by means of a
polynomially large pattern. In our setting, B is the set of
the positive operators (either with or without projection) ex-
tended by one of the other non-monotone operators. We fo-
cus on OPTF , DIFFF , their binary counterparts and MINUS;
for some results on not exists, we refer the interested reader
to (Kaminski, Kostylev, and Cuenca Grau 2016). We adopt
the set-based semantics, while the bag (multiset) semantics
is left for future work. It can be seen, however, that our inex-
pressibility results are also applicable to the bag semantics.

Our results can be summarised as follows. (i) We show
that DIFFF and OPTF are polynomially equi-expressible via
each other in the presence of projection, but DIFFF is strictly
stronger without it. (ii) We challenge the common belief on
the expressivity of binary DIFF� and OPT� and prove that
although the full versions are expressible via the simplified
binary ones, the resulting pattern may be exponential in the
size of the original. Moreover, such a blowup is unavoid-
able under the common complexity-theoretic assumptions
(if Δp

2 �= Σp
2). If, however, NP = CONP then they are poly-

nomially expressible with projection. (iii) Finally, we prove
that MINUS is generally weaker than DIFF� and OPT�.

Preliminaries
RDF Graphs Let T be a set of RDF terms, which consists
of IRIs and literals. An (RDF) graph is a (possibly empty)
finite set of triples (s, p, o) ∈ T × T × T, where s is called
the subject, p the predicate and o the object of the triple.
Although graphs in the W3C specification cannot have liter-
als as subjects and predicates but can contain blank nodes,
we adopt a simplified setting to avoid the notational clutter.
These assumptions do not affect any of results in the paper.

SPARQL Syntax We concentrate on the core of SPARQL
and build upon the formalisation by Pérez, Arenas, and
Gutierrez (2009). Let V be a set of variable names. A triple
pattern is an element of (T∪V)×(T∪V)×(T∪V). A basic
graph pattern (BGP) is a (possibly empty) finite set of triple
patterns; the empty BGP is denoted by {}. A graph pattern,
P , is an expression defined by the following grammar:

P ::= B | FILTERF P | P UNION P |
P JOIN P | P DIFFF P | P OPTF P |
P MINUS P | PROJV P,

where B is a basic graph pattern, V is a set of variables
and F , a filter, is a formula constructed from atoms of
the form bnd(?v), (?v = c), (?v =?u), for ?v, ?u ∈ V
and c ∈ T, using logical connectives ∧ and ¬. We employ
standard abbreviations: ?v �= x = ¬(?v = x), where
x ∈ {c, ?u}, � = bnd(?v) ∨ ¬bnd(?v), for some ?v ∈ V,
F1 ∨ F2 = ¬(¬F1 ∧ ¬F2), F1 → F2 = ¬F1 ∨ F2 and
F1 ↔ F2 = (F1 → F2) ∧ (F2 → F1). The set of variables
in P is denoted by var(P ), and the size of P , that is, the
number of symbols in its writing, by |P |.
Solution Mappings and Filter Evaluation The values
are assigned to variables by means of (solution) mappings,
which are partial functions μ : V ⇀ T with (possibly empty)
domain dom(μ). Solution mappings μ1 and μ2 are said to be
compatible (μ1 ∼ μ2, in symbols) if μ1(?v) = μ2(?v), for
any ?v ∈ dom(μ1)∩dom(μ2), in which case μ1⊕μ2 denotes
the following mapping with domain dom(μ1) ∪ dom(μ2):

(μ1 ⊕ μ2)(?v) =

{
μ1(?v), if ?v ∈ dom(μ1),

μ2(?v), if ?v ∈ dom(μ2).

The truth-value Fμ ∈ {true, false} of a filter F on a map-
ping μ is defined inductively as follows:
– (bnd(?v))μ is true iff ?v ∈ dom(μ);
– (?v = c)μ is true iff ?v ∈ dom(μ) and μ(?v) = c;
– (?v =?u)μ is true iff ?v, ?u∈dom(μ) and μ(?v)=μ(?u);
– (¬F )μ = ¬Fμ and (F1 ∧ F2)

μ = Fμ
1 ∧ Fμ

2 .
According to the SPARQL specification, the filters can

evaluate not only to the Boolean values of true and false, but
also to a special value error. Any filter, however, can always
be replaced by a linearly large one so that the error truth
value never materialises, but the semantics of the pattern
does not change; see (Zhang and Van den Bussche 2014a)
for details. So, we adopt the simplified semantics for brevity.

SPARQL Semantics Following (Pérez, Arenas, and
Gutierrez 2009), we adopt the set-based semantics, that is,
strictly speaking, study SELECT DISTINCT queries.

Given an RDF graph G, the answer to a graph pattern P
on G is a set �P �G of solution mappings defined by induc-
tion on the structure of P . For the basis of induction, if P is
a BGP, let

�P �G =
{
μ : var(P ) → T | μ(P ) ⊆ G

}
,

where μ(P ) is the set of triples obtained by replacing each
variable ?v in P by μ(?v). In particular, for the empty
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S = {FILTER, UNION, JOIN}
O′\O DIFFF OPTF DIFF� OPT� MINUS
DIFFF + [def.] + [def.] + [def.] + [Th. 18]

OPTF − [Th. 2] − [Th. 2] + [def.] + [Th. 18]

DIFF� ± [Th. 6, 9] ± [Th. 6, 9] + [def.] +? [Th. 6, 18]

OPT� − [Th. 2] ± [Th. 6, 9] − [Th. 2] +? [Th. 6, 18]

MINUS − [Th. 19] − [Th. 19] − [Th. 19] − [Th. 19]

Sπ = S ∪ {PROJ}
O′\O DIFFF OPTF DIFF� OPT� MINUS
DIFFF + [def.] + [def.] + [def.] + [Th. 18]

OPTF + [Th. 4] + [Corr. 5] + [def.] + [Th. 18]

DIFF� ±† [Th. 6, 9] ±† [Th. 6, 9] + [def.] +?
† [Th. 6, 18]

OPT� ±† [Th. 6, 9] ±† [Th. 6, 9] + [Corr. 5] +?
† [Th. 6, 18]

MINUS − [Th. 19] − [Th. 19] − [Th. 19] − [Th. 19]

Table 1: Summary of results on S ∪ {O′}- and Sπ ∪ {O′}-expressibility of O: ‘−’ stands for ‘not expressible’, ‘+’ for ‘poly-
nomially expressible’, ‘±’ for ‘expressible, but not polynomially if Δp

2 �= Σp
2’, and ‘+?’ for ‘expressible, but not known if

polynomially’ (by Theorem 17, the results with † become + if NP = CONP).

