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Abstract

In temporal logics, the operator F expresses that at some time
in the future something happens, e.g., a request is eventually
granted. Unfortunately, there is no bound on the time un-
til the eventuality is satisfied which in many cases does not
correspond to the intuitive meaning system designers have,
namely, that F abstracts the idea that there is a bound on this
time although its magnitude is not known. An elegant way
to capture this meaning is through Prompt-LTL, which ex-
tends LTL with the operator FP (“prompt eventually”). We
extend this work by studying alternating-time epistemic tem-
poral logics extended with FP.
We study the model-checking problem of the logic Prompt-
KATL∗, which is ATL∗ extended with epistemic operators
and prompt eventually. We also obtain results for the model-
checking problem of some of its fragments. Namely, of
Prompt-KATL (ATL with epistemic operators and prompt
eventually), Prompt-KCTL∗ (CTL∗ with epistemic operators
and prompt eventually), and finally the existential fragments
of Prompt-KATL∗ and Prompt-KATL.

Introduction

Alternating-time temporal logics are expressive tools for
reasoning about multi-agent systems (Alur, Henzinger, and
Kupferman 2002; van der Hoek and Wooldridge 2002;
Chatterjee, Henzinger, and Piterman 2010; Mogavero et al.
2014). These powerful logics allow one to express individ-
ual or common goals of the agents throughout time, as well
as specify the interactions among the agents (cooperation
or adversarial). Model checking (Clarke and Emerson 1981;
Queille and Sifakis 1981) specifications written in these
logics allows one to verify the correct behavior of multi
agent systems using recently developed practical automatic
tools (Lomuscio, Qu, and Raimondi 2009; Čermák et al.
2014; Čermák, Lomuscio, and Murano 2015).

A pioneering logic in this field is Alternating-Time Tem-
poral Logic (ATL∗) and its fragments ATL (Alur, Hen-
zinger, and Kupferman 2002), and CTL∗ (Emerson and
Halpern 1986). ATL∗ formulas are usually interpreted over
concurrent game structures (CGS), which are labeled-state
transition-systems with the ability of modeling the interac-
tion among agents. For example, in a system with multiple
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agents and shared resources, the fact that a set of agents A
can ensure that, regardless of the actions of the other agents,
every request to access a resource is eventually granted, can
be expressed by the ATL∗ formula 〈〈A〉〉G(req → F grant).

A crucial shortcoming in real-life temporal-logic verifi-
cation, deeply ingrained in the definition of linear-temporal
logic (LTL), is that the satisfaction of a formula like F grant
implies no a priori bound on when the grant occurs. I.e., the
system may admit executions with longer and longer delays
before the grant, and yet still satisfy the formula F grant.
Replacing the above formula with a formula specifying that
the grant should occur within some fixed number of steps
(say 3) is usually not an option, since one usually does not
know the maximal delay that should be expected. This fact,
that the F operator of temporal-logics fails to capture the in-
tuitive meaning of “within some bounded amount of time”
has motivated the introduction of an extension of LTL, called
“prompt-LTL”, in (Kupferman, Piterman, and Vardi 2009;
Alur et al. 2001) that includes a new operator FP called
“prompt eventually”. The semantics of FP φ is such that it is
satisfied only if there is some bound k, which is shared by all
behaviours/computations of the system, such that whenever
FP ψ should hold at some point along a computation then
ψ holds within at most k steps. (Kupferman, Piterman, and
Vardi 2009) goes on to show that prompt-LTL model check-
ing is not more costly and slightly more complicated than
LTL-model checking. It is important to note that prompt-
LTL formulas are in positive normal form (i.e., with nega-
tions pushed all the way to the atoms), but it does not in-
clude the dual operator GP of the FP operator (however, the
operator G is included). As argued in (Kupferman, Piterman,
and Vardi 2009), on the one hand GP is less useful than FP

(its meaning is that there is some global bound k such that
whenever GP ψ should hold then ψ holds for at least k steps,
and we do not care afterwards), and on the other hand adding
it to the logic seriously complicates the decision procedures.

Since ATL∗ inherits its temporal operators from LTL it is
natural to consider extending it with the FP operator, thus
allowing one to specify that eventualities should not be de-
layed for an unbounded number of steps1. We believe that,
in a multi-agent setting, the need for the FP operator is ar-

1It is an intriguing open question whether one can write in
ATL∗ (or CTL∗) a formula that is equivalent to FP.
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guably even more natural than for closed single-agent sys-
tems (for which LTL is suited) as it allows one to specify that
certain agents should not have the power to unboundedly de-
lay other agents. Hence, we extend ATL∗ to include the FP

operator. We combine this with the extension of ATL∗ with
epistemic operators that allow one to express what different
agents know in a setting with imperfect information.

Reasoning about agents’ strategies in open system veri-
fication may require to act under partial information about
the states of the system (Aminof, Murano, and Vardi 2007;
Jamroga and Ågotnes 2007; Aminof et al. 2013; Bulling and
Jamroga 2014; Huang and van der Meyden 2014; Jamroga
and Murano 2015).In many practical scenarios such as web-
banking attacks, card games, market auctions, etc., agents
have indeed a limited observability about the state content.
One may think of states containing some private information
that are visible only to a (possibly empty) subset of play-
ers (Reif 1984; Kupferman and Vardi 1997a). Each agent
chooses his strategy based on what he can observe. To work
with incomplete information systems, the syntax and the
semantics of ATL∗ has been properly extended with epis-
temic operators (van der Hoek and Wooldridge 2002). The
resulting logic is known as KATL∗, sometimes simply called
ATL∗ with imperfect information.

Our contribution We address the question of verify-
ing prompt branching-time specifications in multi-agent
systems for the first time. We present an extension of
KATL∗ with the prompt eventually temporal operator, called
Prompt-KATL∗. We study the model-checking problem of
this logic and some of its fragments. Namely, of Prompt-
KATL (ATL with epistemic operators and prompt eventu-
ally), Prompt-KCTL∗ (CTL∗ with epistemic operators and
prompt eventually), and finally the existential fragments of
Prompt-KATL∗ and Prompt-KATL. We show that, for the
case of perfect information, model-checking is decidable
and not harder than for these logics without the prompt even-
tually operator. For the case of imperfect information, note
that model checking of ATL∗, and even ATL, over concur-
rent game structures with more than two agents and imper-
fect information is undecidable ((Pnueli and Rosner 1989;
Dima and Tiplea 2011)). Moreover, by (Vester 2013), this is
already the case for the existential fragment of ATL. How-
ever, we show that the imperfect information case is always
decidable for Prompt-KCTL∗, and for Prompt-KATL∗ and
Prompt-KATL it is decidable in the following two cases: (i)
the players are constrained to memoryless strategies, or (ii)
the players use memory-full but cooperative strategies and
one restricts to the existential fragments of Prompt-KATL∗
and Prompt-KATL. Furthermore, in all cases, the complex-
ity of our procedures is as good as for the non-prompt ver-
sion of these logics.2

Related work In (Alur et al. 2001), the authors intro-
duce a parameterised extension of LTL in which the tem-
poral operators are associated with variables in order to

2Except for the case of Prompt-KATL with memoryless strate-
gies for which we only show membership in PSPACE.

count the steps between successive occurrences of different
events. A fragment of this logic is closely studied in (Kupfer-
man, Piterman, and Vardi 2009), i.e., the extension of LTL
by the prompt eventuality operator FP, called Prompt LTL.
In (Almagor, Hirshfeld, and Kupferman 2010) the automata-
theoretic counterpart of the FP operator has been also intro-
duced and studied.

Only recently has prompt LTL been studied outside the
realm of closed systems. (Zimmermann 2013) studies two-
player turn-based games of perfect information with respect
to prompt LTL. (Chatterjee, Henzinger, and Horn 2009) lift
the prompt semantics to ω-regular games, under the par-
ity winning condition, by introducing finitary parity games.
They make use of the concept of “distance” between po-
sitions in a play that refers to the number of edges tra-
versed in the game arena. The classical parity winning
condition is then reformulated to take into consideration
only those states occurring with a bounded distance. This
idea has also been generalised to deal with more involved
prompt parity conditions (Fijalkow and Zimmermann 2012;
Mogavero, Murano, and Sorrentino 2013). Finally, from
a practical point of view, one can see connections with
bounded model checking of open systems. Indeed, a central
question there is whether a model satisfies a given formula
by looking at the model up to depth k. We refer to (Huang,
Luo, and Van Der Meyden 2011) for an overview.

Due space limitation, most of the proofs are just sketched.

Definitions

Basic Notation

We denote the set of integers by N, and write N0 := N∪{0}.
For a set Γ, we write Γω (resp. Γ∗) for the set of infinite
(resp. finite) sequences (also called words) of elements in Γ,
and Γ+ for the non-empty finite sequences. We count posi-
tions in a sequence starting with 0, and write wi for the i′th
element (called letter) of a wordw. The length (in N0∪{∞})
of w is written |w|. The suffix wiwi+1 · · · of w is written
w≥i and w≤i is the prefix w0 · · ·wi of w. We usually write
a instead of the singleton set {a}. Given n ∈ N, we consider
a function f with domain {1, . . . , n} as a vector with n coor-
dinates. Thus we may write f = (f1, . . . , fn), and use f(i)
and fi interchangeably.

Game Structures

As for KATL∗, models of Prompt-KATL∗ are Imperfect In-
formation Concurrent Game Structures (iCGS), i.e., struc-
tures of the form S = 〈Ag,AP, Act, S, λ, δ, {∼a: a ∈ Ag}〉
where:
- Ag is a finite non-empty set of agents (also called players;
- AP is a finite non-empty set of atoms; Act is a finite non-

empty set of actions for the agents;
- S is the set of states of the game structure;
- λ : S → 2AP is a labeling function that assigns to a state
s the set λ(s) of atoms that hold in that state;

- δ : S × ActAg → S is a transition function that assigns
to every state, and every choice of actions — one for each
agent — a successor state;
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- and ∼a⊆ S × S is an equivalence relation representing
the imperfect information of agent a, i.e., s ∼a s

′ means
that agent a cannot distinguish between s and s′.

The equivalence-classes of ∼a are called the observation
sets of agent a. The set ActAg is called the set of decisions.
An iCGS is called finite if the set S is finite. An iCGS has
perfect information if for every a ∈ Ag we have that ∼a is
the equality relation, i.e., if s ∼a s

′ implies that s = s′. In
this case it may be written CGS.

Observe that we assume that all agents use the same set of
actions Act. However, it is sometimes convenient to assume
that each agent a uses only some non-empty subset Acta ⊆
Act of actions (one can simply define the transition relation
to have all actions in Act\Acta duplicate the effect of some
action in Acta)3.
Computations and Strategies. A path in S is a finite or
infinite sequence π0π1 · · · ∈ Sω ∪ S+ such that for all i
there exists a decision d ∈ ActAg such that πi+1 = δ(πi, d).
We call finite paths histories, and infinite ones computations
or plays. The set of computations in S is written cmp(S),
and the set of computations in S that start with s is written
cmp(S, s). We define hist(S) and hist(S, s) similarly.

A strategy (for a single agent) is a function σ : hist(S) →
Act. For a non-empty set A ⊆ Ag of agents, and a strategy
σa for each a ∈ A, write ΣA := {σa : a ∈ A} for the
set of strategies. A path π is consistent with ΣA if it can be
obtained by having the agents in A follow their strategies
in ΣA, i.e., if for every position πi of π there exists d ∈
ActAg such that: i) πi+1 ∈ δ(πi, d) and; ii) for every a ∈ A,
d(a) = σa(π≤i). The set of computations starting with s that
are consistent with ΣA, written out(s,ΣA), is called the set
of outcomes of ΣA from s.

For A ∈ Ag, we derive the following equivalence rela-
tions: ∼A:= ∩a∈A ∼a, and ∼C

A:= (∪a∈A ∼a)
∗, where ∗

denotes the transitive closure (with respect to composition).
Note that ∼{a}=∼a, and we use these interchangeably.

Extend ∼A to histories point-wise: if hs and h′s′ are his-
tories and h ∼A h′ and s ∼A s′ then hs ∼A h′s′. A strategy
σ is observational for agent a if for all h ∼a h′, we have
σ(h) = σ(h′). A set ΣA of strategies for the agents in A is
cooperatively observational if for all h ∼A h′ and a ∈ A,
we have σa(h) = σa(h

′).4
2-Player Games. The proofs of Propositions 3 and 4 use
the following notions. A 2-player concurrent game is a pair
〈S,Υ〉 where S is an iCGS (called an arena) with two players
(usually Ag = {0, 1}), and Υ ⊆ cmp(S) is a goal. A play
π ∈ cmp(S) is won by Player 0 if π ∈ Υ, and is won by
Player 1 otherwise. Given s ∈ S, an observational strategy
σi for Player i ∈ {0, 1} is called winning from s (and we say
that Player i wins from s) if all plays starting in s that are
consistent with σi are won by Player i (i.e., if out(s, σi) ⊆
Υ). An LTL formula ψ induces a goal Υ := {π ∈ cmp(S) |

3More formally, require that for every agent a, there is some
action α ∈ Acta, such that for every d ∈ ActAg and s ∈ S, we
have: if d(a) ∈ Act \ Acta then δ(s, d) = δ(s, d′), where d′ is
obtained from d by letting d′(a) = α.

4Agents using cooperative strategies are sometimes referred to
as having distributive knowledge.

π |= ψ}, and we usually just say that the game has goal ψ.
If Player 0 wins from s in the game with goal ψ we say that
he can enforce ψ from s.

Syntax of Prompt-KATL∗.

Fix a finite set of atomic propositions (atoms) AP, and a
finite set of agents Ag. The Prompt-KATL∗ state (ϕ) and
path (ψ) formulas over AP and Ag are built using the fol-
lowing context-free grammar:

ϕ ::=p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈〈A〉〉ψ | [[A]]ψ |
Kaϕ | DAϕ | CAϕ | K̃aϕ | D̃Aϕ | C̃Aϕ

and

ψ ::= ϕ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ | ψ Rψ | FP ψ

where p varies over AP, A varies over subsets of Ag, and
a over elements of Ag. The class of Prompt-KATL∗ formu-
las is the set of state formulas generated by the grammar.