BGP {}, we have �{}�∅ = {μ∅} even for the empty graph ∅,
where μ∅ is the mapping with the empty domain (we will
use μ∅ throughout the paper). For the inductive step, we de-
fine the following, for a graph G, graph patterns P , P1 and
P2, filter F , and sets of variables V ⊆ V:

�FILTERF P �G = {μ | μ ∈ �P �G and Fμ = true},
�P1 UNION P2�G = �P1�G ∪ �P2�G,

�P1 JOIN P2�G = {μ1 ⊕ μ2 | μ1 ∈ �P1�G, μ2 ∈ �P2�G,
μ1 ∼ μ2},

�P1 DIFFF P2�G = {μ1 ∈ �P1�G | for all μ2 ∈ �P2�G,

either μ1 �∼ μ2 or Fμ1⊕μ2 �= true},
�P1 OPTF P2�G = �FILTERF (P1 JOIN P2)�G ∪

�P1 DIFFF P2�G,

�P1 MINUS P2�G = {μ1 ∈ �P1�G | for all μ2 ∈ �P2�G,
either μ1 �∼ μ2 or dom(μ1) ∩ dom(μ2) = ∅},

�PROJV P �G = {μ|V | μ ∈ �P �G},
where μ|V is the restriction of μ to V . Note that each BGP

is equivalent to the join of its constituent triple patterns (seen
as singleton BGPs). The semantics of DIFF� and OPT� is
obtained from the general cases: e.g., �P1 DIFF� P2�G con-
sists of all the mappings in �P1�G that are not compatible
with any mapping in �P2�G. Note the subtle difference of
the semantics of DIFF� from MINUS—the latter gives all
μ1 ∈ �P1�G that are not compatible with any μ2 ∈ �P2�G
whose domain overlaps the domain of μ1.1

Since our formalisation does not allow for value inven-
tion (e.g., by means of BIND operator), all the values in an
answer for our graph patterns come from the queried graph.
Therefore, for any P , we have

either �P �∅ = ∅ or �P �∅ = {μ∅}. (2)

Observe also that, for a graph G, a pattern P∅ such that
�P∅�G = ∅ and any filter F , we have

�{} OPTF {}�G = {μ∅}, �{} OPTF P∅�G = {μ∅},
�{} DIFF� {}�G = ∅, �{} DIFF� P∅�G = {μ∅},
�{} MINUS {}�G = {μ∅}, �{} MINUS P∅�G = {μ∅}.

Note that, unlike for OPTF , the equalities for DIFF� hold
for � but not necessarily for other filters.

1In many research papers DIFF� is called MINUS. As far as we
are aware, the MINUS of SPARQL 1.1 has not been studied yet.

The SPARQL specification allows for projection (by
means of the SELECT clause) only at the outermost level of
patterns, rather than at an arbitrary level, as we define. How-
ever, using an appropriate variable renaming, PROJ can be
pushed outside any other operator and any two projections
can be merged. So, our definition is equivalent to the W3C
specification, but it is more convenient for our exposition.

Expressibility Problems

In this section we formalise the problem of expressibility of
one SPARQL operator via others and outline the results of
this paper. We say that patterns P1 and P2 are equivalent and
write P1 ≡ P2 if �P1�G = �P2�G, for any graph G.

Definition 1 Let B be a set of SPARQL operators. We say
that a SPARQL operator O is

– B-expressible if, for any pattern over B∪{O}, there is an
equivalent pattern over B;

– polynomially B-expressible if there exists a polynomial p
such that, for any P = O(P1, . . . , Pn) with the Pi over B,
there is an equivalent P ′ over B with |P ′| = p(|P |).
Clearly, if O is polynomially B-expressible, then it is

B-expressible. Note that expressibility and polynomial ex-
pressibility are composable: if O is (polynomially) B∪{O′}-
expressible and O′ is (polynomially) B-expressible, then O
is also (polynomially) B-expressible. On the other hand, it
is generally possible that O is B-expressible, but not B′-
expressible for some B′ ⊃ B (and the same for polynomial
expressibility). In this paper, however, we will not see such
situations, because all the presented proofs for smaller B go
through for any larger B′ considered here. Hence, we will
not mention this any more explicitly.

Zhang and Van den Bussche (2014a) studied expressibil-
ity of SPARQL operators and showed that none of FILTER,
UNION, JOIN, OPT� and PROJ is expressible via the others
except for JOIN, which is polynomially {FILTER, OPT�}-
expressible.

In this paper we focus on expressibility and poly-
nomial expressibility of non-monotone operators N =
{DIFFF , OPTF , DIFF�, OPT�, MINUS} via each other in
the presence of other SPARQL operators. In particular,
we consider two sets of monotone basic algebra operators
S = {FILTER, UNION, JOIN} and Sπ = S ∪ {PROJ} and
study the problem of S∪{O′}- and Sπ∪{O′}-expressibility
of an operator O ∈ N for another O′ ∈ N . Our results are
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summarised in Table 1. In the rest of the paper we prove
these results and discuss them in detail.

OPT via DIFF and Back

We begin with the expressibility of OPT via DIFF and back,
both for general ternary and restricted binary versions. By
definition, OPTF is polynomially S ∪{DIFFF }-expressible:

P1 OPTF P2 ≡
FILTERF (P1 JOIN P2) UNION (P1 DIFFF P2), (3)

for any graph patterns P1, P2. As the filter, F , is the same on
both sides, OPT� is polynomially S∪{DIFF�}-expressible.

The question of expressibility of DIFF via OPT is, how-
ever, less trivial. It was shown (Angles and Gutierrez 2008)
that DIFFF is polynomially S ∪ {OPTF }-expressible. Alas,
the justifying equivalence

P1 DIFFF P2 ≡ FILTER¬bnd(?u)

(P1 OPTF (P2 JOIN {(?u, ?v, ?w)})), (4)

where ?u, ?v, ?w /∈ var(P1) ∪ var(P2), holds only under
a simplifying assumption that BGPs cannot be empty (or,
alternatively, that the graph cannot be empty): it has been
observed that if P1 = P2 = {} and G = ∅, then the answer
to the left-hand side is ∅, but to the right-hand side is {μ∅}.