The temporal operators are X (next), U (until), R (re-
leases, the dual of until) and FP (prompt eventually); the
strategy quantifiers are 〈〈A〉〉, [[A]], where 〈〈A〉〉ψ is read “the
agents in A can enforce ψ”, and its dual [[A]]ψ is read “the
agents inA cannot avoid ψ”; and the epistemic operators are
Ka (agent a knows that), DA (the agents in A distributively
know that), and CA (amongst the agents in A it is common
knowledge that), as well as the dual operators K̃a, D̃A, C̃A.
Observe that, as discussed in the introduction, we do not in-
clude a dual operator to FP. Also note that if one removes the
prompt eventually operator then the grammar above gener-
ates exactly all the formulas of KATL∗ in positive normal
form (i.e., with negations pushed all the way to the atoms).

We have the usual syntactic sugar: we write Fϕ (eventu-
ally) instead of trueUϕ; (globally) Gϕ instead of false Rϕ;
E (exists) instead of 〈〈Ag〉〉, and A (for all) instead of [[Ag]];
E (everybody knows) instead of ∧a∈AgKa (and its dual Ẽ for
∨a∈AgK̃a). Finally, we use a shorthand for repeated next: Xk

(for k ∈ N) is defined as: X1 := X, and Xk+1 := XXk.
We now define some important syntactic fragments.

1. Prompt-ATL∗ formulas consists of the formulas of
Prompt-KATL∗ in which no epistemic operator occurs.

2. Prompt-ATL formulas consists of the formulas of
Prompt-ATL∗ in which every temporal operator is im-
mediately preceded by a strategy quantifier.

3. Prompt-KCTL∗ is obtained from Prompt-KATL∗ by
only allowing strategy quantifiers of the form E and A.

4. Prompt-LTL is the class of path formulas generated by
the grammar above in which no strategy quantifier or epis-
temic operator appears.

5. The existential fragments of Prompt-KATL∗ and
Prompt-KATL consist of those formulas in which the
[[A]] quantifier does not occur.

Semantics of Prompt-KATL∗.

We first define the semantics of KATL∗ (i.e., formulas that
don’t mention the prompt operator FP), and then define the
semantics of Prompt-KATL∗.
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Semantics of KATL∗. The satisfaction relation |= is defined
inductively, as usual. Formally, for all s ∈ S, p ∈ AP:
- (S, s) |= p iff p ∈ λ(s), and (S, s) |= ¬p iff p �∈ λ(s).
- (S, s) |= ϕ1 ∧ ϕ2 iff (S, s) |= ϕ1 and (S, s) |= ϕ2.
- (S, s) |= ϕ1 ∨ ϕ2 iff (S, s) |= ϕ1 or (S, s) |= ϕ2.
- (S, s) |= 〈〈A〉〉ψ iff there exists a set of observational

strategies ΣA, one for each agent in A, s.t. (S, π) |= ψ
for all π ∈ out(s,ΣA).

- (S, s) |= [[A]]ψ iff for every set of observational strategies
ΣA, one for each agent in A, there is a computation π ∈
out(s,ΣA) s.t. (S, π) |= ψ.

- (S, s) |= Kaϕ (resp. K̃aϕ) iff (S, s′) |= ϕ for every s′
(resp. some s′) s.t. s′ ∼a s.

- (S, s) |= DAϕ (resp. D̃Aϕ) iff (S, s′) |= ϕ for every s′
(resp. some s′) s.t. s′ ∼A s.

- (S, s) |= CAϕ (resp. C̃Aϕ) iff (S, s′) |= ϕ for every s′
(resp. some s′) s.t. s′ ∼C

A s.
and for all π ∈ cmp(S):
- (S, π) |= ϕ, for ϕ a state formula, iff (S, π0) |= ϕ.
- (S, π) |= ψ1 ∧ ψ2 iff (S, π) |= ψ1 and (S, π) |= ψ2.
- (S, π) |= ψ1 ∨ ψ2 iff (S, π) |= ψ1 or (S, π) |= ψ2.
- (S, π) |= Xψ iff (S, π≥1) |= ψ.
- (S, π) |= ψ1 Uψ2 iff there i ∈ N such that (S, π≥i) |= ψ2

and for all j < i, (S, π≥j) |= ψ1.
- (S, π) |= ψ1 Rψ2 iff for all i, either (S, π≥i) |= ψ2 or

there exists j < i such that (S, π≥j) |= ψ1.
We emphasise two points: strategies have perfect recall,

and epistemic operators depend only on the current state and
not on the history (the latter appears, e.g., in (Čermák et al.
2014)).
Semantics of Prompt-KATL∗. For k ∈ N, we use the no-
tation (S, s) |=k ϕ and (S, π) |=k ψ to denote that the for-
mula is satisfied in which every prompt eventuality is ful-
filled within at most k steps. Formally: define (S, s) |=k ϕ
and (S, π) |=k ψ inductively, as above,5 with the following
additional rule:
- (S, π) |=k FP ψ iff there exists j ≤ k such that
(S, π≥j) |=k ψ. Say that π models ψ with bound k.

Definition 1. For a Prompt-KATL∗ state-formula ϕ and
s ∈ S, define (S, s) |= ϕ iff there exists k ∈ N such that
(S, s) |=k ϕ. Say that ϕ is satisfied at s.

Linearising branching-formulas and

Prompt-LTL
Like CTL∗, and ATL∗ after it, one can think of a Prompt-
KATL∗ path formula ψ over atoms AP as a Prompt-LTL
formula lin(ψ) over atoms which are the maximal state sub-
formulas of ψ, as follows (Kupferman, Vardi, and Wolper
2000).

5Thus, e.g., (S, π) |=k ψ1 Uψ2 iff there i ∈ N such that
(S, π≥i) |=k ψ2 and for all j < i, (S, π≥j) |=k ψ1.

A formula ϕ is a state subformula of ψ if ϕ is a state
formula as well as a subformula of ψ. A formula ϕ is a max-
imal state subformula of ψ if ϕ �= ψ, it is a state subformula
of ψ, and it is not a proper subformula of any other state
subformula of ψ. Let max(ψ) be the set of maximal state
subformulas of ψ.

Every Prompt-KATL∗ path formula ψ can be viewed as
a Prompt-LTL formula, call it lin(ψ), whose atoms are ele-
ments of max(ψ). Formally:

Definition 2. For a path formula ψ, define lin(ψ) as follows
— in each case note that lin(ψ) is a formula over atoms
max(ψ):

- lin(p) := p and lin(¬p) := ¬p;
- For ◦ ∈ {〈〈A〉〉, [[A]],Ka,DA,CA}, lin(◦ψ) := ◦ψ;
- If ψ = φ1◦φ2 for ◦ ∈ {∨,∧}, then lin(φ1◦φ2) is defined

to be lin(φ1) ◦ lin(φ2) (note this is well defined since at
least one φi is not a state formula);

- For ◦ ∈ {X,FP}, lin(◦φ) := ◦lin(φ);
- For ◦ ∈ {U,R}, lin(ψ1 ◦ ψ2) := lin(ψ1) ◦ lin(ψ2).