Our first result is that this problem is insurmountable, at
least without projection. In the proof of the following theo-
rem, as well as in the rest of the paper, we use the univer-
sal triple patterns of the form {(?u, ?v, ?w)} (possibly with
sub- or super-scripts) assuming that their variables ?u, ?v,
?w do not occur elsewhere unless explicitly mentioned.
Theorem 2 DIFF� is not S ∪ {OPTF }-expressible.

Proof We first claim that patterns P over S∪{OPTF } enjoy
the following property: for any non-empty graph G that does
not contain terms (i.e., IRIs and literals) occurring in P ,

if μ∅ ∈ �P �G then μ∅ ∈ �P �∅. (5)

We prove this claim by induction on the structure of the pat-
tern P (for a fixed G). The basis of induction, for a BGP B
in P , follows from the observation that, since G contains no
terms of P (and, so, of B), we can only have μ∅ ∈ �B�G
if B = {}, whence, μ∅ ∈ �{}�∅. For the inductive step,
consider all the operators.
– If μ∅ ∈ �FILTERF P1�G then μ∅ ∈ �P1�G and Fμ∅ =
true, whence, by the induction hypothesis, μ∅ ∈ �P1�∅
and so, μ∅ ∈ �FILTERF P1�∅.

– If μ∅ ∈ �P1 UNION P2�G, then μ∅ ∈ �Pi�G for either
i = 1 or i = 2, whence, by the induction hypothesis,
μ∅ ∈ �Pi�∅, and so, μ∅ ∈ �P1 UNION P2�∅.

– If μ∅ ∈ �P1 JOINP2�G, then μ∅ ∈ �P1�G, �P2�G, whence,
by the induction hypothesis, μ∅ ∈ �P1�∅ and μ∅ ∈ �P2�∅,
and thus, μ∅ ∈ �P1 JOIN P2�∅.

– If μ∅ ∈ �P1OPTFP2�G, then μ∅ ∈ �P1�G, whence, by the
induction hypothesis, μ∅ ∈ �P1�∅. By (2), there are two
possible cases. If μ∅ ∈ �P2�∅ and Fμ∅⊕μ∅ = true then
μ∅ = μ∅ ⊕ μ∅ ∈ �P1 OPTF P2�∅, as required. Otherwise,
μ∅ ∈ �P1 OPTF P2�∅ by construction.

This completes the proof of the claim.
To show that DIFF� is not S ∪ {OPTF }-expressible, let

P = {} DIFF� FILTER¬bnd(?u)({} OPT� {(?u, ?v, ?w)}).
Observe that �P �∅ = ∅ and �P �G = {μ∅}, for any
non-empty G. If P were equivalent to a pattern P ′ over
S ∪ {OPTF } then, since μ∅ ∈ �P ′�G for any G �= ∅ (in
particular, for a non-empty graph not containing any term
occurring in P ′), we would have, by (5), μ∅ ∈ �P ′�∅, con-
trary to P ′ being equivalent to P . �

In the light of this negative result, the immediate question
is whether projection can help in expressibility of DIFF via
OPT. We answer affirmatively for the full ternary versions
of the operators. To show this, we make the following obser-
vation. For a pattern P , let

ON EMPTYP = FILTER¬bnd(?u)(P0 OPT� {(?u, ?v, ?w)}),
where P0 is {} if �P �∅ = {μ∅} and {(?u′, ?v′, ?w′)} other-
wise, that is, if �P �∅ = ∅. It is immediate to verify that this
pattern simulates P on the empty graph and gives the empty
answer on all other graphs.

Proposition 3 For any graph pattern P and graph G,

�ON EMPTYP �G =

{
�P �∅, if G = ∅,
∅, otherwise.

Note that, given a pattern P , ON EMPTYP can be computed
in deterministic polynomial time in |P |. With Proposition 3
at hand, we are ready to prove our first positive result.

Theorem 4 DIFFF is polynomially {FILTER, UNION,
PROJ, OPTF }-expressible.

Proof Recall that JOIN is polynomially {FILTER, OPT�}-
expressible (Zhang and Van den Bussche 2014a), so we can
use it in the the proof (although the result was shown for the
language without the empty BGP, it holds in our setting as
well). We now show the following equivalence:

P1 DIFFF P2 ≡ ON EMPTYP1DIFFFP2
UNION

PROJvar(P1) FILTER¬bnd(?u2)

((P1 JOIN utp1) OPTF (P2 JOIN utp2)), (6)

where utpi = {(?ui, ?vi, ?wi)} are universal patterns with
fresh variables. Indeed, if G = ∅ then �Pi JOIN utpi�G = ∅,
for i = 1, 2, and so, the second component of the union is
empty. Then, by Proposition 3, the answers of both sides of
the equivalence coincide. If G �= ∅, then, by Proposition 3,
the first component of the union is empty and the equiva-
lence follows from the observation that ?u2 is not bound
precisely in those solution mappings that come from the
DIFFF component of OPTF . Equivalence (6) implies poly-
nomial (in fact, linear) {FILTER, UNION, PROJ, OPTF }-
expressibility of DIFFF . �

Again, since filter F is the same on both sides of (6), the
result holds for the binary versions of the operators as well.

Corollary 5 DIFF� is polynomially {FILTER, UNION,
PROJ, OPT�}-expressible.
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Ternary OPT and DIFF via Binary Versions

In this section we study expressibility of the general ternary
OPTF via the simplified binary OPT� as well as the ternary
DIFFF via the binary DIFF�. In particular, we show that
S-expressibility holds in both cases; however, polynomial
Sπ-expressibility does not hold at least under the common
complexity-theoretic assumptions.

We begin with a discussion of known suggestions for
expressing OPTF via OPT�. Angles and Gutierrez (2008)
claimed that OPTF is polynomially {FILTER, JOIN, OPT�}-
expressible. Alas, the justifying equivalence

P1 OPTF P2 ≡ P1 OPT� FILTERF (P1 JOIN P2) (7)

is incorrect. Indeed, consider F = bnd(?v),

P1 = {(?u, a, ?u), (?v, b, ?v)} UNION {(?u, a, ?u)}, and
P2 = {(?u, a, ?u), (?w, c, ?w)}.

Then, on the graph G = {(a, a, a), (b, b, b), (c, c, c)}, we
obtain �P1�G = {μ1, μ2} and �P2�G = {μ3}, where

μ1 = {?u �→ a, ?v �→ b}, μ2 = {?u �→ a},
μ3 = {?u �→ a, ?w �→ c}.

Hence, the answer to the left-hand side of (7) consists of
μ1⊕μ3 and μ2 (because μ2 has no compatible solution map-
ping in �P2�G that would satisfy F ), while the answer to the
right-hand side contains only μ1 ⊕ μ3 (because the answer
to the right argument of OPT� has only μ1 ⊕ μ3).

Theorem 6 The following holds:
– OPTF is {FILTER, OPT�}-expressible,
– DIFFF is {FILTER, JOIN, DIFF�}-expressible,
– OPTF is S ∪ {DIFF�}-expressible, and
– DIFFF is Sπ ∪ {OPT�}-expressible.

Proof We claim the following modification of (7) holds (re-
call that JOIN is {FILTER, OPT�}-expressible):

P1 OPTF P2 ≡ UNIONV ⊆U ((FILTERFV P1)OPT�
FILTERF ((FILTERFV P1) JOIN P2)), (8)

where U = var(P1) ∩ var(P2), UNIONV⊆U PV is the 2|U |-
ary UNION of patterns PV , for V ⊆ U , and

FV =
∧

?v∈V
bnd(?v) ∧

∧
?v∈U\V ¬bnd(?v).

Although the idea of this equivalence is similar to (7), we,
however, construct the OPT� for patterns whose answers are
defined on the same subset V of the variables shared by P1

and P2, which prevents counterexamples as above. A similar
equivalence holds for DIFF (for the same U and FV ):

P1 DIFFF P2 ≡ UNIONV ⊆U ((FILTERFV P1)DIFF�
FILTERF ((FILTERFV P1) JOIN P2)). (9)

Finally, S ∪ {DIFF�}-expressibility of OPTF follows
from (3) and (9), while Sπ ∪ {OPT�}-expressibility of
DIFFF follows from (8) by Theorem 4. �

The drawback of the expressions in the proof of Theo-
rem 6 is that they iterate over all subsets V of U , that is, they

are not polynomial. Next, we address the problem of poly-
nomial expressibility, and show that it is not possible even
in the presence of projection for both DIFF and OPT. We es-
tablish the result using a complexity-theoretic argument, so
our results are relative to commonly believed assumptions.

One way of proving such a result would be to show that
the evaluation problems, that is, the problems of checking
whether a mapping is in the answer to a given pattern on a
given graph, are complete for different complexity classes
for patterns over S ∪ {OPT�} and patterns of the form
P1 OPTF P2 with P1, P2 over S ∪ {OPT�}. Then, a poly-
nomial S ∪ {OPT�}-expressibility of OPTF would imply
that the complexity classes coincide. Alas, evaluation for the
former is PSPACE-complete (Pérez, Arenas, and Gutierrez
2009), and it is not difficult to show that the latter is also
PSPACE-complete; same applies to Sπ instead of S . This is
why we have to consider a more involved problem instead
of evaluation.

In particular, we look at the problem of emptiness of the
answer to a pattern on singular graphs Ga, that is, graphs of
the form {(a, a, a)}, and show that its complexity is differ-
ent for patterns over Sπ ∪ {OPT�} and patterns of the form
P1 OPTF P2 with P1, P2 over S ∪ {OPT�}.

Lemma 7 The problem of whether �P �Ga
�= ∅, for patterns

P over Sπ ∪ {OPT�} and singular graphs Ga, is in Δp
2.

Proof We first observe that the emptiness problem for a
pattern over Sπ on Ga is in NP. Indeed, we can first guess a
solution mapping and an argument of each UNION, and then
check that the solution mapping is indeed in the answer to
the resulting UNION-free pattern.

Next, we show that, for any pattern P over Sπ ∪{OPT�},
the problem of whether μ ∈ �P �Ga

is decidable by a poly-
nomial deterministic algorithm with |P |+ 1 calls to an NP-
oracle. The key observation is that, for any P1 OPT� P2,

�P1 OPT� P2�Ga
=

{
�P1 JOIN P2�Ga

, if �P2�Ga
�= ∅,

�P1�Ga
, if �P2�Ga

= ∅.
The algorithm then proceeds by repeatedly taking, while
possible, the innermost occurrence P1 OPT� P2 of OPT�
in P , calling the NP-oracle to decide whether P2, which is a
pattern over Sπ , returns at least one solution mapping on Ga,
and depending on the outcome, replacing P1 OPT� P2 in P
with either P1 JOIN P2 or P1. After at most |P | interations,
we obtain a pattern P ′ over Sπ that has the same answer on
Ga as P . It remains to call the NP-oracle one more time to
check whether there is a μ with μ ∈ �P ′�Ga

= �P �Ga
. �

For the separation result, we define the o-rank of a pat-
tern P over S ∪ {OPTF } as the depth of nesting of OPTF

in P (Schmidt, Meier, and Lausen 2010): e.g., the o-rank of
(P1 OPTF P2) OPTF ′ P3 for OPTF -free patterns Pi is 2.

Lemma 8 The problem of whether �P �Ga
�= ∅, for patterns

P over S ∪ {OPTF } of rank at most n, n ≥ 0, and singular
graphs Ga, is Σp

n+1-hard.

Proof The proof is by reduction of the validity problem for
quantified Boolean formulas (QBFs) with n quantifier alter-
nations. Let φ = ∃x̄1∀x̄2∃x̄3 . . .Qx̄n+1 ψ be a closed QBF,
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where the x̄i are tuples of variables and ψ is a quantifier-
free propositional formula over all the x̄i. For each tuple
x̄i = xi1, . . . , ximi

and k ≤ n+ 1, consider the pattern

Xk
i = Uk

i1 JOIN . . . JOIN Uk
imi

,

where Uk
ij = {(?uk

ij , ?u
k
ij , ?u

k
ij)} UNION {}, for j ≤ mi.

It is easy to see that �Xk
i �Ga

represents all possible assign-
ments to variables x̄i. More precisely, we say that xij is as-
signed true in μ ∈ �Xk

i �Ga
if (bnd(?uk

ij))
μ = true and is

assigned false otherwise.
Next, for k ≤ n+ 1, consider the following pattern:

Bk = {(?vk, ?vk, ?vk)} JOIN Xk
1 JOIN . . . JOIN Xk

k .