For example, if ψ = (pU〈〈A〉〉FP q) ∨ X¬p, then its
state subformulas are {p, 〈〈A〉〉FP q, q,¬p}, and max(ψ) =
{p, 〈〈A〉〉FP q,¬p}, and thus lin(ψ) is the Prompt-LTL for-
mula ( p U 〈〈A〉〉FP q ) ∨ X ¬p over the atoms max(ψ)
(for illustration we box the subformulas that are treated as
atoms).

For an iCGS S := 〈Ag,AP, Act, S, λ, δ, {∼a: a ∈ Ag}〉,
and a Prompt-KATL∗ path formula ψ over AP, define the
iCGS Sψ := 〈Ag,max(ψ), Act, S, λ, δψ, {∼a: a ∈ Ag}〉
with atoms max(ψ) and a labeling λψ : S → 2max(ψ) de-
fined by letting ϕ ∈ λψ(s) iff (S, s) |= ϕ. The next lemma
says that a computation π of S satisfies ψ iff, when viewed
as a computation of Sψ , it satisfies lin(ψ):

Lemma 1. For every iCGS S, Prompt-KATL∗ path formula
ψ over atoms AP, and computation π of S, we have that
(S, π) |= ψ if and only if (Sψ, π) |= lin(ψ).

Proof. The proof is by induction on the structure of ψ, us-
ing the following inductive hypothesis on the subformulas
φ of ψ (that are not proper subformulas of any formula
in max(ψ)): for every position i ∈ N of π, we have that
(S, π≥i) |= φ iff (Sψ, π≥i) |= lin(φ).

Prompt linear-temporal logic.

We now consider Prompt-LTL in more detail.
Notation. For a path π ∈ cmp(S) and a Prompt-LTL

formula ψ, write π |= ψ instead of (S, π) |= ψ. Also, if
v ∈ (2AP)ω then we abuse notation and write v |= ψ.

Recall from the definitions of syntax that we define
Prompt-LTL as the syntactic fragment of Prompt-KATL∗ in
which 〈〈A〉〉 and [[A]] do not occur. Thus, if ψ is a Prompt-
LTL formula and S is a CGS, then (S, s) |= Aψ expresses
that there is a bound k ∈ N such that for every π ∈ cmp(S)
starting in s we have that (S, π) |=k ψ.6

6Remark: the syntax in (Kupferman, Piterman, and Vardi 2009)
is different. There they write, e.g., S |= ψ instead of S |= Aψ.
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Proposition 1. (Kupferman, Piterman, and Vardi 2009) The
following problem is decidable: given Prompt-LTL formula
ψ, a finite CGS S, and a state s ∈ S, decide whether
(S, s) |= Aψ. Moreover, the complexity is PSPACE in the
size of ψ and NLOGSPACE in the size of S.

The previous proposition allows us to deal with universal
quantifiers. We now deal with the existential quantifier.

Definition 3. If ψ is a Prompt-LTL formula, define live(ψ)
as the LTL formula that results from ψ by replacing every
FP by F.

The following lemma says that (S, s) |= Eψ if and only
if (S, s) |= E live(ψ). The reason, roughly, is as follows.
For the forward direction, note that if ψ holds promptly on
a computation, then in particular, it holds eventually (this
is because our formulas are in positive-normal form and so
the prompt eventualities can not be negated). For the reverse
direction, use the fact that if S has a computation satisfying
live(ψ) then it has such a computation that is a lasso, i.e.,
of the form uvω (this holds for all LTL formulas, and thus
live(ψ) in particular, (Vardi and Wolper 1994)). In this case,
every subformula of ψ that holds in a suffix π≥j of π (with
j ≥ |u| + |v|) also holds in the suffix π≥j−|v|. Thus all
eventualities hold promptly (i.e., within |u|+ |v| steps). The
formal proof is in the full version of the paper.

Lemma 2. If π = uvω is a lasso, and ψ is a Prompt-LTL
formula, then the following are equivalent:

a) π |= ψ,
b) π |= live(ψ),
c) π |=b ψ where b = |u|+ |v|.

Proof. Clearly c) → a). For a) → b) an easy induction on
ψ shows that for every computation π, and every k ∈ N,
if π |=k ψ then π |= live(ψ). For b) → c) we prove, by
induction on ψ, that for all i ∈ N, and all subformulas ψ′
of ψ: if π≥i |= live(ψ′) then π≥i |=b ψ′ (to complete the
proof take i = 0 and ψ′ = ψ). The only non-trivial case
is ψ′ = FP ψ1. Thus, suppose π≥i |= live(FP ψ1). Then
π≥i |= F live(ψ1), and so there exists j ≥ i such that π≥j |=
live(ψ1). There are two cases.

Suppose j < |u|. By induction, π≥j |=b ψ1, and so
π≥i |=max{j−i,b} FP ψ1. Since j − i < |u| − i < b, we
have that π≥i |=b FP ψ1, as required.

Suppose j ≥ |u|. Pick n0 so that max{i, |u|} ≤
j − |v|n0 ≤ max{i, |u|} + |v|. Since π = uvω , we
have that π≥j−|v|n0

is equal to πj . Thus π≥j−|v|n0
|=

live(ψ1), and so by induction π≥j−|v|n0
|=b ψ1, and so

π≥i |=max{j−|v|n0−i,b} FP ψ1. Since j − |v|n0 − i ≤
max{i, |u|}+|v|−i ≤ |u|+|v| = b, we have π≥i |=b FP ψ1,
as required.

We now get:

Proposition 2. For every Prompt-LTL formula ψ, CGS S,
and state s ∈ S, we have that (S, s) |= Eψ if and only if
(S, s) |= E live(ψ). Moreover, the cost of checking this fact
is PSPACE in the size of ψ and NLOGSPACE in the size of S.

Proof. Since live(ψ) is an LTL formula, we have that
(S, s) |= E live(ψ) if and only if there is a lasso π = uvω

starting in s such that (S, π) |= live(ψ) (Vardi and Wolper
1994). By Lemma 2 this is equivalent to (S, π) |=b ψ
where b = |u| + |v|. By definition of |=b, this is equiv-
alent to (S, s) |= Eψ. The complexity follows from the
model-checking complexity of LTL (Sistla and Clarke 1985;
Kupferman, Piterman, and Vardi 2009).

The final lemma of this section will be used in the proof
of Proposition 4 (used as part of Theorem 4 on co-operative
strategies). The lemma relies on the alternating-color tech-
nique from (Kupferman, Piterman, and Vardi 2009), that we
now describe. Given a computation π of an iCGS S, add
a new atomic proposition red, and imagine that states in
which red holds are colored red, and otherwise white. Given
a Prompt-LTL formula ψ, derive from it an LTL formula
col(ψ) by replacing every subformula of the form FP φ with
a subformula that says that φ holds before the color changes
twice. Now, if we can come up with a coloring of π in which
the colors alternate fast enough (say every k steps or less),
such that the colored version of π models col(ψ), then we
can deduce that π models ψ with bound 2k; conversely, if
π models ψ with bound k, then by changing colors every k
steps we can ensure that col(ψ) is satisfied. This allows us
to replace reasoning about Prompt-LTL formulas with rea-
soning about colorings and LTL formulas. We now formally
describe the required elements for applying this reasoning.

For w ∈ (2AP∪{red})ω , a block is a maximal subword
wi · · ·wj of w such that red ∈ wl for all l ∈ [i, j] or red �∈
wl for all l ∈ [i, j]. For k ∈ N, say that w is k-coloured if
the size of every block of w has length at most k. Say that
w ∈ (2AP∪{red})ω is a colouring of v ∈ (2AP)ω if and only
if for every i, wi ∩ AP = vi. Say that w is a k-colouring of
v if w is a colouring of v and is k-coloured.

For a Prompt-LTL formula ψ, let ψ′ be the LTL for-
mula obtained by replacing every subformula of ψ, of
the form FP φ, by within(φ) := (redU(¬redUφ)) ∨
(¬redU(redUφ)), which states that φ should hold at some
point within this color block or the next. Let col(ψ) :=
ψ′ ∧ ρ, where ρ := GF(red ∧ X¬red) states that the col-
ors change infinitely often. It is important to note that while
col(ψ) is exponentially larger than ψ, the number of sub-
formulas it has is linear in the number of subformulas of ψ.

Lemma 3. For every Prompt-LTL formula ψ, word v ∈
(2AP)ω and k ∈ N: (i) if there is a k-colouring w of v such
that w |= col(ψ) then v |=2k ψ; (ii) if v |=k ψ then there
is a k-colouring w of v such that w |= col(ψ), moreover, w
can be chosen with all blocks of size exactly k.

Proof. Although this lemma is easily extractable
from (Kupferman, Piterman, and Vardi 2009), for com-
pleteness we provide the proof. For (i), given a k-colouring
w of v, if w |= col(ψ) then the result (that w |=2k ψ)
follows by induction on ψ and the following observation:
for every i ∈ N and every subformula FP φ of ψ, we have
w≥i |= within(φ) implies that v≥i |=2k FP φ.

For (ii), if v |=k ψ then colour v by blocks of size exactly
k to get w. The result (that w |= col(ψ)) follows by induc-
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tion on ψ and the following observation: for every i ∈ N and
every subformula FP φ of ψ, we have v≥i |=k FP φ implies
that w≥i |= within(φ).

Deciding the model-checking problems

The model-checking problem for a logic L is the follow-
ing: given a formula ϕ from L and a finite iCGS S, decide
whether S |= ϕ.

Fact 1. Model checking ATL∗ is undecidable over concur-
rent game structures with |Ag| ≥ 3, and imperfect informa-
tion, already for the existential fragment (Pnueli and Rosner
1989; Dima and Tiplea 2011).

Thus, also model checking Prompt-KATL∗ is undecid-
able for three or more agents with imperfect information.
We show that one can regain decidability (and we provide
the optimal complexity) in four ways: (i) restricting to iCGS
with perfect information, or (ii) restricting to path quantifiers
(instead of strategy quantifiers), or (iii) restricting to memo-
ryless strategies, or (iv) restricting to cooperative strategies
and the existential fragment.

Prompt-ATL∗ with perfect information

Proposition 3. The following problems are decidable: given
a Prompt-LTL formula ψ, a finite (perfect-information)
CGS S, a set of agents A ⊆ Ag, and state s ∈ S, decide
whether (S, s) |= 〈〈A〉〉ψ; and, similarly, decide whether
(S, s) |= [[A]]ψ. Moreover, the complexity of these prob-
lems is 2EXPTIME in the number of subformulas of ψ, and
polynomial in the size of S.

Proof. We will reduce each question to the problem of de-
ciding if a given player has a winning strategy in Prompt-
LTL turn-based games. The latter are solvable in 2EXPTIME
(Zimmermann 2013).

We first consider the case of 〈〈A〉〉ψ. In the first step,
build a two-player arena G such that (�): (S, s) |= 〈〈A〉〉ψ
if and only if there exists k ∈ N such that Player 0 can en-
force (in G) the LTL goal ψk from s, where ψk is formed
from ψ by replacing every subformula of the form FP φ by∨

i≤k X
i φ. The idea is that Player 0 corresponds to the coali-

tion A and Player 1 to the coalition Ag \ A. In more de-
tail: S = 〈Ag,AP, Act, S, λ, δ〉, define G to be the (perfect
information) CGS with two agents, Player 0 and Player 1,
〈{0, 1},AP, Act0 ∪Act1, S, λ, δG〉 as follows:

- action sets Act0 := ActA and Act1 := ActAg\A,
- state set S, labeling λ,
- transition function δG : S ×Act0 ×Act1 → S that maps
(s, (d1, d2)) �→ δ(s, d1 ⊗ d2) where d1 ⊗ d2 ∈ ActAg

maps a to d1(a) for a ∈ A and otherwise (for a ∈ Ag\A)
to d2(a).

It is immediate from the definitions (of G and |=) that (�)
holds. For the next step, recall the following folk fact (†):
Player 0 has a winning strategy in a concurrent gameG with
goal Υ if and only if Player 0 has a winning strategy in the
turn-based game Gtb, which simulates G as follows: first,
Player 0 moves (thus revealing his chosen action) and then

Player 1 chooses his action and the simulated move is com-
pleted. To “skip” the intermediate nodes thatGtb introduces,
we use the goal Υtb which is defined to be the set of all com-
putations such that the subsequence consisting of only the
even positioned nodes is in Υ. The intuitive reason that this
lemma is true is that in the game Gtb Player 0 has no new
information available to it, and thus it is exactly as hard (or
easy) for him to win as in G.7

Formally, we build the turn-based game Gtb of perfect in-
formation with goal Υtb

k as follows. Let Gtb be the 2-player
game, over atoms AP, and such that:

- the state set Stb is S ∪ (S ×Act0),
- the labeling function λtb maps s �→ λ(s) and (s, d) �→ ∅,
- the transition function δtb : Stb × Act0 × Act1 → Stb

maps state s ∈ S and actions (d0, d1) to (s, d0), and maps
a state (s, d0) ∈ S×Act0 and actions (d′0, d1) to δ(s, d0⊗
d1) (for all s ∈ S, d0, d′0 ∈ Act0 and d1 ∈ Act1).

Moreover, Υtb
k consists of those plays whose subsequence

consisting of every other node satisfies ψk.
Thus, we have reduced our problem to deciding if there

exists k ∈ N such that Player 0 has a winning strategy in
the game Gtb with goal Υtb

k . The latter is the problem of
solving a two-player turn-based Prompt-LTL game, which,
by (Zimmermann 2013), can be done in 2-EXPTIME. More-
over, that procedure is already able to deal with goals which
only look at every second node of the play (so called “blink-
ing semantics”). Thus, the procedure can be easily adapted
to decide if there exists k ∈ N such that Player 0 has a win-
ning strategy in the game Gtb with goal Υtb

k , which com-
pletes the 〈〈A〉〉ψ case.