Clearly, each μ ∈ �Bk�Ga
defines a possible assignment to

x̄1, . . . , x̄k and the other way round; also, μ has ?vk bound.
We define the required pattern using induction on k along

a sequence of QBFs. If n is even and so Q = ∃, then we take

φn+1 = ψ and φk = ∀x̄k+1 ¬φk+1, for all k ≤ n.

We clearly have φ = ∃x̄1 φ1. Consider first

Pn+1 = FILTERFψ
Bn+1,

where Fψ is obtained from ψ by replacing each occurrence
of xij by bnd(?un+1

ij ). Then �Pn+1�Ga consists of all satis-
fying assignments for φn+1 labelled by ?vn+1. For the in-
ductive step, given Pk+1, for k ≤ n, we define Pk by taking

Pk = FILTER¬bnd(?vk+1)(Bk OPTFk
Pk+1),

where Fk is a conjunction of the following formulas:

bnd(?uk
ij) ↔ bnd(?uk+1

ij ), for all i ≤ k and j ≤ mi.

Since each μ ∈ �Pk+1�Ga
has ?vk+1 bound by it, the filter

effectively leaves only �Bk DIFFFk
Pk+1�Ga

from �Pk�Ga
.

Observe also that all solution mappings in �Bk�Ga
and

�Pk+1�Ga are compatible (their domains are in fact disjoint).
So, �Bk DIFFFk

Pk+1�Ga consists of mappings μ ∈ �Bk�Ga

such that there is no μ1 ∈ �Pk+1�Ga
with Fμ⊕μ1

k = true.
By the definition of Fk, the assignment of x̄1, . . . , x̄k in μ
cannot be extended to an assignment of x̄1, . . . , x̄k, x̄k+1 in
a solution mapping in �Pk+1�Ga

, which, by induction hy-
pothesis, means that �Pk�Ga consists of all satisfying assign-
ments for φk labelled by ?vk.

If n is odd and Q=∀, we build Fψ from ¬ψ instead of ψ.
Finally, observe that φ is true just in case �P1�Ga �= ∅ and

that P1 for φ with n+ 1 quantifier groups has o-rank n. �

These two lemmas give us the following result.

Theorem 9 Provided that Δp
2 �= Σp

2, operators OPTF and
DIFFF are not polynomially Sπ ∪ {O′}-expressible for any
O′ ∈ {OPT�, DIFF�}.

Proof The claim for OPTF and O′ = OPT� is immediate
from Lemmas 7 and 8. Indeed, if OPTF were polynomially
Sπ∪{OPT�}-expressible, then we would be able to polyno-
mially rewrite any pattern of the form P1 OPTF P2 with P1

and P2 over S (i.e., with o-rank 1) to an equivalent pattern
over Sπ ∪{OPT�} and then solve the emptiness problem on
Ga in Δp

2, contrary to Σp
2-hardness of the problem.

The proofs for other three cases are similar; we give one
for DIFFF and O′ = DIFF�. If DIFFF were polynomially
Sπ ∪ {DIFF�}-expressible, then we would be able to poly-
nomially rewrite any P1 OPTF P2, as above, to a pattern over
Sπ ∪ {OPT�} in three steps: first, we would apply (3) to re-
place each OPTF by DIFFF , then apply the expressibility
hypothesis to go to DIFF�, and finally apply (4) to arrive at
OPT�. Even though the resulting pattern may not be equiv-
alent to P1 OPTF P2 (due to possibly different semantics on
the empty graph), it would still have the correct answer on
Ga, and we would be able to decide its emptiness in Δp

2. �

Polynomial Expressibility on Non-Singular

Graphs

The results in Theorem 9 are negative—the ternary ver-
sions of DIFF and OPT are not polynomially expressible via
the binary ones under the commonly believed complexity-
theoretic assumptions (i.e., unless Σp

2 = Δp
2 and the poly-

nomial hierarchy collapses). The proof, however, relies on
a very specific case of singular graphs Ga, which use only
one term (e.g., IRI). In this section we show that, in the pres-
ence of projection, this is the only difficult case, and, if we
have an operator O that gives the same answers as DIFFF
(or OPTF ) on singular graphs, then both OPTF and DIFFF
are polynomially Sπ ∪ {DIFF�, O}-expressible.

By (3) and Theorem 4, DIFFF and OPTF are polynomi-
ally expressible via each other in the presence of projection;
the same applies to DIFF� and OPT�. Since in this section
we focus on Sπ , which includes projection, we use DIFFF
and OPTF (as well as DIFF� and OPT�) interchangeably.
In fact, it will be more convenient to use yet another opera-
tor that is polynomially equi-expressible with DIFFF /OPTF .

Definition 10 For patterns P1, P2, let P1 SETMINUS P2

be a pattern with the following semantics for a graph G
(where ‘\’ is the usual set difference):

�P1 SETMINUS P2�G = �P1�G \ �P2�G.

To prove that SETMINUS is polynomially Sπ ∪{DIFFF }-
expressible (and vice versa), we need some extra notation.
Given a pattern P , an injective mapping θ is called a vari-
able renaming for P if its domain, dom(θ), coincides with
var(P ) and its image is disjoint from var(P ). In other words,
θ renames all variables of P into fresh ones. Given such a θ,
we denote by Pθ the result of replacing each occurrence of
a variable ?v in P by its image, ?vθ. Similar notation, Fθ,
will also be used with filters F . A special filter EQθ for θ is
defined as a conjunction of formulas, for all ?v ∈ dom(θ),

(
bnd(?v) ↔ bnd(?vθ)

) ∧ (
bnd(?v) → ?v = ?vθ

)
.

Intuitively, EQθ filters out solution mappings that disagree
on var(P ) and θ(var(P )).

We are now ready to prove equi-expressibility of DIFFF
and SETMINUS, and begin with the forward direction.

Lemma 11 DIFFF (and, hence, OPTF ) is polynomially
Sπ ∪ {SETMINUS}-expressible.
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Proof For any P1 and P2 over Sπ ∪{SETMINUS} and vari-
able renaming θ for P1 DIFFF P2, we claim that

P1 DIFFF P2 ≡ P1 SETMINUS
(
PROJvar(P1)

FILTERFθ(FILTEREQθ (P1 JOIN P1θ) JOIN P2θ)
)
.

To see this equivalence, observe that, for any graph G, the
answer to the pattern on the right consists of all mappings
μ1 ∈ �P1�G, whose copies μ1θ are not compatible with any
μ2θ ∈ �P2θ�G such that Fθμ1θ⊕μ2θ = true; equivalently,
not compatible with any μ2 ∈ �P2�G with Fμ1⊕μ2 = true.
The latter is just the definition of �P1 DIFFF P2�G. �

The following lemma establishes the converse direction.
Lemma 12 SETMINUS is polynomially Sπ ∪ {DIFFF }-
expressible.

Proof For any P1 and P2 over Sπ ∪ {DIFFF } and variable
renaming θ for P1 SETMINUS P2, we claim that

P1 SETMINUS P2 ≡ P1 DIFFEQθ P2θ.

To see this, observe that, for any G, all solution mappings in
�P1�G are compatible with all mappings in �P2θ�G. Thus,
�P1 DIFFEQθ P2θ�G consists of mappings μ1 ∈ �P1�G that
have no mapping in μ2 ∈ �P2θ�G such that μ1⊕μ2 satisfies
EQθ; in other words, of all mappings in �P1�G \ �P2�G. �

Having established the fact that, in the presence of pro-
jection, SETMINUS is polynomially equi-expressible with
DIFFF and OPTF , we are ready to prove the main result
of this section (note that instead of MONOMINUS below
we may equivalently require existence of MONODIFFF or
MONOOPTF with similar semantics).
Theorem 13 Let MONOMINUS be an operator that gives
the same answers as SETMINUS on singular graphs. Then
SETMINUS is polynomially Sπ ∪ {MONOMINUS, OPT�}-
expressible.

Proof We begin by defining auxiliary patterns. First, for
any variable ?v, consider a pattern whose answers are all
possible bindings of ?v to terms in the graph:

ADOM?v = PROJ{?v}
({?v, ?v′, ?v′′} UNION

{?v′, ?v, ?v′′} UNION {?v′, ?v′′, ?v}).
Then, for each pair of variables, ?u and ?v, consider a pat-
tern that gives all pairs of distinct terms in the graph:

NEQ?u,?v = FILTER?u �=?v

(
ADOM?u JOIN ADOM?v

)
.

We can now separate graphs by the number of terms in them:
two = PROJ∅ NEQ?u,?v,

one = PROJ∅ FILTER¬bnd(?u)({?w, ?w′, ?w′′} OPT� NEQ?u,?v

)
.

It is easy to verify that �two�G �= ∅ if and only if G has at
least two terms and �one�G �= ∅ if and only if G is singular.

Consider now a pattern P1 SETMINUS P2 with variables
V = {?v1, . . . , ?vn}. Let θ and θ′ be variable renamings for
P1 SETMINUS P2 with disjoint ranges. For i = 1, 2, let

P ∗
i = (. . . (FILTER

EQθ−1θ′ (Piθ JOIN Piθ
′)) OPT�

NEQ?v1θ,?v1θ′ . . . ) OPT� NEQ?vnθ,?vnθ′ ;

note that θ−1θ′ is a variable renaming with the range of θ
as its domain such that it maps new variables of θ to corre-
sponding new variables of θ′. It is readily seen that, for any
graph G with at least two terms, �P ∗

i �G consists of solution
mappings with domain V θ ∪ V θ′ and of the form

μθ ⊕ μθ′ ⊕ δ, (10)

where μ ∈ �Pi�G and δ is such that δ(?vθ) �= δ(?vθ′), for
all ?v ∈ V \ dom(μ). We say that μ is the origin of (10)
in �Pi�G; note that the origin is uniquely defined. In other
words, we transform each solution mapping μ in �Pi�G in
the following way: if ?vj is bound in μ then both ?vjθ and
?vjθ

′ are bound by the same value; otherwise, both ?vjθ
and ?vjθ

′ are bound by all possible combinations of different
values.

Let P ∗ = P ∗
1 DIFF� P ∗

2 . Observe that, on graphs with
at least two terms, P ∗ gives the transformed versions of the
mappings in the answer to P1 SETMINUS P2. Indeed, the
domains of all solution mappings in �P ∗

1 �G and �P ∗
2 �G coin-

cide with V θ∪V θ′. So, each μ1 ∈ �P ∗
1 �G is compatible with

at most one μ2 ∈ �P ∗
2 �G; moreover, μ1 can only be com-

patible with μ2 if the domain of the origin of μ1 in �P1�G
coincides with the domain of the origin of μ2 in �P2�G.

We are now in a position to express SETMINUS. We con-
sider three cases for G, which either (a) is empty, or (b) con-
tains exactly one term, or (c) contains at least two terms:

P1 SETMINUS P2 ≡ ON EMPTYP1SETMINUSP2
UNION

((P1 MONOMINUS P2) JOIN one) UNION

(PROJvar(P1)

(
FILTERF (P1 JOIN P ∗)

)
JOIN two),

where F is the following conjunction, for all ?v∈dom(θ):(
bnd(?v) ↔ (?vθ = ?vθ′)

) ∧ (
bnd(?v) → (?v = ?vθ)

)
.

Note that ?vθ and ?vθ′ are bound in all solution mappings
in �P1 JOIN P ∗�G for G with at least two terms. It should be
now clear that the patterns are as required. �

We leave open the question of whether DIFFF and OPTF

are polynomially expressible via their binary counterparts
and patterns that give the same answers on singular graphs
without projection.

Polynomial Expressibility of MonoMinus

In the previous section we have shown that the question
of polynomial Sπ ∪ {OPT�}-expressibility of OPTF boils
down to the existence of an operator MONOMINUS that
gives the same answers as SETMINUS on singular graphs.
By Theorem 9, there is no such polynomially Sπ∪{OPT�}-
expressible MONOMINUS under usual complexity-theoretic
assumptions. In this section, however, we show that if
NP = CONP then MONOMINUS does exist.

Let Σ = {0, 1}. A (partial) multivalued function is a rela-
tion on Σ∗. For a multivalued function f , we write set-f(x)
for the set {y | (x, y) ∈ f}. A transducer is a nondeter-
ministic Turing machine over Σ with read-only input tape,
write-only output tape, read-write work tapes, and accepting
states as usual. A transducer computes a value y on input
x if there is an accepting computation that starts with x on
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the input tape and ends with y on the output tape. Hence, in
general, transducers compute partial multivalued functions.

Let NPMV be the class of multivalued functions com-
puted by nondeterministic polynomial-time bounded trans-
ducers (Book, Long, and Selman 1985) and NPMVNP the
class of multivalued functions computed by polynomial-
time bounded transducers that have access to an NP oracle.