We turn to the [[A]]ψ case. Dually to the case above, build
a two-player game H by associating the coalition A with
Player 1 and associating the coalition Ag \A with Player 0.
Thus, (S, s) |= [[A]]ψ if and only if there exists k ∈ N such
that Player 1 does not have a winning strategy in the game
H with goal ψk. Dually again, build Htb in which Player
1 moves first and use the fact (†) to deduce that, for every
k ∈ N, Player 1 does not have a winning strategy in H with
goal ψk if and only if Player 1 does not have a winning strat-
egy in the game Htb with goal Υtb

k . Since turn-based games
of perfect information with LTL goals (the “blinking seman-
tics” is easily accommodated) are determined (i.e., one of
the players has a winning strategy), then this is equivalent to
Player 0 having a winning strategy in the gameGtb with goal
Υtb

k . But this is the same type of game we had already solved
in the case of 〈〈A〉〉ψ. This completes the [[A]]ψ case.

Theorem 1. The model checking problem for Prompt-ATL∗

(resp. Prompt-ATL) is 2EXPTIME-complete (resp. PTIME-
complete).

Proof. By (Alur, Henzinger, and Kupferman 2002), the
lower bound already holds for ATL∗ (resp. ATL). For the up-
per bound, we adapt the marking algorithm for model check-
ing ATL∗ (Alur, Henzinger, and Kupferman 2002).

7However, Player 1 can win in Gtb from states in which he can
only prevent Player 0 from winning in G, but not ensure he himself
wins.

263



Let ϕ be a state Prompt-ATL∗ formula, and mark every
state s ∈ S by the state subformulas ϕ′ of ϕ that are satisfied
at s. This is done inductively. The case that ϕ′ is an atom, a
negation of an atom, a disjunction or a conjunction is imme-
diate (e.g., if ϕ′ = ϕ1 ∨ ϕ2 and s is marked by ϕ1 then also
mark s by ϕ1 ∨ ϕ2).

The case that ϕ′ = 〈〈A〉〉ψ is dealt with as follows.
Recall that lin(ψ) is a Prompt-LTL formula over atoms
max(ψ). By Lemma 1, deciding if (S, s) |= 〈〈A〉〉ψ is
equivalent to deciding if (Sψ, s) |= 〈〈A〉〉lin(ψ). By induc-
tion, the satisfaction of all state subformulas of ψ have al-
ready been determined. In particular, we have enough in-
formation to form Sψ . By Proposition 3, deciding whether
(Sψ, s) |= 〈〈A〉〉lin(ψ) can be done in 2EXPTIME. The case
that ϕ′ = [[A]]ψ is similar.

The case of Prompt-ATL follows by noting that the for-
mula lin(ψ) is always of constant size since Prompt-ATL
does not allow temporal operators to be directly nested.

Prompt-KCTL∗

In the case of Prompt-KCTL∗, the strategy quantifiers are
restricted to E,A. This inherent restriction on the strategy
quantifiers results in a decidable model checking problem,
also in the presence of imperfect information.
Theorem 2. Model checking Prompt-KCTL∗ is PSPACE-
complete, and the structure complexity is PTIME-complete.

Proof. The lower-bounds already hold for CTL∗ (Kupfer-
man, Vardi, and Wolper 2000). For the upper-bounds, let
ϕ be a state Prompt-KCTL∗ formula, and mark every state
s ∈ S by the state subformulas ϕ′ of ϕ that are satisfied at s.
This is done inductively as in Theorem 1. The cases we have
to consider are the epistemic operators and the complexity
of the path quantifiers. The case that ϕ′ is of the form Kaφ
is dealt with as follows: mark s by Kaφ iff every s′ ∼a s
is already marked by φ; similarly, mark s by DAφ iff every
s′ ∼A s is already marked by φ (the remaining epistemic op-
erators, including the duals, are similar). Each of these steps
can be performed in time polynomial in S.

We now discuss the case that ϕ′ is of the form Eψ
or Aψ. Recall that lin(ψ) is a Prompt-LTL formula over
atoms max(ψ), and that live(·) replaces every FP by F in
a Prompt-LTL formula. Thus, live(lin(ψ)) is an LTL for-
mula over atoms max(ψ). By induction, the satisfaction of
all state subformulas of ψ has already been determined. In
particular, we have enough information to form the CGS
Sψ (note that since S is a CGS, so is Sψ). By Lemma 1
note that (†): for Q ∈ {E,A}, (S, s) |= Qψ if and only if
(Sψ, s) |= Qlin(ψ).

For ϕ′ = Aψ mark s by Aψ if and only if (Sψ, s) |=
A lin(ψ). To see this is correct use (†).

For ϕ′ = Eψ, mark s by Eψ if and only if (Sψ, s) |=
E live(lin(ψ)). To see that this is correct use (†), Proposi-
tion 2, and the fact that lin(ψ) is a Prompt-LTL formula
over atoms max(ψ).

For the complexity, note that i) there are only a linear
number of subformulas ϕ′ of ϕ, and ii) each case ϕ′ of
the algorithm can be done in PSPACE in the size of ϕ′
and NLOGSPACE in the size of S (for the ϕ′ = Aψ case

use Proposition 1, and for the ϕ′ = Eψ case use the fact
that model checking LTL is in PSPACE (Sistla and Clarke
1985)).

Prompt-KATL∗ with memoryless strategies

In this section we prove that model checking Prompt-
KATL∗ with memoryless strategies is PSPACE-complete. We
begin with the relevant definitions.

A strategy σ is called memoryless if for all histories h, h′,
and every state s we have σ(hs) = σ(h′s). It is thus com-
mon to consider memoryless strategies as functions from
states (not histories) to actions.

Define |=k
mem like |=k except replace the definition of the

semantics of the strategy quantifiers to limit the agents to
memoryless (observational) strategies as follows:8

- (S, s) |=k
mem 〈〈A〉〉ψ (resp. [[A]]ψ) iff there exists a set

(resp. for all sets) ΣA of memoryless observational strate-
gies, one strategy for each agent in A, such that for all
(resp. for at least one) computation π ∈ out(s,ΣA), we
have (S, π) |=k ψ.

Define (S, s) |=mem ϕ iff there exists k ∈ N such that
(S, s) |=k

mem ϕ,

Theorem 3. The following problem is PSPACE-complete:
given a Prompt-KATL∗ formula ϕ and a finite iCGS S, de-
cide whether S |=mem ϕ.