A multivalued function f is strongly metric many-one
polynomial reducible (psm-reducible) to a function g if there
exist polynomially computable functions t1 and t2 such that
set-f(x) = {t2(x, y) | (t1(x), y) ∈ g} for any x (Krentel
1988; Fenner et al. 1999). Intuitively, given a value of g on
t1(x), we can compute in polynomial time a value of f on x
and, by varying over all values of g on t1(x), obtain all val-
ues of f on x. In the sequel, when talking about hardness of
functional problems, we silently assume psm-reductions.

The class NPMV is closed under psm-reducibility. The
multivalued function FSAT, defined so that s̄ is a value
of FSAT(ψ) if and only if s̄ is a satisfying assignment
for propositional Boolean formula ψ(x̄), is complete for
NPMV (Fenner et al. 1999).

Consider now the following multivalued function,
parametrised by a sublanguage B of SPARQL (e.g., a
set of operators). The function FMONOEVALB is de-
fined on (binary representations of) all patterns in B that
do not contain terms: for each such pattern P , the set
set-FMONOEVALB(P ) consists of all binary strings repre-
senting �P �Ga in the sense that 1 in position i of the string
means that the ith variable is bounded by the solution map-
ping and 0 that it is not (we assume that an order on var(P )
is fixed). This function is well-defined because P does not
contain terms, and so, answers on different singular graphs
are the same modulo renaming of the term in the graph.

We can establish NPMV-hardness of computing answers
to patterns over Sπ .

Lemma 14 FMONOEVALSπ
is NPMV-hard.

Proof We prove the claim by reduction of FSAT. Given a
propositional Boolean formula ψ over variables x1, . . . , xn,
consider a pattern

t1(ψ) = FILTERFψ
(U1 JOIN . . . JOIN Un),

where Ui = {(?ui, ?ui, ?ui)} UNION {}, for i ≤ n, and Fψ

is obtained from ψ by replacing each occurrence of xi by
bnd(?ui); see Lemma 8. Note that t1(ψ) is a pattern over Sπ

without terms. Consider a function t2 sending each mapping
μ over ?u1, . . . , ?un to assignments of x1, . . . , xn in such
a way that xi is true if and only if ?ui is bound by μ. The
polynomial functions t1 and t2 define a psm-reduction. �

On the other hand, we have the following for the class SSM
π

of patterns of the form P1 SETMINUS P2, for P1, P2 ∈ Sπ .

Lemma 15 FMONOEVALSSM
π

is in NPMVNP.

Proof Given P1 SETMINUS P2, the algorithm works as
follows: it builds all mappings over var(P1) ∪ var(P2) and
then, for each of them, checks, by means of two oracle calls,
whether the mapping is in the answer to P1 but not to P2. �

We are ready to prove the key lemma in this section.

Lemma 16 If NP = CONP then, for any pattern over SSM
π ,

there is a polynomial-size pattern over Sπ that gives the
same answers on singular graphs.

Proof Consider any P over SSM
π . Let a1, . . . , am be all the

terms that occur in P . It should then be clear that, on singular
graphs, P gives the same answers as the following pattern:

PROJvar(P )

[
FILTER∧

1≤k≤m?v �=ak

(
P0 JOIN B

)
UNION

UNION1≤k≤m FILTER?v=ak

(
Pk JOIN B

)]
, (11)

where B = {(?v, ?v, ?v)}, for a fresh variable ?v, and every
Pk, 0 ≤ k ≤ m, is obtained from P by replacing
– each BGP that contains a term different from ai with

FILTER⊥{} (for k = 0, all BGPs with terms are replaced);
– each ?u = ak in a filter by � and each ?u = a�, for � �= k,

by ⊥ (for k = 0, only the second option is applicable).
We now show that, if NP = CONP then, for each Pk,

0 ≤ k ≤ m, we can construct a polynomial-size pattern P ′
k

over Sπ such that Pk and P ′
k have the same answers on the

singular graph {(ak, ak, ak)} (for k = 0, we take ak = a,
for some fresh a). We then will replace patterns Pk in (11)
by P ′

k to obtain the required polynomial-size pattern over Sπ

that has the same answers as P on arbitrary singular graphs.
Fix some index k in 0, . . . ,m. Observe that Pk is a pat-

tern over SSM
π that contains no terms. If NP = CONP then

NPMV = NPMVNP (Fenner et al. 1999). Hence, there is
a psm-reduction of FMONOEVALSSM

π
to FMONOEVALSπ

,
that is, there are polynomial functions t1 and t2 specifying
the reduction: t1(Pk) is a pattern over Sπ and t2 maps Pk

and each mapping in the answer of t1(Pk) on {(ak, ak, ak)}
to a mapping in the answer of Pk on {(ak, ak, ak)}. Note
that each mapping in the answer to Pk and t1(Pk) is
completely characterised by its domain. Now, t2 is imple-
mentable by a deterministic polynomial-time Turing ma-
chine (transducer) M over alphabet Σ = {0, 1}. It is routine
(see e.g., the proof of the Cook-Levin theorem in (Kozen
2006)) to construct a CNF χM such that χM ∧ χin

ȳ ∧ χout
z̄ is

satisfiable if and only if M, having started with ȳ written on
the input tape, terminates with z̄ written on the output tape
(here, χin

ȳ and χout
z̄ are conjunctions of propositional literals

that encode the contents of the input tape in the initial state
and the contents of the output tape in the final state, respec-
tively). Let x1, . . . , xn be the variables in χM and let FM

be the result of replacing each occurrence of xi in χM with
bnd(?ui). The variables encoding the contents of the input
tape consists of two parts: variables x′

1, . . . , x
′
� representing

pattern Pk as the first argument of t2 and the variables cor-
responding to the free (not projected out) variables of the
pattern t1(Pk) as the second argument. Without loss of gen-
erality, we assume that the variables encoding the contents
of the output tape correspond to the free variables of Pk.

We now define P ′
k by taking

PROJvar(Pk) FILTERF

((
U1 JOIN . . . JOIN Un

)
JOIN t1(Pk)

)
,

where all the Ui are as in the proof of Lemma 14, and F is
a conjunction of FM and filters for each 1 ≤ j ≤ �, which
are bnd(?u′

j) if jth bit in the representation of Pk is 1, and
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¬bnd(?u′
j), otherwise. It should be clear that the size of P ′

k
is polynomial in the size of Pk, and they give the same an-
swers on {(ak, ak, ak)}. �

Combining this lemma with Theorem 13 we obtain the
last result of this section.

Theorem 17 Provided that NP = CONP, operators OPTF

and DIFFF are polynomially Sπ ∪ {O′}-expressible for any
O′ ∈ {OPT�, DIFF�}.

Expressivity of MINUS

Operators DIFF and OPT, studied in the previous sections,
comprise non-monotonic tools in SPARQL 1.0. Version 1.1,
however, also includes operator P1 MINUSP2, which checks
whether a mapping from P1 is extendable to a mapping from
P2 with an overlapping domain. In this section we compare
the expressive power of MINUS and the 1.0 operators. In
particular, we show that MINUS is polynomially expressible
via DIFFF and OPTF , but does not give the full power of
DIFF� and OPT�, even in the presence of projection.

Theorem 18 MINUS is polynomially {DIFFF }- and
{OPTF , FILTER}-expressible.

Proof We can express MINUS using the following equiva-
lences (recall that JOIN is {FILTER, OPT�}-expressible):

P1 MINUS P2 ≡ P1 DIFFF P2θ,

P1 MINUS P2 ≡ FILTER¬bnd(?u)

(P1 OPTF (P2θ JOIN {(?u, ?v, ?w)})),
where θ is a variable renaming for P1 MINUS P2 and

F =
∧

?v∈dom(θ)
(bnd(?v) ∧ bnd(?vθ) → ?v = ?vθ)

∧
∨

?v∈dom(θ)
(bnd(?v) ∧ bnd(?vθ))

(in particular, F = ⊥ if var(P1)∩var(P2) = ∅). For the first
equivalence, observe that P1 and P2θ do not share variables
and so, for any graph G, every solution mapping in �P1�G
is compatible with any solution mapping in �P2θ�G. Thus,
�P1DIFFFP2θ�G contains only those solution mappings μ in
�P1�G that have no compatible solution mapping in �P2�G,
whose domain overlaps dom(μ), as defined by F .

For the second equivalence, note again that P1 and
P2θ JOIN {(?u, ?v, ?w)} contain no shared variables and
that FILTER¬bnd(?v) leaves only the solution mappings in
�P1 DIFFF (P2θ JOIN{(?u, ?v, ?w)})�G, for any G. The rest
of the argument is similar to the case of DIFF�. �

Theorem 18 shows polynomial S ∪ {DIFFF }- and S ∪
{OPTF }-expressibility of MINUS. The former follows, of
course, from (3) and the latter, but the theorem states that it
is enough to have only DIFFF . Then, by Theorem 6, MINUS
is also S∪{DIFF�}- and S∪{OPT�}-expressible. We leave
open the question of whether it can be done polynomially
(possibly, with projection), but show non-expressibility of
DIFF and OPT via MINUS.

Theorem 19 DIFF� and OPT� are not Sπ ∪ {MINUS}-
expressible.

Proof We claim that patterns P over {MINUS} ∪ S enjoy
the following property:

if μ∅ ∈ �P �∅ then μ∅ ∈ �P �G, for any G. (12)
The proof of the claim is by induction on the structure of
the pattern P . The basis of induction, for a BGP B in P ,
follows from the observation that μ∅ ∈ �B�∅ is only possible
if B = {}, whence, μ∅ ∈ �{}�G, for any G. For the inductive
step, consider all the operators.
– If μ∅ ∈ �FILTERF P1�∅ then μ∅ ∈ �P1�∅ and Fμ∅

is true, whence, by the induction hypothesis, μ∅ ∈
�FILTERF P1�G, for any G.

– If μ∅ ∈ �P1 UNIONP2�∅, then μ∅ ∈ �Pi�∅ for either i = 1
or 2, whence, by the induction hypothesis, μ∅ ∈ �Pi�G,
for any G, and so, μ∅ ∈ �P1 UNION P2�G, for any G.

– If μ∅ ∈ �P1 JOIN P2�∅, then μ∅ ∈ �P1�∅ and μ∅ ∈ �P2�∅,
whence, by the induction hypothesis, μ∅ ∈ �P1�G and
μ∅ ∈ �P2�G, for any G, and so, μ∅ ∈ �P1 JOIN P2�G.

– If μ∅ ∈ �P1 MINUS P2�∅, then μ∅ ∈ �P1�∅, whence, by
the induction hypothesis, μ∅ ∈ �P1�G, for any G, and
so, as dom(μ∅) does not overlap the domain of any other
solution mapping, μ∅ ∈ �P1 MINUS P2�G, for any G.

– If μ∅ ∈ �PROJV P1�∅, then μ∅ ⊕ μ ∈ �P1�∅, for μ with
dom(μ) ∩ V = ∅. By (2), μ = μ∅. By the induction hy-
pothesis, μ∅ ∈ �P1�G and μ∅ ∈ �PROJV P1�G, for any G.

This completes the proof of the claim.
To show that DIFF� is not Sπ ∪ {MINUS}-expressible,

consider pattern P = {} DIFF� {(?u, ?v, ?w)}. We have
�P �∅ = {μ∅} and �P �G = ∅, for any G �= ∅. If P were
equivalent to a pattern P ′ over Sπ ∪ {MINUS}, then since
μ∅ ∈ �P ′�∅, by (12), we would have μ∅ ∈ �P ′�G, for any
G, contrary to P ′ being equivalent to P .

The proof for OPT� is similar: it is enough to consider
pattern P = {} OPT� {(?u, ?v, ?w)}. �

Conclusions and Future Work
We studied the problem of expressing non-monotone
SPARQL operators. Our results show that projection has a
dramatic effect, and polynomial expressibility of OPTF and
DIFFF is connected to open problems in complexity theory:
in fact, contrary to popular belief, the ternary OPTF is not
polynomially expressible via the binary OPT� if Δp

2 �= Σp
2.

Besides several open questions mentioned in the text, a
different and interesting problem is whether any pattern over
some B is expressible as a pattern of polynomial size over
another B′. Although our strong negative results carry over,
the notion of polynomial expressibility in this paper assumes
that operators in B \ B′ are applied only at the outermost
level, without any nesting. In this stricter sense, however,
even polynomial expressibility of P1 OPT� P2 via DIFF� is
not clear because both Pi occur twice in expression (3).
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