Proof. The lower-bound already holds for CTL∗ (Kupfer-
man, Vardi, and Wolper 2000). For the upper bound, we
use the marking algorithm as we did in Theorem 1. We
show how to deal with the existential strategy quantifier (the
universal quantifier is symmetric). Apply Lemma 1 and re-
duce (S, s) |=mem 〈〈A〉〉ψ to (Sψ, s) |=mem 〈〈A〉〉lin(ψ).
To solve the latter, observe the following: i) each agent has
finitely many observational memoryless strategies (each of
polynomial size) in S, ii) instantiating a set ΣA of such
strategies, one for each agent inA, results in a sub-area S′ of
Sψ in which we have to check whether (S′, s) |= A lin(ψ).
By Proposition 1, each step ii) can be done in PSPACE. Thus
one can, in PSPACE, search for a set of observational memo-
ryless strategies ΣA such that ii) holds.

Existential Fragment of Prompt-KATL∗ with
co-operative strategies

In this section we prove that model checking the existential
fragment of Prompt-KATL∗ with co-operative strategies is
2EXPTIME-complete. We begin with some definitions.

Define |=k
co like |=k except replace the definition of the

semantics of the strategy quantifiers 〈〈A〉〉, [[A]] as follows:

- (S, s) |=k
co 〈〈A〉〉ψ (resp. [[A]]ψ) iff there exists a set (resp.

for all sets) ΣA of strategies, one strategy for each agent
in A, that is co-operatively observational, such that for
all computations (resp. for at least one computation) π ∈
out(s,ΣA) we have (S, π) |=k ψ.

8One can also define a “uniform” semantics in which also the
agents not quantified over (i.e. the ones not in A) are limited to
memoryless strategies. Our techniques can be easily adapted also
to this uniform semantics.
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Define (S, s) |=co ϕ iff there exists k ∈ N such that
(S, s) |=k

co ϕ.

Theorem 4. The model-checking problem for the existential
fragment of Prompt-KATL∗ (resp. Prompt-KATL) with co-
operative strategies is 2EXPTIME-complete (resp. in PTIME).

The lower bound holds already for the existential frag-
ment of ATL∗ (see the proof of Theorem 5.6 in (Alur, Hen-
zinger, and Kupferman 2002)). For the upper bound, the
proof proceeds as in previous constructions, using the mark-
ing algorithm from the proof of Theorem 1. The interesting
case is the strategy quantifier 〈〈A〉〉, which is dealt with by
the following proposition.

Proposition 4. The following problem is decidable: given a
Prompt-LTL formula ψ, a finite iCGS S, a set of agentsA ⊆
Ag, and state s ∈ S, decide whether (S, s) |=co 〈〈A〉〉ψ.
Moreover, this can be done in 2EXPTIME in the number of
subformulas of ψ, and polynomial time in the size of S.

Proof. The outline of the proof is as follows: we build a two-
player arena G such that (�): (S, s) |=co 〈〈A〉〉ψ if and only
if there exists k ∈ N such that Player 0 has a strategy in G
that enforces the LTL goal ψk from s (as in Proposition 3, ψk

is formed from ψ by replacing every subformula of the form
FP φ by

∨
i≤k X

i φ). The idea is that Player 0 corresponds
to the coalition A and Player 1 to the coalition Ag \ A. We
are justified in treating all players in A as a single player
by our assumption of cooperative strategies for them (the
antagonists in Ag \ A are always treated as a single player
since all of their strategies have to be defeated).

We then modifyG to obtain a new arenaG′, which allows
Player 0 to chooses colours (red or ¬red) at every second
step. We then prove (��) for every k ∈ N, if Player 0 has an
observational strategy inG that enforces goal ψk from s then
it has an observational strategy in G′ that enforces, from s,
the following goal (†): col(ψ) holds and no colour consec-
utively repeats more than k times9, and vice versa (but with
ψ2k substituted for ψk, i.e., that if Player 0 has an observa-
tional strategy in G′ that enforces (†) then it has an obser-
vational strategy in G that enforces ψ2k). Finally, using the
fact that LTL games of imperfect information admit finite-
state strategies, we will show how to decide (in 2EXPTIME)
whether there exists k ∈ N such that Agent 0 has a strategy
in G′ that enforces (†) from s. Here are some more details.

If S = 〈Ag,AP, Act, S, λ, δ, {∼a: a ∈ Ag}〉, define G to
be the iCGS 〈{0, 1},AP, Act0 ∪Act1, S, λ, δG, {∼0,∼1}〉
as follows:

- action sets Act0 := ActA and Act1 := ActAg\A,
- state set S, labeling λ,
- transition function δG : S ×Act0 ×Act1 → S that maps
(s, (d1, d2)) �→ δ(s, d1 ⊗ d2) where d1 ⊗ d2 ∈ ActAg

maps a to d1(a) for a ∈ A and otherwise (for a ∈ Ag\A)
to d2(a),

- relation ∼0,∼1 defined as follows: s ∼0 r if s ∼A r, and
s ∼1 r if s ∼Ag\A r.

9W remind the reader that col(ψ) is defined before Lemma 3.

It is immediate from the definitions (of G and |=co) that
(�) holds. Define G′ to be the iCGS obtained from G by
adding a new atom red and splitting every transition from
s to s′ using decision d, into a diamond shape, where the
first decision is either to go left from s (decision d with red)
or go right (decision d with ¬red) to one of two intermedi-
ate nodes. The choice of colour is made entirely by Player
0. Then, from each of these intermediate nodes every deci-
sion leads to the node s′. The observation sets are defined
such that the intermediate nodes that are successors of in-
distinguishable nodes are themselves indistinguishable (and
thus no new information leaks). Formally, G′ is the iCGS10

〈{0, 1},AP ∪ {red}, Act′, S′, λ′, δ′, {∼′
0,∼′

1}〉 where:

- Act′0 := Act0 × {red,¬red} and Act′1 := Act1,

- S′ := S ∪ (S ×ActAg × {red,¬red}),
- the labeling λ′ maps s �→ λ(s) and (s, d, x) �→ {x},
- transition function δ′ : S′ × Act′0 × Act′1 → S′ that, for

actions (d0, x) ∈ Act′0 and d1 ∈ Act1, maps state s ∈ S
and actions ((d0, x), d1) to (s, d0 ⊗ d1, x); and that maps
state (s, d, x) and all actions of the players to δG(s, d);

s

red ¬red

s′

- observation sets ∼′
0,∼′

1 defined as follows: s ∼′
i r if s ∼i

r, and (s, d, x) ∼′
i (r, d

′, x′) if s ∼i r.

We now describe, for every k ∈ N, the natural transfor-
mation of strategies for Player 0 between G and G′. For
h′ ∈ hist(S′) define proj(h′) ∈ hist(S) to be the string in
which every second symbol of h′ is removed. Fix an action
α ∈ Act′0. An observational strategy σ0 : hist(S) → Act0
in G induces the strategy σ′

0 : hist(S′) → Act′0 in G′
defined as follows. If h′ ends in an element of S then
σ′
0(h

′) := (σ0(proj(h
′)), x), where x is red if the integer

part of |proj(h′)|
k is odd, and otherwise (if it is even), x is

¬red (in words, use σ0 and swap the colour every k steps
in G). If h′ does not end in an element of S then define
σ′
0(h

′) := α (recall that all transitions from the intermediate
nodes go to the same destination). It is easy to see that σ′

0 is
observational since σ0 is.

Before we prove the converse, we state a useful fact
that follows from an induction on the length of histories:
if proj(h′1) ∼0 proj(h′2) then h′1 ∼′

0 h′2. Now, an obser-
vational strategy σ′

0 : hist(S′) → Act′0 in G′ induces the
strategy σ0 : hist(S) → Act0 in G defined as follows:
σ0(h) := σ′

0(h
′) where proj(h′) = h. This is well defined

because, if proj(h′1) = proj(h′2) = h then h′1 ∼′
0 h′2 (by

10We assume that the two agents use different sets of actions
Act′0 and Act′1 — see discussion after the definition of iCGS.
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the useful fact), and so σ′
0(h

′
1) = σ′

0(h
′
2) (since σ′

0 is ob-
servational). To see that σ0 is observational let h1 ∼0 h2 be
equivalent histories in G, and suppose proj(h′i) = hi. Then
by the useful fact, also h′1 ∼′

0 h
′
2, and thus, since σ′

0 is ob-
servational, we have σ′

0(h
′
1) = σ′

0(h
′
2).

We now establish (��). Fix k. A strategy σ0 in G that
ensures ψk implies (by Lemma 3) that every play consistent
with σ0 can be k-coloured by blocks of size exactly k in
a way that satisfies col(ψ). Thus, the transformed strategy
σ′
0 of G′ ensures (†). Conversely, suppose strategy σ′

0 in G′
ensures (†). Then (by Lemma 3) the transformed strategy σ0
of G ensures ψ2k.

Finally, we show that Player 0 can enforce (†) from s in
G′ if and only if Player 0 can enforce col(ψ) from s in G′.
The “only if” direction is immediate from the definitions.
For the “if” direction, it is implicit in (Kupferman and Vardi
1997a; 1997b) that LTL games of imperfect information ad-
mit finite-state strategies. We claim that if a strategy uses
memory k then it (|S| × k)-colours the play. Indeed, let h
be a history, and take i < j ≤ |h| such that the infix be-
tween positions i and j is of length at least |S| × k. Hence,
there exists i ≤ i′ < j′ ≤ j such that the last states of
x := h≤i′ and y := h≤j′ are equal, and the strategy is in the
same memory-state after processing the histories x and y. In
particular, the strategy gives the same action on x as on y.
Thus, the opponent can repeatedly play the infix between i′
and j′, and thus this infix must contain a colour change since
we assumed that the strategy enforces col(ψ) (which states,
in particular, that the colours alternate infinitely often). This
completes the “if” direction.

Conclusion

Reasoning about promptness has recently received attention
for linear specifications (Alur et al. 2001; Kupferman, Piter-
man, and Vardi 2009; Zimmermann 2013). This is due to the
fact that questions like “a specific state is eventually reached
in a computation” have a clear meaning and application in
the theory of formal verification, but are useless in practical
scenarios if there is no bound on the time before the specific
state is reached.

In this work, we initiated the study of prompt require-
ments over branching time specifications for multi-agent
systems. We introduced the logic Prompt-KATL∗, an ex-
tension of the classic ATL∗, in which we added the prompt
eventuality temporal operator FP, and settled the model-
checking complexity of many natural fragments, under vari-
ous restrictions, i.e., perfect information, memoryless strate-
gies, and the existential fragment with co-operative strate-
gies. In particular, we prove that model-checking Prompt-
KCTL∗ is PSPACE-complete without any restrictions. Note
that in the case of two players the restriction to co-operative
strategies is not a real restriction as these correspond to
ordinary strategies. Our results for Prompt-KATL∗ and
Prompt-KATL are summarised in the following tables:

As our results show, the complexity of model checking
the considered logics with the prompt operator is the same
as without the prompt operator 11.

11except for the case of Prompt-KATL under observational

Perfect Info. or co-operative ∃ Fragment Memoryless
2EXPTIME-complete PSPACE-complete

Figure 1: Complexity of model checking Prompt-KATL∗

Perfect Info. or co-operative ∃ Fragment Memoryless
in PTIME in PSPACE

Figure 2: Complexity of model checking Prompt-KATL

We remark that our upper-bounds for Prompt-KATL
were obtained essentially as a side-effect of the results for
Prompt-KATL∗, i.e., by analysing the complexity of the al-
gorithms we provided for Prompt-KATL∗ in the restricted
case of Prompt-KATL. However, one can directly reason
on Prompt-KATL. For example, in the perfect-information
case, one can show that (like for Prompt-CTL) S |= ϕ, for a
Prompt-ATL formula ϕ, iff S |= φ, where φ is the ATL for-
mula obtained by replacing every prompt-eventuality FP in
ϕ by a regular eventuality F. The underlying reason is that in
Prompt-KATL FP only ranges over state sub-formulas and
thus, reasoning about sub-formulas of the form 〈〈A〉〉FP ψ
and [[A]]FP ψ reduces to reasoning about two player games
with reachability goals. In such games a (memoryless12)
winning strategy does not admit a lasso in which ψ does not
hold on all its states (since then the opponent can pump the
loop of the lasso and win). Thus, if the goal ψ is achieved, it
is achieved within a number of steps that is at most the size
of the model, and thus promptly. For the case of imperfect
information, more complicated reasoning can be employed.

Our work opens up several avenues of research. First,
an intriguing open question is whether model-checking
Prompt-KATL∗ under cooperative strategies is decidable,
even for two players (in this work we established the optimal
complexity for its existential fragment). Second, the satisfi-
ability problem has yet to be tackled, and we believe that the
techniques introduces in this paper would yield useful for
this investigation.
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Čermák, P.; Lomuscio, A.; and Murano, A. 2015. Veri-
fying and Synthesising Multi-Agent Systems against One-
Goal Strategy Logic Specifications. In AAAI 2015, 2038–
2044. AAAI Press.
Chatterjee, K.; Henzinger, T. A.; and Horn, F. 2009. Finitary
winning in ω-regular games. ACM Transactions on Compu-
tational Logic 11(1):1.
Chatterjee, K.; Henzinger, T.; and Piterman, N. 2010. Strat-
egy Logic. Information and Computation 208(6):677–693.
Clarke, E., and Emerson, E. 1981. Design and Synthesis
of Synchronization Skeletons Using Branching-Time Tem-
poral Logic. In LP’81, LNCS 131, 52–71. Springer.
Dima, C., and Tiplea, F. 2011. Model-checking ATL un-
der Imperfect Information and Perfect Recall Semantics is
Undecidable. Technical report, arXiv.
Emerson, E., and Halpern, J. 1986. “Sometimes” and “Not
Never” Revisited: On Branching Versus Linear Time. Jour-
nal of the ACM 33(1):151–178.
Fijalkow, N., and Zimmermann, M. 2012. Cost-parity and
cost-streett games. In FSTTCS, volume LIPIcs 18, 124–135.
Huang, X., and van der Meyden, R. 2014. An epistemic
strategy logic. arXiv preprint arXiv:1409.2193.
Huang, X.; Luo, C.; and Van Der Meyden, R. 2011. Im-
proved bounded model checking for a fair branching-time
temporal epistemic logic. In MoChArt. Springer. 95–111.
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